Изучение двухфотонных процессов в эксперименте с детектором КЕДР на коллайдере ВЭПП-4М

Жилич В.Н.

16 апреля 2021 г.

Семинар ФЭЧ ИЯФ

Жилич В.Н

Изучение двухфотонных процессов с детектором КЕДР

Содержание

Цели семинара:

- Обсуждение физической программы КЕДР по двухфотонной физике
- Обзор результатов по двухфотонной физике, доступных для изучения на КЕДР в нашей области энергий.
- Роль Системы Регистрации Рассеянных Электронов КЕДР (СРРЭ, она же TS) в эксперименте

План семинара:

```
Что такое двухфотонные события?
Эксклюзивные/двухчастичные процессы
Изучение С-четных резонансов, эксклюзивная и инклюзивная моды
Инклюзивные процессы. Полное сечение рождения адронов
Измерение сечение \gamma\gamma \rightarrow hadrons
Изучение топологии многоадронных событий в двухфотонных процессах
Моделирование \gamma\gamma процессов
Система регистрации рассеянных электронов КЕДР (СРРЭ, TS)
Выделение процесса e^+e^- \rightarrow e^+e^-\mu^+\mu^-
Достоинства СРРЭ
Заключение
```

23456789

Что такое двухфотонные события?

Это не $e^+e^- o \gamma\gamma$, а $\gamma\gamma o {
m X}$

или, если мы говорим о встречных пучках,

$$e^+e^-
ightarrow e^+e^-\gamma^*\gamma^*
ightarrow e^+e^- + X$$

Однофотонная аннигиляция e^+e^-

Двухфотонное взаимодействие e^+e^- . Энергию виртуального фотона и другие параметры рожденных частиц можно найти как $\omega_1 = (|p_1| - |p_1'|),$ $q_1^2 = -|p_1||p_1'|\vartheta_1^2 - O(m_2^2),$

$$W(\gamma\gamma)pprox 2\sqrt{\omega_1\omega_2}$$

Что такое двухфотонные события?

- В качестве системы X могут рождаться пары лептонов/мезонов/барионов, С-четные адронные резонансы и другие многоадронные (N_{hadr} ≥ 3) системы
- Сечение рождения пар лептонов можно рассчитать в рамках QED.
- Чтобы выйти на уровень точности 1% требуется корректный учет рад.поправок, что уже не просто. В частности, у нас есть проблемы с их учетом для процесса $e^+e^- \to e^+e^- + e^+e^-$
- Для адронных систем требуется применение QCD в области низких энергий, где не существует надежных методов вычислений
- В рамках метода эквивалентных фотонов можно рассчитать функцию светимости $\mathcal{L}(W)$ такую, что $\sigma(e^+e^- \to e^+e^-X) = \int_0^{2E_b} \mathcal{L}(W)\sigma(\gamma\gamma \to X) \, dW$. Пересчитывая обратно, мы можем говорить об измерении двухфотонного сечения
- Я расскажу о доступных для изучения на КЕДР процессах в ранее перечисленном порядке

Двухфотонное рождение пар лептонов

- Сечение процесса $e^+e^- \rightarrow e^+e^- + \mu^+\mu^-$ при $E_b = 4.7$ ГэВ составляет около 60 нб, а $e^+e^- \rightarrow e^+e^- + e^+e^-$ в 100 раз больше. Правда, 99% рожденных e^+e^- улетает вдоль пучка и не регистрируются детектором
- Изучение этих процессов важно/неизбежно для анализа двухфотонных событий
- Данные процессы служат для контроля интегральной γγ-светимости, эффективности детектора и СРРЭ. Поиск по публикациям показал, что никто не получал точность лучше 3-5%
- В работе¹ наших коллег из Института Математики утверждается, что возможно наблюдение зарядовой асимметрии в этом процессе за счет интерференции с тормозной диаграммой. Более интересно наблюдение асимметрии при рождения пары пионов, но для этого необходим интеграл ≥100 1/пб
- Кажется интересным измерить процессы с реальными рад.поправками типа $\gamma\gamma \to \mu^+\mu^-\gamma$ (процесс α^5), который никто еще не измерял

¹I.F. Ginsburg et al, Eur. Phys.J. C (2001)

Наш конкурент – Двухфотонная физика на LEP

Измеренное сечение процесса $\gamma \gamma \rightarrow \mu^+ \mu^-$ (коллаборация L3, LEP) и результаты расчета. Ошибки в точках 5-20%.

Жилич В.Н.

- $\bullet~$ Сечение этих процессов примерно в 10 и 100 раз меньше, чем $e^+e^- \to e^+e^- + \mu^+\mu^-$
- Так как инклюзивное изучение двухфотонных процессов планируется проводить для множественности $N_{ch} + N_n \ge 3$, то эти процессы являются необходимым дополнением к полному сечению $\gamma \gamma \rightarrow hadrons$
- Здесь придется конкурировать с результатами Belle (90 1/фб) и ARGUS(280 1/пб)
- Однако, у КЕДР есть некоторое преимущество:
 - КЕДР может регистрировать процессы с меньшей инвариантной массой, чем ARGUS и Belle, по пионам ≥0.4 ГэВ. Поэтому такие измерения будут полезными, невзирая на меньший интеграл
 - Если получится настроить триггер на условие 1пучковая*РЭ2, тогда мы сможем заметно поднять эффективность регистрации (пока неясен вопрос о возможности подавлении фона при реконструкции события.)

Двухфотонная физика на Belle и ARGUSe

Измерения сечение процессов $\gamma\gamma o \pi^+\pi^-, K^+K^-$ на детекторах Belle и ARGUS

- Сечение рождения резонанса пропорционально $(2J+1)\Gamma_{\gamma\gamma}/M_{3}^{3}$ где J-спин частицы, M_{R} -масса. Двухфотонная ширина $\Gamma_{\gamma\gamma} = \Gamma_{tot} \cdot Br_{\gamma\gamma}$ может быть рассчитана в рамках различных моделей, она зависит от кваркового состава и волновой функции. Это помогает разбираться с внутренним строением резонансов
- В этих процессах КЕДР не может претендовать на рекордную точность, в связи с малым интегралом. Особенно для тех резонансов, которые распадаются на пару π или K, например, f₂(1270)
- Однако, применяя метод одиночного или двойного тагирования, можно выделять резонансы с улетевшими частицами, что резко повышает эффективность и позволяет получить вполне конкурентоспособные результаты
- Результаты МД-1 по двухфотонной ширине η, η', a₂ до сих пор присутствуют в PDG (20 1/пб, 35(!) лет назад).
- При наборе интеграла светимости ≥100 1/пб измерения КЕДР будут одними из лучших по точности.

Двухфотонное рождение очарованных С-четных резонансов

- Мезоны $\eta_c, \eta_c(2S), \chi_0, \chi_2$ тяжелые, поэтому их сечение рождения подавляется фактором $1/M^3$ и эффективной $\mathcal{L}(\gamma\gamma)$ светимостью
- Сечение рождения *η_c* равно 7(10) пб при *E_b*=3.7(4.5) ГэВ
- В отличие от других детекторов КЕДР может их изучать в инклюзивной моде, не требуя полной реконструкции, а массу определять по двум рассеянным электронам с разрешением около 15 МэВ. Что дает значительное увеличение эффективности регистрации
- Конкурентные результаты можно получить на интеграле ≥200 1/пб, когда число рожденных резонансов составит несколько сотен. При этом большое значение имеет энергия пучка, на которой набран интеграл светимости
- Для $\eta_c(2S)$ данные по $\Gamma_{\gamma\gamma}$ противоречивы, так что практически любое $\eta_c(2S)$ ракты widths

$\Gamma(\gamma \gamma)$					Г ₁₆
VALUE (keV)	EVTS	DOCUMENT I	D	TECN	COMMENT
• • • We do not	use the follo	wing data for av	verages,	fits, limi	ts, etc. • • •
0.44 ± 0.14	106	²⁰ XU	18	BELL	$e^+e^- \rightarrow e^+e^-\eta'\pi^+\pi^-$
1.3 ± 0.6		²¹ ASNER	04	CLEO	$\gamma \gamma \rightarrow \eta_c \rightarrow K_S^0 K^{\pm} \pi^{\mp}$
²⁰ Assuming that ²¹ They measure $B(\eta_c(1S) \rightarrow the branching \Gamma(\eta_c(1S) \rightarrow the branching r)$	t the branchi $F(\eta_{C}(2S)\gamma\gamma - K\overline{K}\pi)$. $F(\overline{K}\pi)$. $F(\overline{K}\pi)$.	ing fraction into γ) B($\eta_c(2S) \rightarrow$ The value for f r $\eta_c(2S)$ and η $\pm 0.4 \pm 2.3$ keV	$\eta' \pi^+ \pi$ $K\overline{K}\pi$) $\Gamma(\eta_c(2S))$	r^{-} is the = (0.18) $) \rightarrow \gamma$ lecays to	the same as for $\eta_c(1S)$. $\pm 0.05 \pm 0.02$) $\Gamma(\eta_c(1S)\gamma\gamma)$ $\gamma)$ is derived assuming that $\phi K_S K \pi$ are equal and using

измерение будет важным

Полное сечение рождения адронов в двухфотонных процессах

- Особый интерес представляет полное сечение перехода $\gamma\gamma \rightarrow$ hadrons (здесь hadrons любая адронная система)
 - In pre-QCD times, in order to describe the behaviour of scattering amplitudes at high energy, **s**, and small momentum-transfer squared, **t**, Regge theory was developed and successfully applied in a wide range of energies. The Regge approach is based on the singularities of amplitudes in the complex angular momentum, **j**, plane.
- Используя довольно общие предположения, можно связать сечение $\gamma\gamma \rightarrow hadrons$ с полным сечением процессов γN и NN, где N любой нуклон (чаще всего протон), и получить зависимость² от инвариантной массы $W_{\gamma\gamma}$ в интервале 2÷8 ГэВ

$$\sigma(\gamma\gamma \rightarrow hadrons) = A + B/W.$$

Первый член определяется померонным обменом, второй обменом f2, a2

• В некотором приближении

 $A = \sigma^2_{asymp}(\gamma N) / \sigma_{asymp}(NN) \approx$ 240 нб (250÷300 - в зависимости от способа расчета),

 $B \approx 270$ нб.ГэВ (260÷370)

²Первую ссылку дают на J.L.Rosner, Brookhaven rep. CRISP 71 26 (1971), но этой публикации я не нашел. Результаты другого расчета взяты из статьи I.F. Ginzburg,V.G. Serbo, Phys.Lett 109B (1982) 231

Жилич В.Н

Изучение двухфотонных процессов с детектором КЕДР

- Значительное число работ по этой теме было выполнено в 80-х и начале 90-х годов. Последние 10-15 лет интерес к *γγ* → *hadrons* лежит в области больших энергий (LEP+LHC). Там наблюдается степенной по s (*причем с дробной степенью*) рост сечения, который, при этом, объясняется теорией.
- А в области W < 5 ГэВ, как правило, исследуются фиксированные конечные состояния, в частности события с большой виртуальностью $\gamma \gamma^*$ (Belle, BABAR и др.)

Измерение сечения $\gamma\gamma \rightarrow hadrons$, компиляция данных за 40 лет

Сечение $\gamma\gamma \to hadrons$, измеренное разными детекторами. Сравнение с двумя теоретическими моделями. Данные в области низких энергий могут влиять на выбор модели

Данные детектора МД-1,PLUTO и TPC/2 γ

Результаты измерения полного сечения $\gamma\gamma \rightarrow hadrons$, полученные на детекторе МД-1 (Новосибирск, ИЯФ) в 1983-1985 гг, PLUTO(1984) и TPC/2 γ (1990). Результаты на МД-1 получены при $Q^2 \approx 0.005 \ \mbox{ГэB}^2$, PLUTO – $Q^2 \ge 0.44 \ \mbox{ГэB}^2$, TPC/2 $\gamma - Q^2 \ge 0.2 \ \mbox{ГэB}^2$ (знак у Q^2 опущен). На всех картинках показана теоретическая кривая $\sigma(W_{\gamma\gamma}) = 240 + 270/W$

Измерения при больших Q^2

В TPC/2 γ тагировали электроны при больших углах вылета. Поэтому $\langle Q^2 \rangle$ изменялся в пределах 0.2÷5 ГэВ². При этом сечение $\gamma\gamma \rightarrow hadrons$ падало почти в 10 раз при больших Q. Для интерполяции к $\langle Q^2 \rangle = 0$ приходилось использовать различные модели, что давало значительную систематическую ошибку. Аналогичная ситуация была и в эксперименте PLUTO.

Результаты МД-1

Набрано около 20 1/пб, при энергии 2E = 7.7 – 9.7 ГэВ

- Инвариантная масса рожденной системы определялась по энергиям рассеянных e⁺e⁻ в double-tag моде (РЭ2)
- Эффективность по РЭ2 моде с отбором "вне горизонта"(θ_z > 0.5 мрад): около ~8% в середине диапазона с падением на краях до 2% (если не исключать горизонт – ~20% в максимуме)
- Отбор по центральной части: множественность $N_{ch} \ge 1$, $N_{ch} + N_{nt} \ge 3$. Плюс критерии для подавления фона Бабы, космики, двухчастных $\gamma\gamma$ процессов и пучкового фона
- 448 событий в интервале W = 1.25 4.25 ГэВ, из них фон около 12%

Изучение двухфотонных процессов с детектором КЕДР.

Общие характеристики событий в процессе $\gamma\gamma \rightarrow hadrons$

- Представляется интересным измерение инклюзивных сечений вида $\gamma\gamma \to \pi + X, K + X, K_s + X$ в зависимости от $W(\gamma\gamma)$
- Кроме измерения сечения процесса $\gamma \gamma \rightarrow hadrons$ представляется важным изучение других характеристик, таких как энергетические спектры, угловые распределения и т.п.
- Одной из таких характеристик является зависимость средней множественности от инвариантной массы
- Поскольку двухфотонные события являются неизбежным фоном для всех работающих коллайдеров, важно уметь правильно моделировать этот фон. Средняя множественность является удобным параметром для настройки и проверки Монте-Карло генераторов, используемых как для изучения двухфотонных событий, так и для борьбы с ними

Множественность частиц в процессе $\gamma \gamma \rightarrow hadrons$

- Точность измерения этой зависимости для двухфотонных процессов во много раз хуже, чем для событий e⁺e⁻-аннигиляции
- Измерение средней множественности в процессе $\gamma \gamma \rightarrow hadrons$ и формы распределения для N_{ch} (оно необязательно Пуассоновское) было бы полезным для многих исследований

Моделирование и отбор событий $\gamma\gamma ightarrow hadrons$

Условия отбора $\gamma\gamma \rightarrow hadrons$:

• Зарегистрировано 4 или больше частиц, среди которых, как минимум, две заряженных из места встречи $P_t > 80$ МэВ с некоторыми ограничениями на энерговыделение в калориметре

Использовано моделирование $\approx 200~{\rm nG}^{-1},~E_b=3.7~{\rm n}$ 4.5 ГэВ. Добавлялся фон ОТИ из моделирования, использовалось вето от LM.

Изучение двухфотонных процессов с детектором КЕДР

Проведена оценка однофотонного фона, а также оценка пучкового фона и фона на остаточном газе по фоновым заходам с наложением ОТИ из моделирования при средней светимости 5 · 10³⁰.

Ожидаемое число событий для 200 $\pi 6^{-1}$:

$W_{\gamma\gamma}, MeV$	1000	1500	2000	2500	3000	3500	4000			
$E_b = 3700 MeV, MC$	28396	19469	9306	4463	2046	803	<30			
Однофотонный фон	579	123	41	1 22 <5						
Пучковый фон	~ 320	~ 160	< 136							
$E_b = 4500 MeV, MC$	36267	27803	14785	7844	4096	2225	1112			
Однофотонный фон	594	145	63	25	16	< 5				
Пучковый фон	< 136									
MD, experiment, 20 $\pi 6^{-1}$		67	82	108	68	56	17			

Ожидаемое число двухфотонных событий достаточно велико, чтобы выполнить поставленные задачи.

Система регистрации рассеянных электронов КЕДР

Экспериментальный промежуток ВЭПП-4М. СРРЭ состоит из:

- Фокусирующие линзы и поворотные магниты образуют спектрометр с фокусировкой в горизонтальной плоскости
- Координатные блоки регистрации РЭ (8 блоков, TS1–TS4, TS5–TS8), 6 двойных слоев дрейфовых трубочек+1 слой GEM. Координатное разрешение 0.30 мм (0.1 мм с применением GEMoв)
- Детекторы однократного тормозного излучения (ОТИ). Во время калибровок это 2 ВGO калориметра высокого разрешения. Во время набора – это мониторы светимости (сэндвич Pb+Sc). Вето от монитора светимости позволяет подавить случайные совпадения ОТИ с событиями γγ в центральной части КЕДРа
- Система лазерной калибровки СРРЭ, позволяет уменьшить ошибку определения энергии виртуального фотона до уровня $\frac{\Delta\omega}{\omega} < 1\%$

Энергетическое разрешение СРРЭ

Расчетное энергетическое разрешение по энергии РЭ. Красные точки показывают измеренное в эксперименте разрешение по краю комптоновского спектра. Стрелками отмечены границы блоков СРРЭ Расчетное разрешение по $W(\gamma\gamma)$ для двойного тагирования (РЭ2). Верхняя линия соответствует энергии пучка 5 ГэВ, нижняя 1.8 ГэВ

События $e^+e^- o e^+e^-\mu^+\mu^-$

Data: $3014 \pm 56 \pm 83$, MC: 3185, $Data/MC = 0.946 \pm 0.033$ z Z 300 MC, no tag 100 -Data Data, no tao -MC Data, single tag Data, double tag 200 50 100 -0.2 500 1000 1500 -0.1 0.1 0.2 $\Delta E/E_{h}$ Muu. MeV Наблюдаемые спектры для 0,1,2-tag $\Delta E/E_b$, Разность энергии РЭ,

Наблюдаемые спектры для *0,1,2-tag* событий

кинематически рассчитанной по

центральной части, и определенной

по СРРЭ

Наблюдается удовлетворительное согласие эксперимента и

моделирования по числу событий и по разрешению

Жилич В.Н.

Изучение двухфотонных процессов с детектором КЕДР

Эффективность СРРЭ в single-tag и double-tag модах

Наблюдается удовлетворительное согласие эксперимента и моделирования

- СРРЭ регистрирует РЭ с нулевым углом вылета
- Использование СРРЭ в режиме двойного тагирования позволяет измерять инвариантную массу рожденной уу с разрешением 10-20 МэВ без требования полной реконструкции события в центральной части детектора
- Это дает значительные преимущества для изучения $\gamma\gamma$ процессов по сравнению с предыдущими экспериментами
- СРРЭ запущена в полном составе, работает штатно, параметры системы близки к расчетным

Заключение

На первом этапе эксперимента предполагается:

- Измерение полного сечений процесса $\gamma \gamma \rightarrow hadrons$ в интервале $W(\gamma \gamma)$ от 1 до 4 ГэВ и изучение характеристик событий (распределение по импульсам, углам, множественности и т.п.)
- Изучение эксклюзивных процессов при инвариантных массах \$\leftsymbol{1} ГэВ, недоступных по триггеру для В-фабрик

Для первого этапа необходимо набрать интеграл светимости 50-100 1/пб.

По результатам первого этапа исследований можно будет оценить возможность и требуемый интеграл светимости для

• Изучения очарованных резонансов η_c , $\chi_{0,2}$, $\eta_c(2S)$

Мы надеемся, что получение новых результатов по процессу $\gamma\gamma \to hadrons$ стимулирует теоретические работы в этой области.