Fine structure of the nucleon electromagnetic form factors in the vicinity of the threshold of e+eannihilation into nucleon - antinucleon pair

A.I. Milstein

G.I.Budker Institute of Nuclear Physics, Novosibirsk, Russia

Layout

- Close to the threshold of $N\overline{N}$, but not very close: $e^+e^-\to p\bar p,\ n\bar n,\ \text{mesons};\ J/\psi\to p\bar p\pi^0(\eta);\ J/\psi\to p\bar p\rho(\omega);$ J/ψ , $\psi(2S) \to p\bar{p}\gamma$; $J/\psi \to \gamma\eta'\pi^+\pi^-$ decay.
- Very close to the threshold of NN : Approach of calculation of σ_{el} ($e^+e^- \to p\bar{p}$ and $e^+e^- \to n\bar{n}$), σ_{in} ($e^+e^- \rightarrow$ mesons), and σ_{tot} cross sections.
- Our predictions for σ_{el} , σ_{in} , and σ_{tot} cross sections. Discussion of isospin-violating effects.
- Conclusion

Cross section $e^+e^- \rightarrow p\bar{p}$; data are from B. Aubert, et al., BaBar, Phys. Rev. D 73, 012005 (2006)

$e^+e^- \to n\bar{n}, 3(\pi^+\pi^-)$ near the threshold of $N\bar{N}$ pair production

Left picture: cross section $e^+e^- \to n\bar{n}$; data are from M.N. Achasov, et al., SND, Phys. Rev. D 90, 112007 (2014); right picture: cross section $e^+e^- \rightarrow 3(\pi^+\pi^-)$; data are from R.R.Akhmetshin, et al., CMD3,Physics Letters, B723, 634 (2013),(black dots); B. Aubert, et al., BaBar , Phys. Rev. D 73 (2006) 052003, (green open circles)

Cross section $e^+e^- \to 2(\pi^+\pi^-\pi^0)$; from B. Aubert, et al., BaBar, Phys. Rev. D 73 (2006) 052003

Strong enhancement of decay probability at low invariant mass of $p\bar{p}$ in the processes $J/\Psi \to \gamma p\bar{p}$, $B^+ \to K^+ p\bar{p}$ and $B^0 \to D^0 p\bar{p}$, $B^+ \to \pi^+ p \bar{p}$ and $B^+ \to K^0 p \bar{p}$, $\Upsilon \to \gamma p \bar{p}$... These effects are similar to that in e^+e^- annihilation.

One of the most natural explanation of this enhancement is final state interaction of nucleon and antinucleon

B. Kerbikov, A. Stavinsky, and V. Fedotov, Phys. Rev. C 69, 055205 (2004); D.V. Bugg, Phys. Lett. B 598, 8 (2004); B. S. Zou and H. C. Chiang, Phys. Rev. D 69, 034004 (2004); B. Loiseau and S. Wycech, Phys. Rev. C 72, 011001 (2005); A. Sibirtsev, J. Haidenbauer, S. Krewald, Ulf-G. Meiner, and A.W. Thomas, Phys. Rev. D 71, 054010 (2005); J. Haidenbauer, Ulf-G. Meiner, A. Sibirtsev, Phys.Rev. D 74, 017501 (2006); V.F. Dmitriev and A.I.Milstein, Phys. Lett. B 658 (2007), 13.

Final state interaction

Final state interaction (including annihilation channels) may be taken into account by means optical potentials:

$$
V_{N{\bar N}}=U_{N{\bar N}}-iW_{N{\bar N}}\,.
$$

Nijmegen, Paris, Jülich... optical potentials give the same predictions for the cross sections of elastic and inelastic scattering of unpolarized particles but essentially different predictions for spin observables! The cross section $\sigma = \sigma_{ann} + \sigma_{cex} + \sigma_{el}$ of $p\bar{p}$ scattering has the form

$$
\sigma = \sigma_0 + (\zeta_1 \cdot \zeta_2) \sigma_1 + (\zeta_1 \cdot \boldsymbol{\nu}) (\zeta_2 \cdot \boldsymbol{\nu}) (\sigma_2 - \sigma_1),
$$

where ζ_1 and ζ_2 are the unit polarization vectors of the proton and antiproton, respectively.

Investigation of the process $e^+e^- \rightarrow N\bar{N}$ gives important information for modification of optical potentials!

Near the threshold but not very close to the threshold. It is possible to neglect the proton-neutron mass difference and the Coulomb potential. Our predictions for $e^+e^- \to N\bar{N}$ [V.F.Dmitriev, A.I.Milstein, S.G. Salnikov, PR D93, 034033 (2016)]

Left: the cross sections of $p\bar{p}$ (red line) and $n\bar{n}$ (green line) production, Right: |G \overline{p} E $\overline{G^p_{\Lambda}}$ $\frac{p}{M}$ for proton. The experimental data are from J.P.Lees et al., BaBar, Phys.Rev. D 87, 092005 (2013), R.R. Akhmetshin et al., CMD3, Physics Letters B759, 634 (2016) M.N. Achasov et al.,SND, Phys. Rev. D 90, 112007 (2014).

 $e^+e^- \rightarrow 6\pi$ near the threshold (via virtual $N\bar{N}$ pair production). The cross section in the energy region between 1.7 GeV and 2.1 GeV is approximated by the formula

$$
\sigma_{6\pi} = A\sigma_{\text{ann}}^1 + B\cdot E + C,
$$

where the best coincidence is for $A = 0.56$, $B = 0.012$ nb/MeV, $C = 4.96$ nb. The coefficient A agrees with the data of $p\bar{p} \rightarrow pions$ annihilation at rest, where 6π give $\sim 55\%$ of $I = 1$ contribution (C. Amsler et al., Nucl. Phys. A720, 357 (2003)).

The invariant mass spectra of $J/\psi \rightarrow p\bar{p}\pi^0$ and $J/\psi \rightarrow p\bar{p}\eta$ decays [V.F.Dmitriev, A.I.Milstein, S.G. Salnikov, PL B 760, 139 (2016)]:

Left: $J/\psi \to p\bar{p}\pi^0$ decay. Right: $J/\psi \to p\bar{p}\eta$ decay. The red band corresponds to our previous parameters of the potential and the green band corresponds to the refitted model. The phase space behavior is shown by the dashed curve.

$J/\psi \rightarrow p\bar{p}\gamma$ (ρ , ω) decays A.I.Milstein, S.G.Salnikov, Nucl. Phys. A 966, 54 (2017)

Dominant contribution is given by the state of $p\bar{p}$ pair with the quantum numbers $J^{PC} = 1^{-+}$ (${}^{1}S_{0}$). The invariant mass spectra in $J/\psi \rightarrow p\bar{p}\rho(\omega)$ decays:

Left: $J/\psi \rightarrow p\bar{p}\omega$ decay. Right: $J/\psi \rightarrow p\bar{p}\rho$ decay.

J/ψ , $\psi(2S) \rightarrow p\bar{p}\gamma$ decay

The invariant mass spectra in $J/\psi(\psi(2S) \rightarrow p\bar{p}\gamma$ decays:

Left: $J/\psi \rightarrow p\bar{p}\gamma$ decay. Right: $\psi(2S) \rightarrow p\bar{p}\gamma$ decay.

The $\eta' \pi^+ \pi^-$ invariant mass spectrum in $J/\psi \rightarrow \gamma \eta' \pi^+ \pi^-$ decay:

The thin line shows the contribution of non- $N\overline{N}$ channels. Vertical dashed line is the NN threshold.

Very close to the thresholds.

(A.I.Milstein, S.G.Salnikov, arXiv:1804.01283)

It is necessary to take also into account the proton-neutron mass difference and the Coulomb potential. The coupled-channels radial Schrdinger equation for the ${}^{3}S_{1} - {}^{3}D_{1}$ states reads

$$
\left[p_r^2 + \mu \mathcal{V} - \mathcal{K}^2\right] \Psi = 0, \qquad \Psi^T = (u^p, w^p, u^n, w^n),
$$

$$
\mathcal{K}^2 = \begin{pmatrix} k_p^2 \mathbb{I} & 0 \\ 0 & k_n^2 \mathbb{I} \end{pmatrix}, \qquad \mathbb{I} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \qquad \mu = \frac{1}{2} (m_p + m_n),
$$

$$
k_p^2 = \mu E, \qquad k_n^2 = \mu (E - 2\Delta), \qquad \Delta = m_n - m_p,
$$

where $(-p_T^2)$ r^2) is the radial part of the Laplace operator, $u^p(r)$, $w^p(r)$ and $u^{\overline{n}}(r)$, $w^n(r)$ are the radial wave functions of a protonantiproton or neutron-antineutron pair with the orbital angular momenta $L = 0$ and $L = 2$, respectively, m_p and m_n are the proton and neutron masses, E is the energy of a system counted from the $p\bar{p}$ threshold.

The optical potential.

V is the matrix 4×4 which accounts for the $p\bar{p}$ interaction and $n\bar{n}$ interaction as well as a transition $p\bar{p} \leftrightarrow n\bar{n}$. This matrix can be written in a block form as

$$
\mathcal{V}=\begin{pmatrix} \mathcal{V}^{pp}&\mathcal{V}^{pn}\\ \mathcal{V}^{pn}&\mathcal{V}^{nn}\end{pmatrix},
$$

where the matrix elements read

$$
\mathcal{V}^{pp} = \frac{1}{2}(\mathcal{U}^1 + \mathcal{U}^0) - \frac{\alpha}{r}\mathbb{I} + \mathcal{U}_{cf}, \qquad \mathcal{V}^{nn} = \frac{1}{2}(\mathcal{U}^1 + \mathcal{U}^0) + \mathcal{U}_{cf},
$$

$$
\mathcal{V}^{pn} = \frac{1}{2}(\mathcal{U}^0 - \mathcal{U}^1), \qquad \mathcal{U}_{cf} = \frac{6}{\mu r^2} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix},
$$

$$
\mathcal{U}^I = \begin{pmatrix} V_S^I & -2\sqrt{2}V_T^I \\ -2\sqrt{2}V_T^I & V_D^I - 2V_T^I \end{pmatrix}.
$$

 V^I_S $V^I_S(r),\ V^I_L$ $U^I_{\mathcal{D}}(r)$, and V^I_T $T^I(r)$ are the terms in the potential V^I of the strong NN interaction, corresponding to the isospin I ,

$$
V^{I} = V_{S}^{I}(r)\delta_{L0} + V_{D}^{I}(r)\delta_{L2} + V_{T}^{I}(r)\left[6\left(\mathbf{S}\cdot\mathbf{n}\right)^{2} - 4\right]
$$

.

Here S is the spin operator of the produced pair $(S = 1)$ and $n = r/r$. The optical potential V is expressed via the potentials \widetilde{U}^I as follows

$$
V(r) = \widetilde{U}^0 + (\boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2) \, \widetilde{U}^1,
$$

 $\tau_{1,2}$ are the isospin Pauli matrices. The terms $V^I_{S,D,T}$ are

 V_i^1 $\widetilde{U}_i^1(r) = \widetilde{U}_i^0(r) + \widetilde{U}_i^1(r) \, , \ \ V_i^0(r) = \widetilde{U}_i^0(r) - 3 \widetilde{U}_i^1(r) \, , \ \ i = S, D, T \, .$ The potentials $\widetilde{U}_i^I(r)$ consist of the real and imaginary parts:

$$
\begin{aligned}\n\widetilde{U}_i^0(r) &= \left(U_i^0 - i W_i^0\right) \theta \left(a_i^0 - r\right), \\
\widetilde{U}_i^1(r) &= \left(U_i^1 - i W_i^1\right) \theta \left(a_i^1 - r\right) + U_i^{\pi}(r) \theta \left(r - a_i^1\right),\n\end{aligned}
$$

where $\theta(x)$ is the Heaviside function, U_i^I i^I, W^I_i, a^I_i i_i are free parameters fixed by fitting the experimental data, and U_i^{π} $i^{\pi}(r)$ are the terms in the pion-exchange potential.

The parameters of the short-range potential.

The asymptotic forms of four independent regular solutions Solutions, which have no singularities at $r = 0$, at large distances are

$$
\Psi_{1R}^{T}(r) = \frac{1}{2i} \left(S_{11} \chi_{p0}^{+} - \chi_{p0}^{-}, S_{12} \chi_{p2}^{+}, S_{13} \chi_{n0}^{+}, S_{14} \chi_{n2}^{+} \right),
$$

\n
$$
\Psi_{2R}^{T}(r) = \frac{1}{2i} \left(S_{21} \chi_{p0}^{+}, S_{22} \chi_{p2}^{+} - \chi_{p2}^{-}, S_{23} \chi_{n0}^{+}, S_{24} \chi_{n2}^{+} \right),
$$

\n
$$
\Psi_{3R}^{T}(r) = \frac{1}{2i} \left(S_{31} \chi_{p0}^{+}, S_{32} \chi_{p2}^{+}, S_{33} \chi_{n0}^{+} - \chi_{n0}^{-}, S_{34} \chi_{n2}^{+} \right),
$$

\n
$$
\Psi_{4R}^{T}(r) = \frac{1}{2i} \left(S_{41} \chi_{p0}^{+}, S_{42} \chi_{p2}^{+}, S_{43} \chi_{n0}^{+}, S_{44} \chi_{n2}^{+} - \chi_{n2}^{-} \right).
$$

Here S_{ij} are some functions of the energy and

$$
\chi_{pl}^{\pm} = \frac{1}{k_p r} \exp\left[\pm i \left(k_p r - l\pi/2 + \eta \ln(2k_p r) + \sigma_l\right)\right],
$$

\n
$$
\chi_{nl}^{\pm} = \frac{1}{k_n r} \exp\left[\pm i \left(k_n r - l\pi/2\right)\right],
$$

\n
$$
\sigma_l = \frac{i}{2} \ln \frac{\Gamma(1 + l + i\eta)}{\Gamma(1 + l - i\eta)}, \qquad \eta = \frac{m_p \alpha}{2k_p},
$$

where $\Gamma(x)$ is the Euler Γ function.

The amplitude of $e^+e^- \to N\bar{N}$ near the threshold In the non-relativistic approximation the amplitudes in units $\pi \alpha / \mu^2$ are

$$
T_{\lambda'\lambda}^{p\bar{p}} = \sqrt{2} \left[g_p u_{1R}^p(0) + g_n u_{1R}^n(0) \right] (\mathbf{e}_{\lambda'} \cdot \mathbf{\epsilon}_{\lambda}^*)
$$

+
$$
\left[g_p u_{2R}^p(0) + g_n u_{2R}^n(0) \right] \left[(\mathbf{e}_{\lambda'} \cdot \mathbf{\epsilon}_{\lambda}^*) - 3(\hat{\mathbf{k}} \cdot \mathbf{e}_{\lambda'})(\hat{\mathbf{k}} \cdot \mathbf{\epsilon}_{\lambda}^*) \right],
$$

$$
T_{\lambda'\lambda}^{n\bar{n}} = \sqrt{2} \left[g_p u_{3R}^p(0) + g_n u_{3R}^n(0) \right] (\mathbf{e}_{\lambda'} \cdot \mathbf{\epsilon}_{\lambda}^*)
$$

+
$$
\left[g_p u_{4R}^p(0) + g_n u_{4R}^n(0) \right] \left[(\mathbf{e}_{\lambda'} \cdot \mathbf{\epsilon}_{\lambda}^*) - 3(\hat{\mathbf{k}} \cdot \mathbf{e}_{\lambda'})(\hat{\mathbf{k}} \cdot \mathbf{\epsilon}_{\lambda}^*) \right],
$$

where $e_{\lambda'}$ is a virtual photon polarization vector, corresponding to the spin projection $J_z = \lambda' = \pm 1$, ϵ_{λ} is the spin-1 function of $N\overline{N}$ pair, $\lambda = \pm 1$, 0 is the spin projection on the nucleon momentum k, and $\hat{\mathbf{k}} = \mathbf{k}/k$. The quantities u_i^p $\frac{p}{iR}(r)$ and $u_{iR}^{n}(r)$ denote the first and third components of the regular solutions $\Psi_{iR}(r)$. The amplitudes g_p and g_n can be considered as the energy independent parameters.

In the non-relativistic approximation the standard formula for the differential cross section of $N\bar{N}$ pair production in e^+e^- annihilation reads

$$
\frac{d\sigma^N}{d\Omega} = \frac{k_N \alpha^2}{16\mu^3} \left[\left| G_M^N(E) \right|^2 \left(1 + \cos^2 \theta \right) + \left| G_E^N(E) \right|^2 \sin^2 \theta \right].
$$

Here θ is the angle between the electron (positron) momentum and the momentum of the final particle. The proton and neutron Sachs form factors are:

$$
\begin{split} &G_{M}^{p}=g_{p}u_{1R}^{p}(0)+g_{n}u_{1R}^{n}(0)+\frac{1}{\sqrt{2}}\left[g_{p}u_{2R}^{p}(0)+g_{n}u_{2R}^{n}(0)\right],\\ &G_{E}^{p}=g_{p}u_{1R}^{p}(0)+g_{n}u_{1R}^{n}(0)-\sqrt{2}\left[g_{p}u_{2R}^{p}(0)+g_{n}u_{2R}^{n}(0)\right],\\ &G_{M}^{n}=g_{p}u_{3R}^{p}(0)+g_{n}u_{3R}^{n}(0)+\frac{1}{\sqrt{2}}\left[g_{p}u_{4R}^{p}(0)+g_{n}u_{4R}^{n}(0)\right],\\ &G_{E}^{n}=g_{p}u_{3R}^{p}(0)+g_{n}u_{3R}^{n}(0)-\sqrt{2}\left[g_{p}u_{4R}^{p}(0)+g_{n}u_{4R}^{n}(0)\right]. \end{split}
$$

The elastic $N\bar{N}$ pair production cross section.

The integrated cross sections of the nucleon-antinucleon pair production have the form

$$
\sigma_{\text{el}}^p = \frac{\pi k_p \alpha^2}{4\mu^3} \left[\left| g_p u_{1R}^p(0) + g_n u_{1R}^n(0) \right|^2 + \left| g_p u_{2R}^p(0) + g_n u_{2R}^n(0) \right|^2 \right],
$$

\n
$$
\sigma_{\text{el}}^n = \frac{\pi k_n \alpha^2}{4\mu^3} \left[\left| g_p u_{3R}^p(0) + g_n u_{3R}^n(0) \right|^2 + \left| g_p u_{4R}^p(0) + g_n u_{4R}^n(0) \right|^2 \right].
$$
\n(1)

The label "el" indicates that the process is elastic, i.e., a virtual $N\bar{N}$ pair transfers to a real pair in a final state.

The inelastic cross section σ_{in} .

There is also an inelastic process when a virtual NN pair transfers into mesons in a final state. The total cross section σ_{tot} , is

$$
\sigma_{\text{tot}} = \sigma_{\text{el}}^p + \sigma_{\text{el}}^n + \sigma_{\text{in}}.
$$
 (2)

The total cross section may be expressed via the Green's function $\mathcal{D}(r, r'|E)$ of the wave equation

$$
\sigma_{\text{tot}} = \frac{\pi \alpha^2}{4\mu^3} \text{Im} \left[\mathcal{G}^\dagger \mathcal{D} \left(0, 0 | E \right) \mathcal{G} \right], \qquad \mathcal{G}^T = \left(g_p, 0, g_n, 0 \right), \tag{3}
$$

where the function $\mathcal{D}(r, r'|E)$ satisfies the equation

$$
\[p_r^2 + \mu \mathcal{V} - \mathcal{K}^2\] \mathcal{D} \left(r, r'|E\right) = \frac{1}{rr'} \delta \left(r - r'\right). \tag{4}
$$

The function $\mathcal{D}(r, 0|E)$ can be written as

$$
\mathcal{D}(r, 0|E) = k_p \left[\Psi_{1N}(r) \Psi_{1R}^T(0) + \Psi_{2N}(r) \Psi_{2R}^T(0) \right] + k_n \left[\Psi_{3N}(r) \Psi_{3R}^T(0) + \Psi_{4N}(r) \Psi_{4R}^T(0) \right],
$$

Non-regular solutions are defined by their asymptotic behavior at large distances:

$$
u_{1N}^p(r) = \chi_{p0}^+, \ w_{2N}^p(r) = \chi_{p2}^+, \ u_{3N}^n(r) = \chi_{n0}^+, \ w_{4N}^n(r) = \chi_{n2}^+.
$$
\n(5)

All other elements ψ_i of the non-regular solutions satisfy the relation

$$
\lim_{r \to \infty} r \psi_i(r) = 0 \, .
$$

Results.

Comparison of our predictions with the data for σ_{el} of $e^+e^-\to p\bar p$ The experimental data are from J.P.Lees et al., BaBar, Phys.Rev. D 87, 092005 (2013).

 σ_{el} for $p\bar{p}$ (left) and $n\bar{n}$ (right) as a function of E of a pair. Solid curves are the exact results, dashed curves are obtained at $\Delta = 0$ and without account for the Coulomb potential, dotted curve in the left picture is obtained at $\Delta = 0$ and with account for the Coulomb potential, dashdotted curve in the left picture corresponds to the approximation

$$
\sigma_{\rm el} = C \sigma_{\rm el}^{(0)}\,,\quad C = \frac{2\pi\eta}{1-e^{-2\pi\eta}}\,,\quad \eta = \frac{m_p\alpha}{2k_p}\,.
$$

 $\sigma_{\rm tot}$ (left) and $\sigma_{\rm in}$ (right) as a function of E. Solid curves correspond to the exact results, dashed curves are the results, obtained at $\Delta = 0$ and without account for the Coulomb interaction, dotted curves are obtained at $\Delta = 0$ and with account for the Coulomb potential, and dash-dotted curves are obtained at $\Delta \neq 0$ and without account for the Coulomb potential. Vertical lines show the thresholds of $p\bar{p}$ and $n\bar{n}$ pair production.

The cross sections $\sigma_{\rm tot},\sigma_{\rm in},\sigma$ \overline{p} $_{el}^p$, and σ_{el}^n as a function of E.

Wave functions at origin for $p\bar{p}$ in a final state. Solid curves are the exact results, dashed curves are the results, obtained without account for the Coulomb interaction.

Wave functions at origin for $n\bar{n}$ in a final state. The Coulomb interaction is unimportant.

Conclusion

- We have investigated in detail the energy dependence of the cross sections of $p\bar{p}$, $n\bar{n}$, and meson production in e^+e^- annihilation in the vicinity of the $p\bar{p}$ and $n\bar{n}$ thresholds.
- Unusual phenomena are related to the interaction at large distances ("nuclear physics" of elementary particles).
- An importance of the isospin-violating effects (proton-neutron mass difference and the Coulomb interaction) is elucidated.
- Commonly accepted factorization approach for the account of the Coulomb potential does not work well enough in the vicinity of the thresholds.
- The results of SND and CMD-3 obtained at e^+e^- collider VEPP-2000 will give an important contribution to understanding of the phenomena.