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e+e−→ pp̄, near the threshold of the process,
strong energy dependence!

Cross section e+e− → pp̄; data are from B. Aubert, et al., BaBar,
Phys. Rev. D 73, 012005 (2006)



e+e−→ nn̄, 3(π+π−) near the threshold of NN̄ pair production

Left picture: cross section e+e−→ nn̄; data are from M.N. Achasov,
et al., SND, Phys. Rev. D 90, 112007 (2014); right picture: cross
section e+e− → 3(π+π−); data are from R.R.Akhmetshin, et al.,
CMD3,Physics Letters, B723, 634 (2013),(black dots); B. Aubert, et
al., BaBar , Phys. Rev. D 73 (2006) 052003, (green open circles)



e+e−→ 2(π+π−π0)

Cross section e+e− → 2(π+π−π0); from B. Aubert, et al., BaBar ,
Phys. Rev. D 73 (2006) 052003



Strong enhancement of decay probability at low invariant mass of
pp̄ in the processes J/Ψ → γpp̄, B+ → K+pp̄ and B0 → D0pp̄,
B+ → π+pp̄ and B+ → K0pp̄, Υ→ γpp̄... These effects are similar
to that in e+e− annihilation.

One of the most natural explanation of this enhancement is final state
interaction of nucleon and antinucleon

B. Kerbikov, A. Stavinsky, and V. Fedotov, Phys. Rev. C 69, 055205
(2004); D.V. Bugg, Phys. Lett. B 598, 8 (2004); B. S. Zou and H. C.
Chiang, Phys. Rev. D 69, 034004 (2004); B. Loiseau and S. Wycech,
Phys. Rev. C 72, 011001 (2005); A. Sibirtsev, J. Haidenbauer, S. Kre-
wald, Ulf-G. Meiner, and A.W. Thomas, Phys. Rev. D 71, 054010
(2005); J. Haidenbauer, Ulf-G. Meiner, A. Sibirtsev, Phys.Rev. D 74,
017501 (2006); V.F. Dmitriev and A.I.Milstein, Phys. Lett. B 658
(2007), 13.



Final state interaction

Final state interaction (including annihilation channels) may be taken
into account by means optical potentials:

VNN̄ = UNN̄ − iWNN̄ .

Nijmegen, Paris, Jülich... optical potentials give the same predictions
for the cross sections of elastic and inelastic scattering of unpolarized
particles but essentially different predictions for spin observables!
The cross section σ = σann+σcex+σel of pp̄ scattering has the form

σ = σ0 + (ζ1 · ζ2)σ1 + (ζ1 · ν)(ζ2 · ν) (σ2 − σ1) ,

where ζ1 and ζ2 are the unit polarization vectors of the proton and
antiproton, respectively.
Investigation of the process e+e− → NN̄ gives important informa-
tion for modification of optical potentials!



Near the threshold but not very close to the threshold.
It is possible to neglect the proton-neutron mass difference and the
Coulomb potential. Our predictions for e+e−→ NN̄ [V.F.Dmitriev,
A.I.Milstein, S.G. Salnikov, PR D93, 034033 (2016)]
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Left: the cross sections of pp̄ (red line) and nn̄ (green line) production,
Right: |GpE/G

p
M | for proton. The experimental data are from J.P.Lees

et al., BaBar, Phys.Rev. D 87, 092005 (2013), R.R. Akhmetshin et al.,
CMD3, Physics Letters B759, 634 (2016) M.N. Achasov et al.,SND,
Phys. Rev. D 90, 112007 (2014).



e+e−→ 6π near the threshold (via virtual NN̄ pair production).
The cross section in the energy region between 1.7 GeV and 2.1 GeV
is approximated by the formula

σ6π = Aσ1
ann + B · E + C,

where the best coincidence is for A = 0.56, B = 0.012 nb/MeV,
C = 4.96 nb. The coefficient A agrees with the data of pp̄ → pions
annihilation at rest, where 6π give ∼ 55% of I = 1 contribution (C.
Amsler et al., Nucl. Phys. A720, 357 (2003)).
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The invariant mass spectra of J/ψ → pp̄π0 and J/ψ → pp̄η decays
[V.F.Dmitriev, A.I.Milstein, S.G. Salnikov, PL B 760, 139 (2016)]:
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Left: J/ψ → pp̄π0 decay. Right: J/ψ → pp̄η decay. The red band
corresponds to our previous parameters of the potential and the green
band corresponds to the refitted model. The phase space behavior is
shown by the dashed curve.



J/ψ → pp̄γ (ρ , ω) decays
A.I.Milstein, S.G.Salnikov, Nucl. Phys. A 966, 54 (2017)

Dominant contribution is given by the state of pp̄ pair with the quan-
tum numbers JPC = 1−+ (1S0). The invariant mass spectra in
J/ψ → pp̄ρ (ω) decays:
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Left: J/ψ → pp̄ω decay. Right: J/ψ → pp̄ρ decay.



J/ψ, ψ(2S)→ pp̄γ decay

The invariant mass spectra in J/ψ(ψ(2S)→ pp̄γ decays:
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Left: J/ψ → pp̄γ decay. Right: ψ(2S)→ pp̄γ decay.



The η′π+π− invariant mass spectrum in J/ψ→γη′π+π− decay:
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The thin line shows the contribution of non-NN̄ channels. Vertical
dashed line is the NN̄ threshold.



Very close to the thresholds.
(A.I.Milstein, S.G.Salnikov, arXiv:1804.01283)
It is necessary to take also into account the proton-neutron mass
difference and the Coulomb potential. The coupled-channels radial
Schrdinger equation for the 3S1 −3 D1 states reads[

p2
r + µV − K2

]
Ψ = 0 , ΨT = (up, wp, un, wn) ,

K2 =

(
k2
pI 0

0 k2
nI

)
, I =

(
1 0
0 1

)
, µ =

1

2

(
mp + mn

)
,

k2
p = µE , k2

n = µ(E − 2∆) , ∆ = mn −mp ,

where (−p2
r) is the radial part of the Laplace operator, up(r),

wp(r) and un(r), wn(r) are the radial wave functions of a proton-
antiproton or neutron-antineutron pair with the orbital angular mo-
menta L = 0 and L = 2, respectively, mp and mn are the proton
and neutron masses, E is the energy of a system counted from the pp̄
threshold.



The optical potential.
V is the matrix 4 × 4 which accounts for the pp̄ interaction and nn̄
interaction as well as a transition pp̄↔ nn̄. This matrix can be written
in a block form as

V =

(
Vpp Vpn
Vpn Vnn

)
,

where the matrix elements read

Vpp =
1

2
(U1 + U0)− α

r
I + Ucf , Vnn =

1

2
(U1 + U0) + Ucf ,

Vpn =
1

2
(U0 − U1) , Ucf =

6

µr2

(
0 0
0 1

)
,

UI =

(
V IS −2

√
2V IT

−2
√

2V IT V ID − 2V IT

)
.



V IS (r), V ID(r), and V IT (r) are the terms in the potential V I of the
strong NN̄ interaction, corresponding to the isospin I ,

V I = V IS (r)δL0 + V ID(r)δL2 + V IT (r)
[
6 (S · n)2 − 4

]
.

HereS is the spin operator of the produced pair (S = 1) andn = r/r.
The optical potential V is expressed via the potentials ŨI as follows

V (r) = Ũ0 + (τ1 · τ2) Ũ1,

τ1,2 are the isospin Pauli matrices. The terms V IS,D,T are

V 1
i (r) = Ũ0

i (r) + Ũ1
i (r) , V 0

i (r) = Ũ0
i (r)− 3Ũ1

i (r) , i = S,D, T .



The potentials ŨIi (r) consist of the real and imaginary parts:

Ũ0
i (r) =

(
U0
i − iW

0
i

)
θ
(
a0
i − r

)
,

Ũ1
i (r) =

(
U1
i − iW

1
i

)
θ
(
a1
i − r

)
+ Uπi (r)θ

(
r − a1

i

)
,

where θ(x) is the Heaviside function, UIi , W I
i , aIi are free parameters

fixed by fitting the experimental data, and Uπi (r) are the terms in the
pion-exchange potential.

Ũ0
S Ũ0

D Ũ0
T Ũ1

S Ũ1
D Ũ1

T

Ui (MeV) −458+10
−12 −184+17

−20 − 43+4
−3 1.9± 0.6 991+13

−15 −4.5+0.2
−0.1

Wi (MeV) 247± 5 82+13
−7 − 31+2

−6 −8.9+0.8
−0.5 5+14

−20 1.7+0.2
−0.1

ai (fm) 0.531+0.007
−0.006 1.17+0.02

−0.03 0.74± 0.03 1.88± 0.02 0.479± 0.003 2.22± 0.03

g gp = 0.338± 0.004 gn = −0.15− 0.33i± 0.01

The parameters of the short-range potential.



The asymptotic forms of four independent regular solutions
Solutions, which have no singularities at r = 0, at large distances are

ΨT1R(r) =
1

2i

(
S11χ

+
p0 − χ

−
p0, S12χ

+
p2, S13χ

+
n0, S14χ

+
n2

)
,

ΨT2R(r) =
1

2i

(
S21χ

+
p0, S22χ

+
p2 − χ

−
p2, S23χ

+
n0, S24χ

+
n2

)
,

ΨT3R(r) =
1

2i

(
S31χ

+
p0, S32χ

+
p2, S33χ

+
n0 − χ

−
n0, S34χ

+
n2

)
,

ΨT4R(r) =
1

2i

(
S41χ

+
p0, S42χ

+
p2, S43χ

+
n0, S44χ

+
n2 − χ

−
n2

)
.

Here Sij are some functions of the energy and

χ±pl =
1

kpr
exp
[
± i
(
kpr − lπ/2 + η ln(2kpr) + σl

)]
,

χ±nl =
1

knr
exp
[
± i (knr − lπ/2)

]
,

σl =
i

2
ln

Γ (1 + l + iη)

Γ (1 + l − iη)
, η =

mpα

2kp
,

where Γ(x) is the Euler Γ function.



The amplitude of e+e−→ NN̄ near the threshold
In the non-relativistic approximation the amplitudes in units πα/µ2

are

T
pp̄
λ′λ =

√
2
[
gpu

p
1R(0) + gnu

n
1R(0)

]
(eλ′ · ε

∗
λ)

+
[
gpu

p
2R(0) + gnu

n
2R(0)

] [
(eλ′ · ε

∗
λ)− 3(k̂ · eλ′)(k̂ · ε

∗
λ)
]
,

Tnn̄λ′λ =
√

2
[
gpu

p
3R(0) + gnu

n
3R(0)

]
(eλ′ · ε

∗
λ)

+
[
gpu

p
4R(0) + gnu

n
4R(0)

] [
(eλ′ · ε

∗
λ)− 3(k̂ · eλ′)(k̂ · ε

∗
λ)
]
,

where eλ′ is a virtual photon polarization vector, corresponding to
the spin projection Jz = λ′ = ±1, ελ is the spin-1 function of NN̄
pair, λ = ±1, 0 is the spin projection on the nucleon momentum k,
and k̂ = k/k. The quantities upiR(r) and uniR(r) denote the first and
third components of the regular solutions ΨiR(r). The amplitudes gp
and gn can be considered as the energy independent parameters.



In the non-relativistic approximation the standard formula for the dif-
ferential cross section of NN̄ pair production in e+e− annihilation
reads

dσN

dΩ
=
kNα

2

16µ3

[∣∣∣GNM (E)
∣∣∣2 (1 + cos2 θ

)
+
∣∣∣GNE (E)

∣∣∣2 sin2 θ

]
.

Here θ is the angle between the electron (positron) momentum and
the momentum of the final particle. The proton and neutron Sachs
form factors are:

G
p
M = gpu

p
1R(0) + gnu

n
1R(0) +

1√
2

[
gpu

p
2R(0) + gnu

n
2R(0)

]
,

G
p
E = gpu

p
1R(0) + gnu

n
1R(0)−

√
2
[
gpu

p
2R(0) + gnu

n
2R(0)

]
,

GnM = gpu
p
3R(0) + gnu

n
3R(0) +

1√
2

[
gpu

p
4R(0) + gnu

n
4R(0)

]
,

GnE = gpu
p
3R(0) + gnu

n
3R(0)−

√
2
[
gpu

p
4R(0) + gnu

n
4R(0)

]
.



The elastic NN̄ pair production cross section.

The integrated cross sections of the nucleon-antinucleon pair produc-
tion have the form

σ
p
el =

πkpα
2

4µ3

[∣∣gpup1R(0) + gnu
n
1R(0)

∣∣2 +
∣∣gpup2R(0) + gnu

n
2R(0)

∣∣2] ,
σnel =

πknα
2

4µ3

[∣∣gpup3R(0) + gnu
n
3R(0)

∣∣2 +
∣∣gpup4R(0) + gnu

n
4R(0)

∣∣2] .
(1)

The label “el” indicates that the process is elastic, i.e., a virtual NN̄
pair transfers to a real pair in a final state.



The inelastic cross section σin.

There is also an inelastic process when a virtual NN̄ pair transfers
into mesons in a final state. The total cross section σtot, is

σtot = σ
p
el + σnel + σin . (2)

The total cross section may be expressed via the Green’s function
D(r, r′|E) of the wave equation

σtot =
πα2

4µ3
Im
[
G†D (0, 0|E)G

]
, GT =

(
gp, 0, gn, 0

)
, (3)

where the function D(r, r′|E) satisfies the equation[
p2
r + µV − K2

]
D
(
r, r′|E

)
=

1

rr′
δ
(
r − r′

)
. (4)



The function D (r, 0|E) can be written as

D (r, 0|E) = kp

[
Ψ1N (r)ΨT1R(0) + Ψ2N (r)ΨT2R(0)

]
+ kn

[
Ψ3N (r)ΨT3R(0) + Ψ4N (r)ΨT4R(0)

]
,

Non-regular solutions are defined by their asymptotic behavior at
large distances:

u
p
1N (r) = χ+

p0 , w
p
2N (r) = χ+

p2 , u
n
3N (r) = χ+

n0 , w
n
4N (r) = χ+

n2 .

(5)

All other elements ψi of the non-regular solutions satisfy the relation

lim
r→∞

rψi(r) = 0 .



Results.
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Comparison of our predictions with the data for σel of e+e−→ pp̄
The experimental data are from J.P.Lees et al., BaBar, Phys.Rev. D
87, 092005 (2013).
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σel for pp̄ (left) and nn̄ (right) as a function ofE of a pair. Solid curves
are the exact results, dashed curves are obtained at ∆ = 0 and without
account for the Coulomb potential, dotted curve in the left picture is
obtained at ∆ = 0 and with account for the Coulomb potential, dash-
dotted curve in the left picture corresponds to the approximation

σel = Cσ
(0)
el , C =

2πη

1− e−2πη
, η =

mpα

2kp
.
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σtot (left) and σin (right) as a function of E. Solid curves correspond
to the exact results, dashed curves are the results, obtained at ∆ = 0
and without account for the Coulomb interaction, dotted curves are
obtained at ∆ = 0 and with account for the Coulomb potential, and
dash-dotted curves are obtained at ∆ 6= 0 and without account for the
Coulomb potential. Vertical lines show the thresholds of pp̄ and nn̄
pair production.
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The cross sections σtot, σin, σpel, and σnel as a function of E.
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Wave functions at origin for pp̄ in a final state. Solid curves are the
exact results, dashed curves are the results, obtained without account
for the Coulomb interaction.
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Wave functions at origin for nn̄ in a final state. The Coulomb interac-
tion is unimportant.



Conclusion
•We have investigated in detail the energy dependence of the cross

sections of pp̄, nn̄, and meson production in e+e− annihilation in
the vicinity of the pp̄ and nn̄ thresholds.

•Unusual phenomena are related to the interaction at large distances
(”nuclear physics” of elementary particles).

•An importance of the isospin-violating effects (proton-neutron
mass difference and the Coulomb interaction) is elucidated.

• Commonly accepted factorization approach for the account of the
Coulomb potential does not work well enough in the vicinity of the
thresholds.

• The results of SND and CMD-3 obtained at e+e− collider VEPP-
2000 will give an important contribution to understanding of the
phenomena.


