

Изучение процесса $e^+e^- \to K^+K^-\eta$ с детектором КМД-3

Иванов В.Л.

ИЯФ СО РАН 27.06.2019

ВЭПП-2000 и КМД-3

- Энергия до 2 ГэВ в с.ц.м.
- Достигнута светимость $L = 3 \times 10^{31}$ см⁻² с⁻¹ при $\sqrt{s} = 2.0$ ГэВ
- Разброс энергии в пучке 0.7 МэВ
- Время между столкновениями пучков 82 нс

- 1. Вакуумная камера
- 2. Дрейфовая камера
- 3. ВGО-калориметр
- 4. Z-камера
- 5. Сверхпроводящий соленоид
- 6. LXe-калориметр
- 7. CsI-калориметр
- 8. Ярмо
- 9. Соленоид ВЭПП-2000

2

Процесс $e^+e^- \rightarrow K^+K^-\eta$

- Процесс изучался BABAR (и СНД):
 - 1. в канале $\eta \to \gamma \gamma$ (~480 сигнальных событий)
 - 2. в канале $\eta \to \pi^+ \pi^- \pi^0$ (~ 250 сигнальных событий)
- Было найдено, что доминирует канал $\varphi'(1680) \to \varphi \eta$: возможно измерение параметров $\varphi'(1680)$

Отбор событий: «хорошие треки»

• Отбор «хороших» треков:

Требуется, чтобы в событии было ровно 2 трека

- 1. С противоположными зарядами
- 2. Вылетающих из области взаимодействия пучков $\rho < 0.6$ см, |z| < 12 см
- 3. Полярным углом 0.9 < $\theta < \pi 0.9$
- 4. Имеющие поперечный импульс > 60 МэВ/с
- 5. dE/dx меньше, чем у протонов с соответствующим импульсом

- В моделировании dE/dx каонов и пионов разыгрывается по Перебираются все пары фотонов с энергией > 40 найденным функциями плотности вероятности, В эксперименте в данной точке по энергии
- Вычисляется функция правдоподобия для гипотезы двух Для (грубого) выделения сигнала требуем $\chi^2 < 75$ • каонов:

$$L_{2K} = \sum_{i=1}^{2} \ln \left(\frac{f_K(p_i, (dE/dx)_i)}{f_K(p_i, (dE/dx)_i) + f_\pi(p_i, (dE/dx)_i)} \right)$$

МэВ и проводится кинематический фит (требуется сохранение энергии и импульса)

Отбор событий

٠

Отбор событий и разделение сигнала и фона

- Требуется $M_{\rm inv}(K^+K^-) < 1050 \text{ MeV/c}^2$
- Основными фоновыми конечными состояниями являются $K^+K^-\pi^+\pi^-$ и $K^+K^-\pi^0\pi^0$
- Разделение сигнала и фона проводится фитированием распределения дисбаланса энергии в событии:

$$\Delta E = \sqrt{\vec{p}_{K^+}^2 + m_{K^+}^2} + \sqrt{\vec{p}_{K^-}^2 + m_{K^-}^2} + \sqrt{(\vec{p}_{K^+} + \vec{p}_{K^-})^2 + m_{\eta}^2} - E_{\text{c.m.}}$$

• Сигнальный пик в моделировании фитируется тремя гауссами:

$$f_{\rm sig}^{\rm MC}(x) = a_0 \Big(a_1 G(x,\mu_1,\sigma_1) + a_2 G(x,\mu_2,\sigma_2) + (1-a_1-a_2) G(x,\mu_3,\sigma_3) \Big) \quad G(x,\mu,\sigma) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right) \Big(\frac{1}{2\sigma^2} - \frac{1}{2\sigma^2} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right) \Big) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right) \Big) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right) \Big)$$

• В эксперименте к форме сигнального пика добавляется сдвиг *δx* и уширение *δσ*. Фон фитируется линейной функцией

$$f_{\text{sig}}^{\text{exp}}(x) = a_0 \Big(a_1 G(x, \mu_1 + \delta x, \sqrt{\sigma_1^2 + \delta \sigma^2}) + a_2 G(x, \mu_2 + \delta x, \sqrt{\sigma_2^2 + \delta \sigma^2}) + (1 - a_1 - a_2) G(x, \mu_3 + \delta x, \sqrt{\sigma_3^2 + \delta \sigma^2}) \Big)$$

• Всего в эксперименте выделено 3009 ± 67 сигнальных событий

Разделение сигнала и фона (Е = 1.967 ГэВ, 2017)

Эффективность триггера

- Срабатывание триггера не моделируется, поэтому его эффективность оценивалась по данным
- *N_{NT/CT}* число событий, в которых сработал только нейтральный/заряженный триггер
- *N_{NT&CT}* число событий, в которых сработали оба триггера

$$\varepsilon_{\rm NT} = \frac{N_{\rm NT\&CT}}{N_{\rm NT\&CT} + N_{\rm CT}}, \ \varepsilon_{\rm CT} = \frac{N_{\rm NT\&CT}}{N_{\rm NT\&CT} + N_{\rm NT}}$$

$$\varepsilon_{\rm trig} = 1 - (1 - \varepsilon_{\rm NT})(1 - \varepsilon_{\rm CT})$$

Поправки к эффективности

- В области полярных углов 1.0 < θ < π − 1.0 эффективность регистрации для каонов в моделировании и эксперименте согласуются с точностью 1% (проверено в анализах процессов e⁺e⁻ → K⁺K⁻, K⁺K⁻π⁺π⁻)
- Отбираем события, в которых один каон летит в «надежную» область $1.1 < \theta < \pi 1.1$, а второй куда угодно
- Выбираем события под сигнальным пиком −40 МэВ < ΔE < 20 МэВ (кинематика сигнального процесса моделируется надежно)

Поправки к эффективности

- Поправка к эффективность регистрации $K^+K^-\eta$ Применение поправки делает оценку полного числа ٠ вычисляется как свертка поправки к эффективности для угловыми распределениями каонов каонов В С моделировании:
 - рожденных сигнальных событий не зависящей от отбора по θ:

Вычисление и аппроксимация сечения

- Поправленная эффективность регистрации: $\varepsilon = \varepsilon_{\rm MC} (1 + \delta_{\rm eff}) \varepsilon_{\rm trig}$
- Сечение вычисляется по формуле

$$\sigma_{\rm Born} = \frac{\sigma_{\rm vis}}{1 + \delta_{\rm rad}} = \frac{N_{\rm sig.events}}{L\varepsilon(1 + \delta_{\rm rad})\mathcal{B}_{K^+K^-}^{\phi}}$$

 Рад. Поправки вычисляются итерациями, на первой итерации используется сечение BaBar

Аппроксимация сечения

Для фита можно использовать квазидвухчастичную или трехчастичную формулу:

- Различие между ними сравнимо с систематической ошибкой сечения (5%), поэтому используем трехчастичную формулу
- Зависимость ширины от квадрата четырехимпульса учитывается как

$$\Gamma_{\phi'}(s) = \Gamma_{\phi'} \left[\mathcal{B}_{K^*(892)K}^{\phi'} \frac{\mathcal{P}_{K^*(892)K}(s)}{\mathcal{P}_{K^*(892)K}(m_{\phi'}^2)} + \mathcal{B}_{\phi\eta}^{\phi'} \frac{\mathcal{P}_{\phi\eta}(s)}{\mathcal{P}_{\phi\eta}(m_{\phi'}^2)} + \mathcal{B}_{\phi\sigma}^{\phi'} \frac{\mathcal{P}_{\phi\sigma}(s)}{\mathcal{P}_{\phi\sigma}(m_{\phi'}^2)} \right] \\ \mathcal{B}_{K^*(892)K}^{\phi'} = 0.7, \ \mathcal{B}_{\phi\eta}^{\phi'} = 0.2 \ \mathcal{B}_{\phi\sigma}^{\phi'} = 0.1$$

Аппроксимация сечения

CMD-3

Table 4: Results of th	ne $e^+e^- \rightarrow \phi \eta$ cross sectio	on approximation.
Parametrization using	$\Gamma^{\phi'}_{ee} {\cal B}^{\phi'}_{\phi\eta}$	$\mathcal{B}^{\phi'}_{e^+e^-}\mathcal{B}^{\phi'}_{\phi\eta}$
Parameter	Value	
$\chi^2/n.d.f$	$93.8/79 \approx 1.19$	
$\Gamma^{\phi'}_{ee} {\cal B}^{\phi'}_{\phi\eta}, { m eV}$	$94 \pm 13_{stat} \pm 15_{syst}$	—
${\cal B}^{\phi'}_{e^+e^-}{\cal B}^{\phi'}_{\phi\eta}$	- ($0.53 \pm 0.06_{\rm stat} \pm 0.09_{\rm sys}$
$m_{\phi'}, { m MeV}$	$1667 \pm 5_{s}$	$_{ m stat}\pm11_{ m syst}$
$\Gamma_{\phi'}, \mathrm{MeV}$	$176 \pm 23_{\text{stat}} \pm 38_{\text{syst}}$	
$a_{ m n.r.}, { m MeV}$	$1.1{\pm}0.6_{\mathrm{stat}}$	
$\Psi_{\rm n.r.}$	$0.14{\pm}0.67_{\mathrm{stat}}$	

BABAR	$\frac{\chi^2}{\text{n.d.f.}} = \frac{1}{1}$	$\frac{184.9}{160-16} = 1.28$
R with $I = 0$	ϕ'	$\phi^{\prime\prime}$
$\Gamma^R_{ee} \mathcal{B}^R_{KK^*(892)}(\mathrm{eV})$	$367{\pm}47$	-
$\Gamma^R_{ee} \mathcal{B}^R_{\phi\eta}(\mathrm{eV})$	154 ± 32	$1.7 {\pm} 0.8$
$1 - \mathcal{B}^R_{KK^*(892)} - \mathcal{B}^R_{\phi\eta}$	$0.33{\pm}0.14$	-
$M_R($ MeV $)$	$1709\!\pm\!19$	2127 ± 24
$\Gamma_R(MeV)$	325 ± 68	60 ± 50
$\sigma^{\rm bkg}_{KK^*(892)}(M^2_{\phi'})({\rm nb})$	$0.8{\pm}0.3$	-
$\sigma_{\phi\eta}^{\rm bkg}(M_{\phi'}^2)({\rm nb})$	$(4.7\pm1.4)\times10^{-3}$	

Систематические неопределенности измерения сечения

• Систематика измерения сечения, связанная с определенным критерием отбора, определялась как относительная вариация полного числа рожденных сигнальных событий при варьировании (включении/выключении этого отбора)

· · · · · · · · · · · · · · · · · · ·
Value, $\%$
1.6
4.1
2.1
1
1
5.1

Table 5: Systematic uncertainties of the $\sigma(e^+e^- \rightarrow \phi \eta)$ measurement.

Систематические неопределенности измерения сечения

- The requirements on ρ_{PCA}, z_{PCA}, p_⊥ and dE/dx < (dE/dx)_{protons} for positively charged particles applied in the "good" track selection procedure, give the uncertainties of 1.0, 0.5, 0.3 and 0.4%, respectively. The values are estimated by swithcing on/off these requirements.
- The values -0.1, -0.3, -0.6 for the requirement on L_{2K} used for the kaon selection were tested. The uncertainty was 0.8%.
- The values 1050 MeV and 1100 MeV for the cut on $m_{\text{inv,2K}}$, used for the ϕ -meson region selection, were tested. The uncertainty was 0.7%.
- The values -180 MeV, -150 MeV, -100 MeV for the lower limit of the ΔE distribution fit were tested. The corresponding uncertainty was 1%.
- The values 50 MeV, 100 MeV, 150 MeV for the upper limit of the ΔE distribution fit were tested. The corresponding uncertainty was 0.5%.
- The signal peak position can be fixed from simulation ($\delta x \equiv 0$) or released in the fit of the experimental ΔE distribution, the corresponding uncertainty is 2%.

- The signal width can be fixed from the simulation ($\delta \sigma \equiv 0$) or released, the corresponding uncertainty is 2.5%.
- The background shape in the fit of the experimental ΔE distribution can be taken as linear with floating parameters, or it can be fixed from the fit of the simulated background distribution. The corresponding uncertainty is 2.3%.
- The uncertainty of the single kaon detection efficiency is estimated to be 1%, for the pair of kaons 1.5%. The uncertainty of the correction to the $K^+K^-\eta$ selection efficiency related to the angular dependence of the kaon detection efficiency (see Section 3.3), was estimated to be 1.5%.
- The systematic uncertainty of the luminosity measurement is 1%.
- The uncertainty of the $\mathcal{B}^{\phi}_{K^+K^-}$ is about 1%.

Систематические неопределенности параметров $\phi'(1680)$

- The systematic uncertainty of cross section measurement induces 5.1% uncertainty of $\Gamma_{ee}^{\phi'} \mathcal{B}_{\phi\eta}^{\phi'}$ and $\mathcal{B}_{e^+e^-}^{\phi'} \mathcal{B}_{\phi\eta}^{\phi'}$.
- The uncertainty of the branching fractions of ϕ' -meson decay channels causes the uncertainty of ϕ' shape. According to [25] the relative uncertainties of $\mathcal{B}_{K^*(892)K}^{\phi'}$, $\mathcal{B}_{\phi\eta}^{\phi'}$ and $\mathcal{B}_{\phi\sigma}^{\phi'}$ can be estimated as 15%, 30% and 15%, correspondingly. The variation of the branchings within these uncertainties with the requirement $\mathcal{B}_{K^*(892)K}^{\phi'} + \mathcal{B}_{\phi\eta}^{\phi'} + \mathcal{B}_{\phi\sigma}^{\phi'} \equiv 1$ leads to the uncertainties of 3 eV for $\Gamma_{ee}^{\phi'} \mathcal{B}_{\phi\eta}^{\phi'}$, 4 MeV for $m_{\phi'}$ and 13 MeV for $\Gamma_{\phi'}$.
- The contribution of the uncertainty of nonresonant amplitude energy dependence was studied by performing the fit with different non- ϕ' amplitudes: 0, $a_{n.r.}$, $a_{n.r.}/s^{3/2}$, $a_{n.r.}/s$, $a_{n.r.}/\sqrt{s}$, $a_{n.r.} \cdot \sqrt{s}$, $a_{n.r.} \cdot s$ ($a_{n.r.}$ is constant). The resulting ϕ' uncertainties are 14 eV for $\Gamma_{ee}^{\phi'} \mathcal{B}_{\phi\eta}^{\phi'}$, 10 MeV for $m_{\phi'}$ and 36 MeV for $\Gamma_{\phi'}$.

Вклад в
$$(g - 2)_{\mu}$$

 $a_{\mu}^{\phi\eta}(E < E_{\max}) = \left(\frac{\alpha m_{\mu}}{3\pi}\right)^2 \int_{E_{\min}^2}^{E_{\max}^2} \frac{ds}{s^2} K(s) \cdot \frac{\sigma(e^+e^- \to \phi\eta)|1 - \Pi(s)|^2}{\sigma_0(e^+e^- \to \mu^+\mu^-)}$
 $a_{\mu}^{\phi\eta}(E < 1.8 \text{ GeV}) = 32.1 \pm 1.5 \pm 1.6_{syst} \times 10^{-12}$
 $a_{\mu}^{\phi\eta}(E < 1.8 \text{ GeV}) = 35.8 \pm 2.4 \pm 1.9_{syst} \times 10^{-12}$
 $a_{\mu}^{\phi\eta}(E < 2.0 \text{ GeV}) = 43.9 \pm 1.5 \pm 2.2_{syst} \times 10^{-12}$
 $a_{\mu}^{\phi\eta}(E < 2.0 \text{ GeV}) = 4.9 \pm 2.7 \pm 2.6_{syst} \times 10^{-12}$
Заключение

- Процесс $e^+e^- \rightarrow K^+K^-\eta$ изучен с детектором КМД-3 на основе данных 59.5 пб⁻¹ данных, набранных в 2011, 2012 и 2017 годах
- Наблюдается вклад только промежуточного механизма $\phi\eta \to K^+K^-\eta$
- Измерено сечение $e^+e^- \rightarrow \phi \eta$, из его аппроксимации определены параметры $\phi'(1680)$
- Уточнен вклад $\phi \eta$ в $(g-2)_{\mu}$
- Статья выложена в архив <u>https://arxiv.org/abs/1906.08006</u> и отправлена в Phys. Lett. В

BACKUP

Отбор событий процесса: разделение на каоны и пионы

 $N_{tracks} = 2$

0

Событие $K^+K^-\eta$, $\eta \to \gamma\gamma$ в детекторе КМД-3

R — z проекция

$$\Gamma_{\phi(1020)}(p_{\phi(1020)}^2) \approx \Gamma_{\phi(1020)} \left[\frac{\mathcal{P}_{K^+K^-}(p_{\phi(1020)}^2)}{\mathcal{P}_{K^+K^-}(M_{\phi(1020)}^2)} \mathcal{B}(\phi(1020) \to K^+K^-) + \frac{\mathcal{P}_{K_SK_L}(p_{\phi(1020)}^2)}{\mathcal{P}_{K_SK_L}(M_{\phi(1020)}^2)} \mathcal{B}(\phi(1020) \to K_SK_L) + \frac{\mathcal{P}_{\pi^+\pi^-\pi^0}(p_{\phi(1020)}^2)}{\mathcal{P}_{\pi^+\pi^-\pi^0}(M_{\phi(1020)}^2)} (1 - \mathcal{B}(\phi(1020) \to K^+K^-) - \mathcal{B}(\phi(1020) \to K_SK_L)) \right]$$

$$\mathcal{P}_{KK}(p_{\phi(1020)}^2) = \sqrt{p_{\phi(1020)}^2} \left[1 - \frac{4M_K^2}{p_{\phi(1020)}^2} \right]^{\frac{3}{2}}$$

$$\overline{|M_{e^+e^- \to K^+K^-\eta}|^2} \sim |\vec{p}_{K^+} \times \vec{p}_{K^-}|^2 \sin^2\theta \left| \frac{1}{(p_{K^+} + p_{K^-})^2 - M_{\phi(1020)}^2 + i\sqrt{(p_{K^+} + p_{K^-})^2} \Gamma_{\phi(1020)}((p_{K^+} + p_{K^-})^2)} \right|^2$$

Распределения на выходе первичного генератора

• 100 000 событий, $2E_{beam} = 1.68 \text{ GeV}$

26