

Национальный исследовательский центр Курчатовский институт ФГБУ «Петербургский институт ядерной физики им. Б.П. Константинова»

Разработка и создание экспериментальной установки прецизионного измерения скорости захвата мюона дейтроном (Эксперимент MuSun)

Ившин К.А.

01.04.01 Приборы и методы экспериментальной физики

Научный руководители: к.х.н. Взнуздаев М.Е. Научный консультант: к.ф.-м.н. Воропаев Н.И.

Мотивация эксперимента

Реакция захвата мюона протоном рассмотренная в эксперименте MuCap Реакция захвата мюона дейтроном исследуемая в эксперименте MuSun

Изучаемая реакция

Методика эксперимента

Кинетика процесса

7

Кинетика процесса

Требуется поддержание криогенных условий на уровне 31 К

Кинетика процесса

Требуется изотопная очистка дейтерия на уровне 100ppm (10⁻⁴)

Необходимо поддерживать химическую чистоту газа на уровне 1ppb (10-9)

Схема центрального детектора

Система охлаждения СгуоТРС

Поддержание криогенных условий в CryoTPC на уровне 31[K] позволило подавить канал реакции связанный с образованием ddµ молекулы ~50раз

Изотопная очистка газа

Изотопная очистка газа до уровня ~100ppb позволила полностью подавить влияния канала реакции образования pdµ молекулы.

Химическая очистка газа

Поддержание химической чистоты газа на уровне ~1ppb полностью исключило влияние канала реакции перехвата мюона на примесь с высоким зарядовым числом

Хроматографические измерения

Удалось добиться чувствительности хроматографического метода на уровне 0,6ppb содержания азота в дейтерии

Калибровка хроматографической установки

Термометрия СгуоТРС

Система охлаждения предусилителей

теплоприток ~ на 3 Вт

19

- Разработана и создана система поддержания термодинамических условий криогенной время-проекционной камеры при температуре 31К и давлении 5бар со стабильностью ±0.1 К и ±0.01 бар, соответственно.
- Разработана и создана система поддержания криогенных условий работы предусилителей при стабильной температуре 140К
- Разработана и создана установка метрологического обеспечения термометрии эксперимента в диапазоне 20-212 К.
- Создание криогенной ректификационной колонны для получения изотопно-чистого дейтерия с содержанием HD ~100 ppb..
- Создание криогенной циркуляционной системы для непрерывной очистки рабочего газа центрального детектора (дейтерия) от химических примесей на уровне ~1 ppb.
- Создание программно-аппаратного комплекса на базе микроконтроллера для чтения и анализа хроматографических данных.
- Создание системы калибровки хроматографических измерений химической чистоты дейтерия в диапазоне ~1 ppb.

Использование представленных в работе систем позволило произвести набор статистических данных в размере 10¹⁰ событий.

- Cryogenic Distillation Facility for Isotopic Purification of Protium and Deuterium; Rev. Sci. Instrum. 86, 125102 (2015)
- Труды 64 международной конференции «ЯДРО-2014» (Фундаментальные проблемы ядерной физики, атомной энергетики и ядерных технологий), июль 2014, Республика Белоруссия, Минск.
- Криогенная установка для прецизионной калибровки датчиков температуры; Научно-технический вестник информационных технологий, механики и оптики. Т16 №5.
- Труды конференции 1st IIR international Conference Cryogenics and Refrigiration Technology, june 2016, Romania, Bucharest.
- Measurement of trace impurities in ultra pure hydrogen and deuterium at the parts-per-billion level using gas chromatography; NIM A 880 (2018) pp 181-187
- Программно-аппаратный комплекс хроматографического детектора теплопроводности для эксперимента MuSun; Изв. Вузов. Приборостроение. 2017. Т. 60, № 11 с. 1088-1091.

Petersburg Nuclear Physics Institute, Russia

University of Illinois at Urbana-Champaign, USA

Paul Scherrer Institute, Switzerland

University of Kentucky, Lexington, USA

Boston University, Boston, USA

Universite Catholique de Louvain, Belgium

Regis University, Denver, USA

University of South Carolina, Columbia, USA

Внешний вид установки

Спасибо за внимание.