Однофотонная физика с детектором КЕДР на ВЭПП-4М

А.Г. Шамов

ИЯФ СО РАН 08.04.2021

Содержание

- Ускорительный комплекс ВЭПП-4М и детектор КЕДР
- Результаты
 - Измерение величины R.
 - Измерение масс и ширин ψ резонансов.
- Планы
 - Измерение масс и ширин Υ резонансов.
 - Двухфотонная физика + R выше 7 ГэВ

ВЭПП-4М и КЕДР

выше 2 ГэВ (стадия разработки)

Детектор КЕДР

- 1 Вакуумная камера
- 2 Вершинный детектор
- 3 Дрейфовая камера
- 4 Пороговые аэрогелевые счётчики
- 5 Время-пролетные счётчики
- 6 Жидко-криптоновый калориметр

- 7 Сверхпроводящая катуп
- 8 Ярмо магнита
- 9 Мюонные камеры
- 10 Цезий-йодовый калорим
- Компенсирующий соленоид
- 12 Квадруполь

Мотивация измерения величины R(s)

Вклад R в измерение a_{μ} и $\alpha(M_Z^2)$

Эксперимент по измерению величины R в диапазоне энергий от 1.84 до 3.72 ГэВ

- В диапазоне энергий от 1.84 до 3.05 ГэВ интеграл светимости 0.66 пб $^{-1}$ набран в 13 точках с шагом ~ 0.1 ГэВ, $\sim 10^3$ событий в точке (суммарно 1.5×10^4).
- В диапазоне энергий от 3.08 до 3.72 ГэВ интеграл светимости 2.7 пб⁻¹ набран в 9 точках по энергии. 2 ÷ 6 × 10³ число многоадронных событий в точке, прошедших отбор, суммарно ~ 4 × 10⁴)

Однофотонная физика с детектором КЕДР на ВЭПП-4М

Процедура определения *R*

Способ измерения R:

$$R = \frac{\sigma_{obs}(s) - \sum \varepsilon_{\psi}^{tail}(s) \sigma_{\psi}^{tail}(s) - \sum \varepsilon_{bg}^{i}(s) \sigma_{bg}^{i}(s)}{\varepsilon(s)(1 + \delta(s))\sigma_{\mu\mu}^{0}}$$

где $\sigma_{obs}(s) = \frac{N_{mh} - N_{res.bg.}}{\int \mathcal{L}dt}$, $\sigma_{\mu\mu}^{0}(s) = \frac{4\pi\alpha^{2}}{3s}$, N_{mh} — число событий, прошедших условия отбора, $N_{res.bg.}$ — вклад пучкового фона, $\varepsilon(s)$ — эффективность регистрации, $\sum \varepsilon_{\psi}^{tail}(s)\sigma_{\psi}^{tail}(s)$ — вклад J/ψ - и $\psi(2S)$ -резонансов, $\sum \varepsilon_{bg}^{i}(s)\sigma_{bg}^{i}(s)$ — вклад процессов: $e^{+}e^{-} \rightarrow l^{+}l^{-}$, $e^{+}e^{-}X$.

$$1 + \delta(s) = \int \frac{dx}{1 - x} \frac{\mathcal{F}(s, x)}{\left|1 - \tilde{\Pi}((1 - x)s)\right|^2} \frac{\mathcal{R}((1 - x)s)\varepsilon((1 - x)s)}{\mathcal{R}(s)\varepsilon(s)}$$

 $\mathcal{F}(s,x)$ — функция радиационных поправок (Э.А.Кураев, В.С.Фадин Sov.J.Nucl.Phys.41 (466-472) 1985) Здесь $\tilde{\Pi}$ и \tilde{R} не включают вклад J/ψ - и $\psi(2S)$ -резонансов.

Измеряемая величина R_{uds} !

Основные особенности анализа

- Учёт вклада узких резонансов, исходя из непосредственного определения их параметров.
- Для оценки систематической неопределённости эффективности регистрации адронных событий проводилось
 - Моделирование генераторами JETSET и LUARLW
 - Вариация критериев отбора
 - Оценка методом разложения по компонентам (МРК).
 - Замена моделирования ряда известных мод распадов на моделирование их генератором PHOKHARA в области 1.8-2.0 ГэВ.

Свойства адронных событий на энергии 3.12 ГэВ, сравнение двух вариантов

моделирования и экспериментальных данных.

Результаты измерения величины R

V. V. Anashin et al., Phys.Lett. B 770C, 174 (2017). [arXiv:1610.02827]

V. V. Anashin et al., Phys.Lett. B 753, 533 (2016). [arXiv:1510.02667]

V. V. Anashin et al., Phys.Lett. B 788, 42 (2019). [arXiv:1805.06235]

Результаты измерения R

Величина R в зависимости от энергии с.ц.м.(УФН 190, 995)

- $\sqrt{s} = 3.07 \div 3.72$ ГэВ, точность 3.9% при сист. ошибке 2.4%. $\overline{R}_{uds}^{KEДP} = 2.204 \pm 0.014 \pm 0.026$, при $R_{uds}^{pQCD} = 2.16 \pm 0.01$.
- $\sqrt{s} = 1.84 \div 3.05$ ГэВ, точность 2.6% при сист. ошибке 1.9%. $\overline{R}_{\text{uds}}^{\text{KEДP}} = 2.225 \pm 0.020 \pm 0.047$, при $R_{\text{uds}}^{\text{pQCD}} = 2.18 \pm 0.02$.

Планы по измерению величины R

Положение точек по энергии и ожидаемая ошибка в сравнении с имеющимися данными, для иллюстрации значение точек по pQCD:

Проведено сканирование R в диапазоне 4.69-6.98 ГэВ. Интеграл светимости $\sim 13~{
m n6^{-1}}$ набран в 17 точках по энергии. Ожидаемая статистическая точность $\lesssim 2.5\%$.

При планируемом наборе большой статистики для двухфотонной физики можно с высокой точностью измерить *R* при двух-трех значениях энергии.

Измерения ширин J/ψ -резонанса

Анализ лептонных каналов (2010,2014), совместная подгонка адронного и электронного каналов (2018), свободные параметры $\Gamma_{ee} \times \mathcal{B}_{ee}(J/\psi), \Gamma_{ee} \times \mathcal{B}_h(J/\psi)$ или $\Gamma_{ee}(J/\psi) (+ m(J/\psi), \sigma_W ...)$

Результаты измерения ширин J/ψ -резонанса

 $\Gamma_{ee} imes {\cal B}_{agp} = 4.884 \pm 0.048 \pm 0.078$ кэ ${
m B}$

Phys. Lett. B 685, 134 (2010). J. High Energ. Phys. (2018) 119.

Результаты измерения ширин J/ψ -резонанса

Измерение величины $\Gamma_{ee} \times \mathcal{B}_{adp}(\psi(2S))$

Сканирования $\psi(2S)$, выполненные в 2004 и 2006 гг. $\int \mathcal{L} dt \simeq 0.6 \ \mathrm{n6}^{-1}$ $(1.6 imes 10^5 \ \mathrm{событий})$

	$\Gamma_{ee} imes \mathcal{B}_h,$ кэ B	$P(\chi^2)$, %
Скан. 1	2.258 ± 0.033	15.8
Скан. 2	2.229 ± 0.024	29.5
Скан. З	2.226 ± 0.022	79.5

Основные систематические неопределённости (упрощённый список)

 ${\sf \Gamma}_{
m ee} imes {\cal B}_h = 2.233 \pm 0.015 \pm 0.037 \pm 0.020$ кэ ${\sf B}$

Phys. Lett. B 711, 280 (2012).

Определение $\Gamma_{ee} \times \Gamma_{\mu\mu} / \Gamma$ ($\psi(2S)$)

Интеграл светимости 7 пкб $^{-1}$, $\sim 3.5 \times 10^6 \ \psi(2S)$, пять наборов пик/подложка и четыре сканирования для определения энергетического разброса:

 $\Gamma_{ee} imes \Gamma_{\mu\mu}/\Gamma = 19.4 \pm 0.4 \pm 1.1$ m sB

Синие точки – индивидуальные измерения (КЕДР), серая полоса соответствует результату КЕДР (Phys. Lett. В 781, 174 (2018)).

Красным выделено значение, полученное по данным PDG ($\Gamma_{ee} \times \mathcal{B}_{\mu^+\mu^-}$).

Параметры $\psi(2S)$

Используя $\mathcal{B}_h^{PDG}=0.9785\pm0.0013$ и $\mathcal{B}_{ee}^{PDG}=0.00772\pm0.00017$, по $\Gamma_{ee} imes\mathcal{B}_{aap}$ получили в 2012 году

$$\Gamma_{ee} = 2.282 \pm 0.015 \pm 0.038 \pm 0.021$$
 кэВ
 $\Gamma = 296 \pm 2 \pm 8 \pm 3$ кэВ (2012)

В 2018 лептонная ширина была получена суммированием результатов в

адронном и лептонных каналах

 $\Gamma_{ee} = 2.282 \pm 0.015 \pm 0.042$ кэВ

Определение параметров $\psi(3770)$ - резонанса

Три сканирования области $\psi(2S)-\psi(3770)$, $\int \mathcal{L} dt \simeq 2.6$ пб $^{-1}$

VALUE (MeV)	EVTS		DOCUMENT ID		TECN	COMMENT
3773.7 ± 0.4	OUR FIT Error i	nclud	es scale factor of	1.4.		
3778.1 ± 0.7	OUR AVERAGE					
3778.1 ±0.7 ±0.6		1	AAIJ	2019M	LHCB	$p p \rightarrow DD + anything$
3779.2 ±1:\$8:8		2	ANASHIN	2012A	KEDR	$e^+e^- \rightarrow D\overline{D}$
3775.5 ±2.4 ±0.5	57		AUBERT	2008B	BABR	$B \rightarrow DDK$
3776 ±5 ±4	68		BRODZICKA	2008	BELL	$B^+ \rightarrow D^0 \overline{D}^0 K^+$
3778.8 ±1.9 ±0.9			AUBERT	2007BE	BABR	$e^+e^- \rightarrow DD\gamma$
••• We do not use	the following data	for a	verages, fits, limit	s, etc. • •	•	
3779.8 ±0.6		3	SHAMOV	2017	RVUE	$e^+e^- \rightarrow D\overline{D}$, hadrons
3772.0 ±1.9		4, 5	ABLIKIM	2008D	BES2	e ⁺ e ⁻ → hadrons
3778.4 ±3.0 ±1.3	34		CHISTOV	2004	BELL	Sup. by BRODZICKA 20

Measured in prompt hadroproduction.

² Taking into account interference between the resonant and non-resonant DD production.

³ From the joint analysis of the data on the \overline{DD} and inclusive hadronic cross sections in the ψ (3770) region fro BaBar, Belle, BES-II, CLEO and KEDR.

4 Reanalysis of data presented in BAI 2002C. From a global fit over the center-of-mass energy region 3.7 – 5.C covering the $\psi(3770)$, $\psi(4040)$, $\psi(4160)$, and $\psi(4415)$ resonances. Phase angle fixed in the fit to $\delta = 0^{\circ}$.

5 Interference between the resonant and non-resonant DD production not taken into account.

 $M = 3779.2 \stackrel{+1.8}{_{-1.7}} \stackrel{+0.5}{_{-0.7}} \stackrel{+0.3}{_{-0.3}} \text{ M} \Rightarrow B$ $\Gamma = 24.9 \stackrel{+4.6}{_{-4.0}} \stackrel{+0.5}{_{-0.6}} \stackrel{+0.2}{_{-0.9}} \text{ M} \Rightarrow B$ $(1) \Gamma_{ee} = 154 \stackrel{+79}{_{-58}} \stackrel{+17}{_{-25}} \Rightarrow B, \ \phi = 171 \pm 17^{\circ}$

(2)
$$\Gamma_{ee} = 414 \begin{array}{c} +72 \\ -80 \end{array} \begin{array}{c} +24 \\ -80 \end{array} \begin{array}{c} +90 \\ -26 \end{array} \begin{array}{c} -10 \end{array}$$
 \Rightarrow B, $\phi = 240 \pm 9 \end{array}^{\circ}$

Phys. Lett. B711, 292 (2012)

$$\begin{split} \sigma^{obs}_{mh} &= \epsilon_{\psi(2S)} \, \sigma_{\psi(2S)} + \epsilon_{J/\psi} \, \sigma_{J/\psi} + \\ \epsilon_{\tau\tau} \, \sigma_{\tau\tau} \, + \, \sigma_{uds} \, + \\ \epsilon_{D+D-} \, \sigma_{D+D-} \, + \, \epsilon_{D} \mathbf{0}_{\overline{D}} \, \mathbf{0} \, \sigma_{D} \mathbf{0}_{\overline{D}} \, \mathbf{0} + \\ \epsilon_{nD\overline{D}} \, \mathcal{B}_{nD\overline{D}} \, \overline{\sigma}_{\psi(\mathbf{3770})} \, + \end{split}$$

 $\sigma_{D\overline{D}\pi}$

Совместная обработка данных по $\psi(3770)$

Shamov & Todyshev Phys.Lett. B769 (2017) 187

Использовались данные BaBar, Belle, BES-II, CLEO и КЕДР.

Подтверждены результаты детектора КЕДР, рассмотрено несколько моделей, не давших выигрыша в описания данных.

Не удалось решить проблему не- $D\overline{D}$ распадов ψ (3770).

 ϕ (deg)

 187 ± 5

 $\Gamma_{ee}(eV)$

 196 ± 18

Измерение масс узких резонансов

Достаточную точность обеспечивает мягкофотонное приближение:

$$\sigma^{e^+e^- \to hadr}(s) = \sigma^{e^+e^- \to hadr}_{continuum} + \frac{12\pi}{s} (1+\delta) \left[\frac{\Gamma_{ee}\tilde{\Gamma}_h}{\Gamma M} \operatorname{Im} f(s) - \frac{2\alpha\sqrt{R\Gamma_{ee}\tilde{\Gamma}_h}}{3\sqrt{s}} \lambda \operatorname{Re} \frac{f^*(s)}{1-\Pi_0} \right]$$
$$f(s) = \frac{\pi\beta}{\sin\pi\beta} \left(\frac{s}{M^2 - s - iM\Gamma} \right)^{1-\beta}$$
$$\delta = \frac{3}{4}\beta + \frac{\alpha}{\pi} \left(\frac{\pi^2}{3} - \frac{1}{2} \right) + \beta^2 \left(\frac{37}{96} - \frac{\pi^2}{12} - \frac{L}{72} \right), \quad L = \ln\left(s/m_e^2\right), \quad \beta = \frac{2\alpha}{\pi} (L-1),$$

Формулы восходят к работе Я.И. Азимов и др. Письма в ЖЭТФ 21 (1975) 378

 Γ_{ee} , Г, M- "одетые" параметры резонанса, включающие поправки на поляризацию вакуума, $\Gamma_{ee} = \Gamma_{ee}^{(0)}/|1-\Pi_0|^2$

 λ - параметр интерференции, характеризующий сходство конечных состояний резонансного и нерезонансного каналов аннигиляции, $\tilde{\Gamma}_h \neq \Gamma_h$.

При расчёте сечения требуется учет энергетического разбросом пучков

$$G(W, W') = \frac{g(W - W')}{\sqrt{2\pi}\sigma_{\rm W}} \exp\left(-\frac{(W - W')^2}{2\sigma_{\rm W}^2}\right), \quad g(\Delta) = \frac{1 + a\Delta + b\Delta^2}{1 + b\sigma_{\rm W}^2}$$

Интерференция в адронном сечении

Результаты по ширинам и массам получены при фиксированном значении параметра интерференции в инклюзивном адронном сечении

$$\lambda = \sqrt{rac{\mathcal{RB}_{\mu\mu}}{\mathcal{B}_h}} ~pprox 0.13$$
 для $\psi(2S)$, 0.39 для J/ψ , для $\Upsilon(1\div 3S)$ 0.31 \div 0.27

Это соответствует партонной модели с не интерферирующими распадами на три глюона или кварк-антикварк пары. В общем случае:

$$\begin{split} \lambda &= \sqrt{\frac{R\mathcal{B}_{ee}}{\mathcal{B}_{h}}} + \sqrt{\frac{1}{\mathcal{B}_{h}}} \sum_{m} \sqrt{b_{m} \mathcal{B}_{m}^{(s)}} \left\langle \cos \phi_{m} \right\rangle_{\Theta} ,\\ \tilde{\Gamma}_{h} &= \Gamma_{h} \times \left(1 + \frac{2\alpha}{3(1 - \operatorname{Re} \Pi_{0}) \mathcal{B}_{h}} \sqrt{\frac{R}{\mathcal{B}_{ee}}} \sum_{m} \sqrt{b_{m} \mathcal{B}_{m}^{(s)}} \left\langle \sin \phi_{m} \right\rangle_{\Theta} \right) . \end{split}$$

 $\tilde{\Gamma}_{h}$ — адронная парциальная ширина, получаемая подгонкой сечения при истинном значении $\Gamma_{h}, b_{m} = R_{m}/R$ — вклад заданной моды в сечение континуума, ϕ_{m} — фаза интерференции для неё, а $\mathcal{B}_{m}^{(s)} = \Gamma_{m}^{(s)}/\Gamma$ (индекс (s) — вклад сильного взаимодействия). (\rangle_{Θ} — усреднение по углам и импульсам конечных частиц.

Определение энергии пучков во время набора статистики

Калибровка энергии пучка методом резонансной деполяризации в специальных заходах и интерполяция результатов с использованием измерений ведущего поля по ЯМР, температур магнитов и стенок тоннеля, а также времени:

Вариация энергии ВЭПП-4М в 2002 году при воздушном охлаждении кольца, периодическая и непериодическая компоненты, При водяном охлаждении вариации энергии меньше, но менее предсказуемы.

Определение энергии столкновений

В 2002 году был проведен подробный анализ множества источников ошибок в массе резонанса (Г.М. Тумайкин, С.А. Никитин, А.В. Богомягков и др.). Вот два из них:

Обычно измеряет энергию электронного пучка, а нужно знать энергию обоих:

$$\langle W \rangle_{\rho} \approx \langle E_{+} + E_{-} \rangle - \frac{1}{2} (\theta_{x}^{2} + \theta_{y}^{2}) E - \frac{\sigma_{E}^{2}}{2E} - \frac{(\langle E_{+} \rangle - \langle E_{-} \rangle)^{2}}{4E}$$

На ВЭПП-4М в области ψ -мезонов разность энергий <2 кэВ.

Расспределение светимости по энергии не гауссово из-за зависимости размера пучков σ_x^* , σ_y^* от энергии (хроматизм β -функций):

$$\frac{dL(E,W)}{dW} = \frac{f_R N_+ N_-}{4\pi \sigma_x^* (W/2) \sigma_y^* (W/2)} \cdot \frac{1}{\sqrt{2\pi} \sigma_W} \times \exp\left\{-\frac{1}{2} \left(\frac{W - 2E}{\sigma_W} - \frac{\sigma_W \psi_y^* \Delta_y}{2E\sigma_y^2}\right)^2 - \frac{\Delta_y^2}{4\sigma_y^2}\right\},\$$

из-за наличия электростатической ψ -функции ψ_y^* энергия смещается при столкновении пучков с ненулевым прицельным параметром Δ_y . Эффект может достигать десятка кэВ без автоматической подстройки сведения пучков.

Список наиболее существенных систематических ошибок будет представлен позже

Измерения масс J/ψ и $\psi(2S)$ с 2002 по 2008 гг

Было проведено шесть полноценных сканирований J/ψ - резонанса и семь сканирований $\psi(2S)$ - резонанса. Результирующие значения масс с учетом корреляции систематических неопределённостей были получены в работе Phys.Lett. B749 (2015).

Наблюдаемое сечение в зависимости от энергии с.ц.м. в области узких резонансов для сканирований, начиная с 2004 года. Сканирования 2002 года представлены в Phys.Lett. B573 (2003) 63.

Список систематических неопределённостей

Пример из Phys.Lett. B749 (2015), неопределенности превышающие 1 кэВ:

Systematic uncertainties on the J/ψ mass (keV).

Uncertainty source	2002	2005	2008 Common
Energy spread variation	3.0	1.8	1.8 1.8
Energy calibration accuracy	1.6	1.9	1.9 1.6
Energy assignment to DAQ runs	3.7	3.5	3.5 2.5
Beam separation in parasitic I.P.s*	0.9	1.7	1.7 0.9
Beam misalignment in the I.P.	1.8	1.5	1.5 1.5
e ⁺ -, e ⁻ -energy difference	1.2	1.3^{*}	1.2 1.2
Symmetric distortion of the energy distribution	1.5	1.3	2.1 1.3
Asymmetric distortion of the energy distribution*	2.1	1.9	1.9 1.9
Beam potential	1.9	1.9	1.9 1.9
Detection efficiency instability	2.3	1.7	1.8 < 0.1
Residual machine background	1.0	0.7	0.7 < 0.1
Luminosity measurements	2.2	1.7	1.7 1.1
Interference in the hadronic channel	2.7	2.7	2.7 2.7
Sum in quadrature	≈7.7	≈7.0	≈7.2 ≈5.8

* — correction uncertainty

Точность калибровки (строка 2) включает эффект вертикальных искажений орбиты и точность компенсации продольного поля КЕДР.

Результаты измерения массы J/ψ -резонанса

 $M_{I/\psi}^{\text{KE}\text{DP}} = 3096.900 \pm 0.002 \pm 0.006 \text{ M} \cdot \text{B}$

 $\lambda_{J/\psi} = 0.45 \pm 0.07 \pm 0.04$ (ожидаемое значение 0.39)

Результаты измерения массы $\psi(2S)$ -резонанса

Однофотонная физика с детектором КЕДР на ВЭПП-4М

Массы $\Upsilon(1 \div 3S)$

Результаты по массам $\Upsilon(1 \div 3S)$

$\Upsilon(1S)$ MASS

VALUE (MeV)	DOCUMENT ID	TECN	COMMENT						
9460.30 \pm 0.26 OUR AVERAGE	Error includes scale factor of 3.3.								
$9460.51 \!\pm\! 0.09 \!\pm\! 0.05$	¹ ARTAMONOV 0	0 MD1	$e^+e^- ightarrow hadrons$						
$9459.97 \!\pm\! 0.11 \!\pm\! 0.07$	MACKAY 8	4 REDE	$e^+e^- ightarrow$ hadrons						
Противоречие $3.25\sigma!$									
	$\Upsilon(2S)$ MASS								
$VAIIIF(M_{e})/)$	DOCUMENT ID	TECN	COMMENT						
10023.26±0.31 OUR AVERAGE	DOCOMENT		COMMENT						
10023.5 ±0.5	¹ ARTAMONOV 0	0 MD1	$e^+e^- ightarrow$ hadrons						
10023.1 ± 0.4	BARBER 8	4 REDE	$e^+e^- ightarrow$ hadrons						
au(35) MASS									
VALUE (MeV)	DOCUMENT ID	TECN	COMMENT						
10355.2±0.5	¹ ARTAMONOV 0	0 MD1	$e^+e^- ightarrow$ hadrons						
1 Reanalysis of BARU 92B and	ARTAMONOV 84 usir	ng new elect	ron mass (COHEN 87).						

Проблемы в обработке данных

Семинар 05.06.2021:

- Неправильный учет радиационных поправок работах Mackay *et al.* [CUSB @ CESR] и Barber *et al.* [ARGUS+CrystalBall @ DORIS]
- Устаревшее значение массы электрона (там же)
- Неучет интерференцию распадов резонанса и подложки (всюду)
- Ошибка в подгонке резонанса в Mackay et al.

Результаты переобработки:

Ƴ(1 <i>S</i>):	$9460.51 {\pm} 0.09 {\pm} 0.05$	\rightarrow	$9460.40{\pm}0.09{\pm}0.04$	MD-1
	$9559.97 {\pm} 0.11 {\pm} 0.07$		$9460.11{\pm}0.11{\pm}0.07$	CUSB
Ƴ(2 <i>S</i>):	10023.5 ± 0.5	\rightarrow	10023.4 ± 0.5	MD-1
	10023.1 ± 0.4		10022.7 ± 0.4	ARGUS+CB
Ƴ(3 <i>S</i>):	10355.2 ± 0.5	\rightarrow	10355.1 ± 0.5	MD-1

Разница в результатах МД-1 и CUSB по массе $\Upsilon(1S)$ уменьшилась с 3.25 σ до 1.83 σ

О планируемом эксперименте на $\Upsilon(1S)$ (1)

Предлагается уменьшить статистическую ошибку массы $\Upsilon(1S)$ до 50 кэВ, требуемый интеграл светимости 6-9 пб⁻¹ в зависимости от того, какой будет энергетический разброс ВЭПП-4М (требуемая для заданной ошибки в массе светимость пропорциональна разбросу энергии в кубе, $\delta M \simeq \sigma_w/\sqrt{N}$, $N \propto L \cdot \Gamma/\sigma_W$, $L \propto \sigma_W^3/\delta M^2$).

При этом статистическая ошибка лептонной ширины будет около 1% (полная ошибка в PDG 1.3%)

Оптимистическая оценка времени набора – 1.5-2.5 месяца без учета затрат на калибровку энергии. Число заходов – 350–500.

На данный момент

- Разработан и испытан лазерный поляриметр (И.Николаев, В.Каминский С.Захаров и др.), ведутся работы по его усовершенствованию
- Выставлены приемники СИ для работы выше 4.5 ГэВ в пучке
- Получена поляризация пучков на энергии 4.1 ГэВ, на 4.73 ГэВ поляризации пока нет, требуется подстройка режима ВЭПП-4М
- Идет выбор схемы эксперимента, минимизирующий систематические ошибки

О планируемом эксперименте на $\Upsilon(1S)$ (2)

Набор статистики предполагается проводить в 5-7 точка на резонансе и в двух точках вне его.

К выбору схемы эксперимента:

На ВЭПП-4 калибровка энергии делалась или до начала набора статистики, или после него. Во время набора был включен деполяризатор, чтобы избежать вариации эффективности регистрации событий в зависимости от угла φ , что добавляло время поляризации к продолжительности захода. Хотелось бы оценить, насколько существенным могут быть вариации эффективности,

и по возможности отказаться от принудительной деполяризации.

Требуется помощь теоретиков, чтобы получить угловые распределения для $e^+e^- o 3g$ с учетом поляризации пучков.

О планируемом эксперименте на $\Upsilon(1S)$ (3)

Основные систематических эффекты, учитывавшихся при измерении массы $\Upsilon(1S)$ на ВЭПП-4, с указанием их величины:

- Оточность знания масс электрона ±26 кэВ, теперь ±3 кэВ.
- Отчность измерения частоты деполяризации и частоты обращения ±14 кэВ, теперь пренебрежимо.
- Вертикальные искажения орбиты -9±7 кэВ, при оценке не учитывалась замкнутость орбиты, завышено. Потребует изучения.
- Движение рожденного Ŷ-мезона -4.1±0.2 кэВ, ошибка, было -1.1±0.1 кэВ, ожидается -1.3±0.2 кэВ.
- Разница энергии позитронов и электронов, пренебрежимо. Не
 - рассматривалось влияние электрических полей, будет < 10 кэВ?
- О Смещение пика из-за зависимости размера пучка от энергии из-за хроматизма β -функций -25 ± 10 кэВ, нужно измерять хроматизм.
- Детекторные нестабильности ±15 кэВ, потребует изучения
- Отабильность энергетического разброса ±25 кэВ, потребует изучения.
- Очность вычисления сечения ±10 кэВ, теперь ±3 кэВ.
- Не рассматривалось наличие электростатически наведенной вертикальной дисперсии. Требует изучения, ОПАСНО!
- Влияние потенциала пучка не рассматривалось, ожидается -5 ± 3 кэВ.
- В сумме было -40 ± 50 кэВ. Нужно бороться за уменьшение ошибки!

Чтобы довести статистическую ошибку массы до 100 кэВ потребуется 6-10 пб⁻¹ на $\Upsilon(2S)$ и 12-22 пб⁻¹ на $\Upsilon(3S)$, при этом результаты по лептонным ширинам будут в 1.5 раза уступать по точности уже имеющимся.

Эксперимент на $\Upsilon(2S)$ существенно сложнее, чем на $\Upsilon(1S)$, поскольку он располагается на целом спиновом резонансе. Калиброваться придется выше и ниже пика, затем перестраивать энергию, ориентируясь на ЯМР.

При планируемом наборе большой статистики для двухфотонной физики можно с высокой точностью измерить R при двух-трех значениях энергии. Подробное сканирование области выше 7 ГэВ не оправдано, так как там имеются точные результаты CLEO.

- Представлены основные результаты КЕДР в канале однофотонной аннигиляции e⁺e⁻-пар:
 - Измерение R в области от 1.84 до 3.72 ГэВ
 - Измерение ширин J/ψ и $\psi(2S)$ -мезонов
 - Высокоточное измерение масс J/ψ и $\psi(2S)$ -мезонов
 - Измерение параметров $\psi(3770)$ -мезона
 - Набрана статистика для измерения R в области 4.69-6.98 ГэВ
- Проведена ревизия опубликованных значений масс $\Upsilon(1S)$, $\Upsilon(2S)$ и $\Upsilon(3S)$
- Рассмотрен эксперимент по измерению массы и лептонной ширины $\Upsilon(1S)$, приведены оценки требуемого интеграла светимости для уточнению масс $\Upsilon(2S)$ и $\Upsilon(3S)$

Спасибо за внимание!

Дополнительные слайды

Обработка данных Mackay et al. [CUSB @ CESR]

опубликованных подгонка данных с соответствующим учетом радпоправок дает массу на 0.375 МэВ выше опубликованного значе-

Опечатка в данных?

Максимально точно восстановили данные с рисунка в статье, точки

Разница в массах связана с вычислением подгоночной функции. Мы вычисляем правильно (независимо А.Д.Букин, Тодышев, Шамов)

Одна опечатка была найдена (Резанова), но не уменьшила разницу масс!.

Оценка систематической неопределённости в области энергий $\sqrt{s} = 1.84 \div 3.05$ ГэВ

Сравнение эффективности регистрации

Энергия, МэВ		$\delta \epsilon / \epsilon$	
	LUARLW	LUARLW	LUARLW
	JETSET	MPK	MHG2000
1841.0	6.6%	3.6%	3.8%
$1937.0 \div 2135.7$	2.5%	1.9%	-
$2135.7 \div 3048.1$	1.2%	0.5%	-

При энергии 1.84 ГэВ сравнение MHG2000.

что даёт оценку эффективности регистрации даже при не совсем точной настройке моделирования.

Измерение $\Gamma_{ee} \times \mathcal{B}_h \psi(2S)$ -резонанса

Однофотонная физика с детектором КЕДР на ВЭПП-4М

Измерение $\Gamma_{ee} imes \mathcal{B}_h J/\psi$ -резонанса

Моделирование: JETSET и LUARLW

Список систематических неопределённостей. Эксперимент 2010 г.

Систематические неопределённости R_{uds} для точек по энергии

Энергия, ГэВ	1.841	1.937	2.037	2.136	2.239	2.340	2.444
Светимость	1.2	1.2	1.2	1.2	1.2	1.2	1.2
Радиационные поправки	2.0	1.5	1.2	1.0	0.9	0.7	0.6
Мод. uds-континуума	6.6	2.5	2.5	1.2	1.2	1.2	1.2
Реконструкция треков	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	0.6	0.5	0.4	0.4	0.4	0.4	0.3
e ⁺ e ⁻ X	0.2	0.2	0.2	0.2	0.2	0.2	0.2
Эффективность триггера	0.3	0.3	0.3	0.3	0.3	0.3	0.3
Ядерное взаимодействие	0.4	0.4	0.4	0.4	0.4	0.4	0.4
Вариации условий отбора	0.7	0.7	0.7	0.7	0.7	0.7	0.7
Нейтральные события	0.2	0.2	0.2	0.2	0.2	0.2	0.2
Пучковый фон	0.6	0.5	0.4	0.7	0.8	0.6	0.8
Определение энергии	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Квадратичная сумма	7.1	3.4	3.2	2.4	2.4	2.2	2.2
Энергия, ГэВ	2.543	2.645	2.745	2.850	2.949	3.048	
Энергия, ГэВ Светимость	2.543 1.2	2.645 1.2	2.745 1.2	2.850 1.2	2.949 1.2	3.048 1.2	
Энергия, ГэВ Светимость Радиационные поправки	2.543 1.2 0.5	2.645 1.2 0.5	2.745 1.2 0.5	2.850 1.2 0.5	2.949 1.2 0.5	3.048 1.2 0.5	
Энергия, ГэВ Светимость Радиационные поправки Мод. uds-континуума	2.543 1.2 0.5 1.2	2.645 1.2 0.5 1.2	2.745 1.2 0.5 1.2	2.850 1.2 0.5 1.2	2.949 1.2 0.5 1.2	3.048 1.2 0.5 1.2	
Энергия, ГэВ Светимость Радиационные поправки Мод. uds-континуума Реконструкция треков	2.543 1.2 0.5 1.2 0.5	2.645 1.2 0.5 1.2 0.5	2.745 1.2 0.5 1.2 0.5	2.850 1.2 0.5 1.2 0.5	2.949 1.2 0.5 1.2 0.5	3.048 1.2 0.5 1.2 0.5	
Энергия, ГэВ Светимость Радиационные поправки Мод. uds-континуума Реконструкция треков / ⁺ / ⁻	2.543 1.2 0.5 1.2 0.5 0.5 0.4	2.645 1.2 0.5 1.2 0.5 0.5 0.4	2.745 1.2 0.5 1.2 0.5 0.5 0.4	2.850 1.2 0.5 1.2 0.5 0.5 0.4	2.949 1.2 0.5 1.2 0.5 0.5 0.4	3.048 1.2 0.5 1.2 0.5 0.5 0.4	
Энергия, ГэВ Светимость Радиационные поправки Мод. uds-континуума Реконструкция треков / [†] / ⁻ e ⁺ e ⁻ X	2.543 1.2 0.5 1.2 0.5 0.4 0.2	2.645 1.2 0.5 1.2 0.5 0.4 0.2	2.745 1.2 0.5 1.2 0.5 0.4 0.2	2.850 1.2 0.5 1.2 0.5 0.4 0.2	2.949 1.2 0.5 1.2 0.5 0.4 0.2	3.048 1.2 0.5 1.2 0.5 0.4 0.2	
Энергия, ГэВ Светимость Радиационные поправки Мод. uds-континуума Реконструкция треков / ⁺ / ⁻ e ⁺ e ⁻ X Эффективность триггера	2.543 1.2 0.5 1.2 0.5 0.4 0.2 0.3	2.645 1.2 0.5 1.2 0.5 0.4 0.2 0.3	2.745 1.2 0.5 1.2 0.5 0.4 0.2 0.3	2.850 1.2 0.5 1.2 0.5 0.4 0.2 0.3	2.949 1.2 0.5 1.2 0.5 0.4 0.2 0.3	3.048 1.2 0.5 1.2 0.5 0.4 0.2 0.3	
Энергия, ГэВ Светимость Радиационные поправки Мод. идs-континуума Реконструкция треков / [†] / ⁻ e ⁺ e ⁻ X Эффективность триггера Ядерное взаимодействие	2.543 1.2 0.5 1.2 0.5 0.4 0.2 0.3 0.4	2.645 1.2 0.5 1.2 0.5 0.4 0.2 0.3 0.4	2.745 1.2 0.5 1.2 0.5 0.4 0.2 0.3 0.4	2.850 1.2 0.5 1.2 0.5 0.4 0.2 0.3 0.4	2.949 1.2 0.5 1.2 0.5 0.4 0.2 0.3 0.4	3.048 1.2 0.5 1.2 0.5 0.4 0.2 0.3 0.4	
Энергия, ГэВ Светимость Радиационные поправки Мод. uds-континуума Реконструкция треков / [†] / ⁻ e ⁺ e ⁻ X Эффективность триггера Ядерное взаимодействие Нейтральные события	2.543 1.2 0.5 1.2 0.5 0.4 0.2 0.3 0.4 0.2	2.645 1.2 0.5 1.2 0.5 0.4 0.2 0.3 0.4 0.2	2.745 1.2 0.5 1.2 0.5 0.4 0.2 0.3 0.4 0.2	2.850 1.2 0.5 1.2 0.5 0.4 0.2 0.3 0.4 0.2	2.949 1.2 0.5 1.2 0.5 0.4 0.2 0.3 0.4 0.2	3.048 1.2 0.5 1.2 0.5 0.4 0.2 0.3 0.4 0.2	
Энергия, ГэВ Светимость Радиационные поправки Мод. uds-континуума Реконструкция треков / [†] / [–] e ⁺ e ⁻ X Эффективность триггера Ядерное взаимодействие Нейтральные события Вариации условий отбора	2.543 1.2 0.5 1.2 0.5 0.4 0.2 0.3 0.4 0.2 0.2 0.7	2.645 1.2 0.5 1.2 0.5 0.4 0.2 0.3 0.4 0.2 0.2 0.7	2.745 1.2 0.5 1.2 0.5 0.4 0.2 0.3 0.4 0.2 0.7	2.850 1.2 0.5 1.2 0.5 0.4 0.2 0.3 0.4 0.2 0.7	2.949 1.2 0.5 1.2 0.5 0.4 0.2 0.3 0.4 0.2 0.3 0.4 0.2 0.7	3.048 1.2 0.5 1.2 0.5 0.4 0.2 0.3 0.4 0.2 0.3 0.4 0.2 0.7	
Энергия, ГэВ Светимость Радиационные поправки Мод. uds-континуума Реконструкция треков /†/- e ⁺ e ⁻ X Эффективность триггера Ядерное взаимодействие Нейтральные события Вариации условий отбора Пучковый фон	2.543 1.2 0.5 1.2 0.4 0.2 0.3 0.4 0.2 0.4 0.2 0.7 0.4	2.645 1.2 0.5 1.2 0.4 0.2 0.3 0.4 0.2 0.4 0.2 0.7 0.6	2.745 1.2 0.5 1.2 0.4 0.2 0.3 0.4 0.2 0.3 0.4 0.2 0.7 0.8	2.850 1.2 0.5 1.2 0.5 0.4 0.2 0.3 0.4 0.2 0.7 0.4	2.949 1.2 0.5 1.2 0.5 0.4 0.2 0.3 0.4 0.2 0.7 0.9	3.048 1.2 0.5 1.2 0.5 0.4 0.2 0.3 0.4 0.2 0.7 0.5	
Энергия, ГэВ Светимость Радиационные поправки Мод. uds-континуума Реконструкция треков / [†] / ⁻ e ⁺ e ⁻ X Эффективность триггера Ядерное взаимодействие Нейтральные события Вариации условий отбора Пучковый фон Определение энергии	2.543 1.2 0.5 1.2 0.5 0.4 0.2 0.3 0.4 0.2 0.7 0.4 0.1	2.645 1.2 0.5 1.2 0.5 0.4 0.2 0.3 0.4 0.2 0.7 0.6 0.1	2.745 1.2 0.5 1.2 0.5 0.4 0.2 0.3 0.4 0.2 0.7 0.8 0.1	2.850 1.2 0.5 1.2 0.5 0.4 0.2 0.3 0.4 0.2 0.7 0.4 0.7	2.949 1.2 0.5 1.2 0.5 0.4 0.2 0.3 0.4 0.2 0.7 0.7 0.9 0.1	3.048 1.2 0.5 1.2 0.5 0.4 0.2 0.3 0.4 0.2 0.7 0.5 0.1	

Список систематических неопределённостей. Эксперимент 2011 г.

Энергия, ГэВ	3.120	3.223	3.315	3.418	3.521	3.618	3.719			
Сканирование 1										
Светимость	1.1	1.1	1.1	1.1	1.1	1.1	1.1			
Радиационные поправки	0.6	0.5	0.5	0.4	0.4	0.4	0.5			
Мод. uds-континуума	1.4	1.4	1.4	1.4	1.4	1.4	2.1			
Вклад Ј/ψ	2.7	0.5	0.3	0.2	0.2	0.1	0.1			
Вклад $\psi(2S)$							1.4			
1+1-	0.1	0.1	0.1	0.1	0.1	0.2	0.2			
e ⁺ e ⁻ X	0.1	0.1	0.1	0.2	0.2	0.2	0.2			
Эффективность триггера	0.2	0.2	0.2	0.2	0.2	0.2	0.2			
Ядерное взаимодействие	0.2	0.2	0.2	0.2	0.2	0.2	0.2			
Вариация условий отбора	0.6	0.6	0.6	0.6	0.6	0.6	0.6			
Пучковый фон	1.1	0.8	0.7	0.7	0.9	0.7	0.7			
Квадратичная сумма	3.5	2.2	2.1	2.1	2.2	2.1	3.0			
		Сканиро	вание 2							
Светимость	1.1	1.1	1.1	1.1	1.1	1.1	1.1			
Радиационный поправки	0.6	0.5	0.5	0.4	0.4	0.4	0.5			
Мод. uds-континуума	1.4	1.4	1.4	1.4	1.4	1.4	2.1			
Вклад J/ψ	2.8	0.6	0.3	0.2	0.2	0.1	0.1			
Вклад $\psi(2S)$							1.3			
e ⁺ e ⁻ X	0.1	0.1	0.1	0.2	0.2	0.2	0.2			
1+1-	0.1	0.1	0.1	0.1	0.1	0.2	0.2			
Эффективность триггера	0.2	0.2	0.2	0.2	0.2	0.2	0.2			
Ядерное взаимодействие	0.2	0.2	0.2	0.2	0.2	0.2	0.2			
Вариация условий отбора	0.6	0.6	0.6	0.6	0.6	0.6	0.6			
Пучковый фон	1.1	0.8	0.7	0.8	0.8	0.7	0.5			
Квадратичная сумма	3.6	2.2	2.1	2.1	2.1	2.1	2.9			
Коррелированная часть	2.3	1.9	1.8	1.8	1.8	1.8	2.5			

Систематические неопределённости R_{uds} для точек по энергии

Список систематических неопределённостей. Эксперимент 2014-2015 гг.

Систематические неопределённости *R*_{uds} для точек по энергии

Энегия, ГэВ	3.077	3.119	3.222	3.315	3.418	3.500	3.618	3.720
Светимость	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9
Радиационные поправки	0.8	0.8	0.5	0.7	0.6	0.5	0.7	0.5
Мод. <i>uds</i> континуума	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1
Реконструкция треков	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4
<i>I</i> ⁺ <i>I</i> ⁻	0.4	0.4	0.4	0.3	0.3	0.3	0.4	0.4
e^+e^-X	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
Эффективность триггера	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
Ядерное взаимодействие	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
Вариации условий отбора	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6
Вклад J/ψ и $\psi(2S)$	0.1	1.8	0.4	0.2	0.1	0.1	0.1	1.1
Пучковый фон	0.4	0.8	0.5	0.6	0.5	0.4	0.4	0.6
Квадратичная сумма	1.9	2.7	1.9	1.9	1.8	1.8	1.9	2.2