УЧРЕЖДЕНИЕ РОССИЙСКОЙ АКАДЕМИИ НАУК ИНСТИТУТ ЯДЕРНОЙ ФИЗИКИ им. Г.И. Будкера СИБИРСКОГО ОТДЕЛЕНИЯ РАН (ИЯФ СО РАН)

Ю.И. Эйдельман

## ПЛАНИРОВАНИЕ РАДИАЦИОННОГО ЛЕЧЕНИЯ ИОННЫМ ПУЧКОМ

ИЯФ 2009-15

НОВОСИБИРСК 2009

# Планирование радиационного лечения ионным пучком

Ю.И. Эйдельман

Институт ядерной физики им. Г.И. Будкера 630090 Новосибирск, Россия

#### Аннотация

Обсуждены различные факторы, влияющие на величину относительной биологической эффективности пучка ионов углерода при его использовании для радиационного лечения. Рассмотрены подходы к формированию плана лечения и его оптимизации. Описано несколько разных алгоритмов для расчета и оптимизации плана лечения. Определен перечень необходимых для этого основных экспериментальных и расчетных данных.

#### Planning of the radiation treatment by the ion beam

Yu.I. Eidelman

Budker Institute of Nuclear Physics, 630090 Novosibirsk, Russia

#### Abstract

The different factors, which affect upon relative biological effectiveness (RBE) of carbon ion beam used for radiation therapy, had been discussed. The approaches to the forming of a plan of the radiation treatment had been considered. A few various algorithms to calculate and optimize therapy plan had been described. The list of main experimental and calculated data had been defined.

© Институт ядерной физики им. Г.И.Будкера СО РАН

## 1. <u>Резюме: что нужно знать, измерить и рассчитать для</u> составления и оптимизации плана радиационного лечения пучком ионов углерода

Резюмирующая часть настоящего документа для удобства использования вынесена вперед.

При определении биологической эффективности ионного пучка (Relative Biological Effectiveness - RBE), составлении плана радиационного лечения этим пучком и оптимизации самого плана необходимы следующие данные и расчеты:

- линейные потери энергии и энергетические потери ионов углерода в воде и биологических тканях при разных энергиях самих ионов – расчет и табличное сохранение для последующего использования;
- сечения образования всех типов фрагментов при прохождении ионного пучка через воду и биологические ткани, энергетические спектры этих фрагментов – экспериментальные данные, сохраненные для последующего использования;
- зависимости выживаемости биологических тканей от поглощенной дозы при использовании фотонного (рентгеновского) облучения <u>экспериментальные данные</u>. Эти данные позволяют <u>рассчитать и сохранить для последующего использования</u> параметры α<sub>X</sub>,β<sub>X</sub>,s<sub>X</sub><sub>max</sub>,D<sub>X</sub><sub>cut</sub> "линейно-квадратичной" аппроксимации этих зависимостей;
- размеры ядер клеток биологических тканей <u>экспериментальные</u> <u>данные, сохраненные для последующего использования;</u>
- "начальные" значения наклонов α<sub>z</sub>,β<sub>z</sub> линейно-квадратичного представления зависимости выживаемости биологических тканей от поглощенной дозы при облучении их вторичными частицами типа T и энергии E ("начальность" этих параметров означает их соответствие минимально возможной поглощенной дозе) – расчет и сохранение для последующего использования;
- коэффициенты наклона α<sub>T,E</sub>, β<sub>T,E</sub> линейно-квадратичного представления кривых выживаемости биологических тканей от поглощенной

дозы при облучении их вторичными частицами типа T и энергии E для «макроскопических» поглощенных доз, не превышающих уровень  $\cong 10 \ Gy$  ("приближение низких доз") – *расчет*;

- количество вторичных частиц типа *T* с энергией *E* для глубины проникновения первичной частицы *Z* при ее заданной энергии *E*<sub>prim</sub> – <u>pacчеm</u>;
- "локальные" коэффициенты наклона α<sub>i,j,k</sub>, β<sub>i,j,k</sub> линейно-квадратичного представления кривых выживаемости биологических тканей от поглощенной дозы при учете всех вторичных частиц и их энергий, а также "суммарные длины поглощения" L<sub>i,j,k</sub>, для всех этих частиц ("локальность" означает привязку этих данных к энергии первичной частицы E<sub>prim</sub> и глубине Z ее проникновения) <u>расчет и сохранение</u> для последующего использования;

Далее, в зависимости от поставленных задач, могут быть найдены:

- поглощенная физическая и биологическая дозы и величина RBE для каждого вокселя мишени, находящегося на глубине Z проникновения первичных частиц – <u>расчет</u>;
- "суммарные" по всем вокселям коэффициенты наклона α, β линейноквадратичного представления кривых выживаемости биологических тканей от поглощенной дозы при учете всех вторичных частиц и их энергий, а также "суммарные длины поглощения" *L* – *pacчem*;
- "суммарные" по всем вокселям поглощенная физическая и биологическая дозы и величина RBE – <u>расчет</u>.

Все вышеприведенные расчеты могут быть выполнены лишь с помощью высокопроизводительных компьютеров с большим объемом дисковой памяти.

## 2. Почему именно ионы

Основная мотивация в использовании ионов для радиационной терапии рака, в особенности ионов углерода, основана на следующих основных обстоятельствах:

• кривая линейных потерь энергии (Linear Energy Transfer – LET) ионов в веществе имеет ярко выраженный пик Брэгга на последнем очень коротком участке пути, так что радиационное повреждение тканей при доставке пучка к опухоли много меньше того повреждения, которое получают клетки собственно опухоли (Рис. 2.1):



Отсюда вытекает, что

Рис. 2.1.

 ионная терапия характеризуется высоким значением коэффициента биологической эффективности, показывающего степень уменьшения физической дозы по сравнению с гамма-терапией при получении такого же биологического эффекта;



Рис. 2.2. Кружки – *E*<100 МэВ, треугольники – *E*<100 МэВ; пустые символы – клетки тощей кишки, сплошные – другие ткани.

- Как видно из приведенного выше рисунка 2.2, типичные значения RBE для протонов ~1.1, в то время как для ионов углерода RBE для разных тканей составляет обычно ~3÷6 (см. далее). Значения RBE, бо́льшие единицы, означают, что для достижения такого же терапевтического эффекта можно существенно уменьшать физическую поглощенную дозу в процессе радиационной терапии (по сравнению с терапией другими частицами – фотонами, а также электронами, протонами и нейтронами, характеризуемыми меньшими значениями RBE);
- ионные пучки имеют очень малую угловую расходимость при своем распространении в тканях, что усиливает роль предыдущих

обстоятельств, а также позволяет намного легче реализовывать методику узко направленных пучков (knife method);

- восстановление клеток при облучении опухолей ионами происходит в меньшей степени, чем при гамма- и протонной терапии. Это означает возможность уменьшения числа необходимых сеансов облучения, что является несомненным экономическим достоинством ионной терапии;
- ионные пучки наносят летальное поражение опухолевым тканям, в то время как окружающие здоровые ткани сохраняют способность к восстановлению;
- ионные пучки позволяют (в отличие от гамма-облучения) организовывать несколько портов облучения, увеличивая тем самым пропускную способность клиники:
- некоторые виды опухолей могут быть пролечены только ионными пучками;
- ионные пучки иногда эффективно воздействуют и на радиорезистентные опухоли;
- терапия ионными пучками характеризуется более высоким качеством жизни в последующий период;
- результат радиотерапии (любой тип частиц) не зависит от цикла клеточного деления;
- радиотерапия (любой тип частиц) характеризуется высоким значением кислородного фактора (Oxygen Enhancement Ratio – OER), показывающего степень уменьшения физической дозы для клеток, насыщенных кислородом, по сравнению с дозой для гипоксичных клеток при получении такого же биологического эффекта.

## **3.** Выживаемость (Survival)

Выживаемость *S*, характеризующая воздействие излучения на биологические объекты, определяется следующим образом:

- высеваются две группы исследуемых клеток в известных количествах  $N_d$  и  $N_c$ ;
- первая группа подвергается облучению, вторая остается контрольной;
- обе культуры выращиваются в течение 1÷2 недель;
- выращенные культуры фиксируются, окрашиваются и подсчитываются количества S<sub>d</sub> и S<sub>c</sub> выживших клеток;
- искомая выживаемость находится как отношение

$$S = \frac{S_d / N_d}{S_c / N_c} \,.$$

Для клеток млекопитающихся (Рис. 3.1.) справедлива «линейноквадратичная» (Liner-Quadratic – LQ) модель зависимости выживаемости от поглощенной дозы *D*:

$$S = \exp(-\alpha D - \beta D^2) \rightarrow -\ln S = \alpha D + \beta D^2$$
.



Рис. 3.1.

#### 4. Как находится RBE

Относительная биологическая эффективность есть отношение фотонной и ионной доз, приводящих к одинаковому биологическому эффекту, измеряемому обычно как доля клеток, выживающих после получения соответствующей дозы (Рис. 4.1):



$$RBE = D_v / D_{ion} |_{isoeffect}$$

Рис. 4.1.

## 5. Влияние различных факторов на RBE

Далее кратко приводятся данные, как именно влияют различные (основные) факторы на значение RBE.

1°. RBE зависит от энергии терапевтического пучка, т.е. от его удельных энергетических потерь (Рис. 5.1):



2°. RBE зависит от поглощенной дозы и при меньших удельных потерях эта зависимость проявляется сильнее (Рис. 5.2):



3°. RBE зависит от типа частиц терапевтического пучка (Рис. 5.3):



Рис. 5.3.

4°. RBE зависит от линейных энергетических потерь и ведет себя поразному для различных уровней выживаемости (Рис. 5.4а,б.):



Рис. 5.4а. Ионы Не: 1 – 165 кэВ/µм, 2 – 110 кэВ/µм, 3 – 88 кэВ/µм, 4 – 61 кэВ/µм, 5 – 25 кэВ/µм; дейтоны: 6 – 20 кэВ/µм, 7 – 5.6 кэВ/µм; фотоны: 8 – 250 кВ.



Рис. 5.4б. Зависимость «начального» RBE от линейных потерь углеродного пучка.



5°. RBE зависит от типа облучаемых клеток/тканей (Рис. 5.5):

6°. Кислородный фактор (OER) для любого типа терапевтического пучка определяется сравнением кривых выживаемости для клеток. насыщенных кислородом, по сравнению с дозой для гипоксичных клеток при достижении одного уровня выживаемости: он равен отношению соответствующих доз и его типичное значение составляет ~2.3÷3. Сравнение значений кислородного фактора для фотонов и ионов показывает, что для фотонов он больше, чем для ионов (Рис. 5.6):



7°. RBE зависит от того, как именно доставлена одна и та же терапевтическая доза – за один сеанс (фракцию) или за несколько. Это

связано с тем, что здоровая ткань является более радиорезистивной и успевает в какой-то степени восстанавливаться в промежутке между фракциями, а опухолевая ткань такой способности не демонстрирует. Следовательно, более правильная терапия состоит в дроблении доставки предписанной дозы на несколько фракций (Рис. 5.7):



## 6. Как RBE используется в TPS

Для расчета RBE, являющегося важнейшим фактором в ионной TPS, возможны два подхода [1]:

- <u>в экспериментальном</u> (реализован в Heavy Ion Accelerator Center in Chiba HIMAC/Chiba, Japan) RBE измерена как можно более точно для как можно большего числа разнообразных экспериментальных условий энергий и размеров пучков, размеров опухолей и типов тканей и т.п. В системе планирования лечения при расчете RBE для конкретной ситуации применяется интерполяция и экстраполяция существующих данных. Важным моментом является то, что экспериментальные данные получены в искусственных условиях (*in vitro*), так что определены процедуры, как из этих данных получается информация для ее использования для сложных тканевых систем в организме (*in vivo*).
- <u>в биофизическом моделировании</u> (реализовано в GSI/Darmstadt, Germany; используется в Heidelberg Ion Therapy HIT/Heidelberg, Germany и CNAO/Pavia, Italy) построена биофизическая модель (Local Effect Model LEM), позволяющая предсказать реакцию биологических тканей на радиационную терапию разными частицами в ее сравнении с гамма-терапией. В конечном счете, это позволяет систему планирования лечения ионами «связать» с клиническим опытом гамма-терапии.

## 7. НІМАС подход

Идея реализации: из экспериментов *in-vitro* с пучком моноэнергетичных ионов углерода извлекаются начальные значения LQ-параметров α и β для кривой выживаемости. Эти же параметры для сложных тканей определяются как средне-взвешенные:

$$\alpha_{MIX} = \sum_{i} f_i \alpha_i$$
,  $\sqrt{\beta_{MIX}} = \sum_{i} f_i \beta_i$ .

Эти данные позволяют найти относительные распределения дозы и совокупности с результатами измерений абсолютных значений RBE в нейтронных экспериментах позволяют составить искомый план лечения Рис. 7.1).



Одна из основополагающих идей LEM состоит в том, что <u>биологическое</u> повреждение ядер клеток в малом объеме определяется только ожидаемыми потерями энергии (поглощенной дозой) в этом объеме независимо от того, пучок каких частиц приводит к этим энергетическим потерям. Другими словами, все различие в биологическом воздействии разных типов частиц на ядра клеток связано лишь с тем, как отличаются для этих частиц энергетические потери по сравнению с гамма частицами, т.е. в различии треков разных частиц. Различие в зависимостях «отклика» на поглощенную в среде дозу для частиц определенного типа и фотонов должно приводить для различных биологических объектов и/или тканей к соответствующему различию в RBE.

Поглощенная доза определяется как средние энергетические потери пучка частиц в выделенном объеме среды, отнесенные к массе этого объема. Естественно, эти потери определяются набором параметров, характеризующих пучок частиц. На малых масштабах распределения могут различаться кардинально в зависимости от типа частиц и параметров пучка (Рис. 8.1):



15

На приводимом рисунке [2] приведены распределения дозы в малом объеме, сравнимом с размерами клеточных ядер, для фотонов и ионов углерода разных энергий. Как видно, фотоны демонстрируют практически однородное распределение дозы. Ионы малой энергии показывают сильно неоднородное распределение: поскольку радиус (поперечный) трека мал, то энергия теряется ионами очень малом объеме вдоль траектории иона и при этом не происходит какого-нибудь значимого перекрытия треков. По мере увеличения энергии ионов растет поперечный размер треков, расстояние между ними уменьшается, и они начинают перекрываться друг с другом. Это приводит к уменьшению степени неоднородности распределения дозы, которое все в большей степени приближается к виду распределения для фотонов.

## 9. Методы реализации LEM-подхода

Биологическая эффективность неоднородного распределения выбранных частиц производится сравнением кривых «отклика» на поглощенную дозу для этих частиц и фотонов. Согласно LEM подавление активности клеток (их инактивация) является следствием появления летальных событий: при увеличении поглощенной дозы растет число летальных событий в ядрах клеток, а единичного события вполне достаточно для инактивации всей клетки.

Расчет RBE в LEM-подходе основан на 3-х наборах данных, являющихся независимыми друг от друга [1,3]:

1. *Критический размер мишени внутри клетки (т.е. размер ее ядра).* При моделировании обычно предполагается, что ядро клетки – круг радиусом 5 µм.

2. <u>Кривые D(r) радиального распределения поглощенной дозы внутри</u> трека частицы (которые, естественно, зависят от энергии и атомного номера) (Рис. 9.1, 9.2). При моделировании обычно предполагается, что [4]

$$D(r) = \begin{cases} \lambda \cdot LET & r < r_{\min} \equiv .01 \,\mu\text{m} \\ \lambda \cdot LET \cdot r_{\min}^2 / r^2 & r_{\min} \le r \le r_{\max}; \\ 0 & r > r_{\max} \end{cases} r_{\max}[\mu\text{m}] = .0616 \cdot E_{[\text{MeV/n}]}^{1.7} [5],$$

где LET – линейные потери энергии, отличающиеся от энергетических потерь частицы -dE/dx (Stopping Power – SP) на величину тормозного излучения частицы (bremmstrahlung), а нормировочная константа  $\lambda$  определяется так, что интеграл (радиальный) по всему треку дает значение *LET*.



Замечание 1: Из приводимого графика видно, что для энергий ионов в интервале  $90 \div 400$  MeV/n диапазон изменения  $r_{\text{max}}$  таков: 130 $\div$ 1600 µm.

Рис. 9.1.

На рисунке 9.2 показано, как поглощенная в ядре клетки энергия зависит от того, на каком расстоянии от центра ядра проходит ось трека первичной частицы. Эта энергия рассчитана в соответствии с радиальным распределением поглощенной дозы для двух размеров ядра клетки (5 мкм и 10 мкм). Видно, что как только ось трека «выходит» за размер ядра клетки, поглощенная доза резко падает (практически сразу на один порядок величины). Следовательно, из всего радиального размера трека (порядка  $r_{\rm max}$ ) вклад в поглощенную дозу дает только область порядка  $r_0$ , так что большие значения размера трека практически не играют роли.



3. <u>Кривые S(D) вероятности «выживаемости» клеток биологической</u> системы в зависимости от поглощенной дозы.

В LEM-подходе используется также экспериментально подтвержденные зависимости логарифмов вероятности выживания  $S_x(D)$  (при облучении фотонами) и  $S_I(D)$  (при облучении ионами) от дозы в виде так называемых «линейно-квадратичных» кривых [6-9]. В случае фотонов имеем:

$$-\ln S_X(D) = \begin{cases} \alpha_X D + \beta_X D^2 \\ \alpha_X D_{X\_cut} + \beta_X D_{X\_cut}^2 + S_{\max}(D - D_{X\_cut}) \end{cases}$$

где  $S_{\max} = \alpha_X + 2\beta_X D_{X\_cut}$  – максимальный наклон и  $D_{X\_cut}$  определяет точку перехода от линейно-квадратичной зависимости к чисто линейной при больших значениях дозы. Из этой зависимости видно, что при  $D \rightarrow 0$  доза  $D_X$  для данного значения S определяется из соотношения  $D_X = -\ln S / \alpha_X$ . На рисунке 9.3 для примера приведены зависимости  $S_X(D)$ , восстановленные по значениям параметров  $\alpha_X$ ,  $\beta_X$ ,  $S_{\max}$  и  $D_{X\_cut}$  из экспериментальных данных [6].



Рис. 9.3.

Для ионов зависимость  $S_I(D)$  имеет аналогичный вид со своими значениями параметров  $\alpha$ ,  $\beta$ ,  $D_{cut}$ :

$$-\ln S_{I}(D) = \begin{cases} \alpha_{I}D + \beta_{I}D^{2} & D < D_{I\_cut} \\ \alpha_{I}D_{I\_cut} + \beta_{I}D_{I\_cut}^{2} + S_{\max}(D - D_{I\_cut}) & D \ge DX_{I\_cut} \end{cases}.$$

Замечание 2: нигде не оговорено равенство  $D_{I\_cut} = D_{X\_cut} \equiv D_{cut}$ , а также то, что параметр  $S_{max}$  является тем же, что и для фотонов, но дальше эти соотношения параметров используются при определении значения  $\beta_{I\_}$ .

Вновь, при  $D \rightarrow 0$  доза  $D_I$  для данного значения S определяется из соотношения  $D_I = -\ln S / \alpha_I$ , так что начальное значение  $RBE_{\alpha}$  определяется отношением «наклонов»  $\alpha_I$  и  $\alpha_X$ :

$$RBE_{\alpha} = \frac{D_X \mid_S}{D_I \mid_S} = \frac{-\ln S \mid \alpha_X}{-\ln S \mid \alpha_I} = \frac{\alpha_I}{\alpha_X}$$

На рисунке 9.4 для примера показаны зависимости  $RBE_{\alpha}$  для разных типов ионов и их энергий (справа – начальный участок по энергии) [1]. Видно, что  $RBE_{\alpha}$  имеет максимум при низких энергиях и убывает, выходя практически на плато, при высоких энергиях.

Таким образом, начальное значение  $RBE_{\alpha}$  может быть найдено, если известны «наклоны»  $\alpha_I$  и  $\alpha_X$ .

Возможны (и были реализованы в GSI) несколько разных схем LEM-подхода.



Рис. 9.4.

Схема 1. Строгий расчет. Последовательно выполняются следующие вычисления [2,6] (Рис. 9.5).



Рис. 9.5.

1. Для заданного сечения Z=const методом Монте-Карло (МК-метод) «разбрасываются» треки «вторичных» частиц разного типа Т и энергии Ε количестве в  $N_{TE}$ . Треки рассматриваются параллельными оси Z. Типы, энергии и относительные количества вторичных частиц определяются сечениями образования этих частиц (из первичных и последующих каскадов) и их энергетическими спектрами. Все необходимые ланные для таких расчетов. естественно. должны быть заложены в моделирующую программу.

2. Задается размер «мишени»  $r_0$  (радиус ядра клетки), определяемый типом облучаемой ткани.

3. Выбирается прицельный параметр  $\varsigma$ , для которого далее будут производиться первоначальные вычисления. Этот прицельный параметр есть расстояние от оси трека до центра мишени.

4. В каждой точке *P* мишени вычисляется поглощенная доза  $d_{T,E}^{(\varsigma)}(P)$  от всех вторичных частиц с их выбранными фиксированными *T*, *E*- параметрами и выбранным прицельным параметром  $\varsigma$  в соответствии с областью перекрытия трека (его радиус  $r_{\text{max}}$  определяется энергией вторичной частицы по вышеприведенной формуле [5]) и мишени, а также радиального распределения дозы, которое нормируется на величину  $LET_{T,E}$  (берется из таблиц [10,11]) для этой вторичной частицы в веществе мишени.

5. По найденной дозе  $d_{T,E}^{(\zeta)}(P)$  для всех выбранных вторичных *T*, *E*частиц с выбранным же прицельным параметром  $\zeta$  интегрированием по объему мишени определяется суммарный биологический эффект таких частиц:

$$\mathbf{v}_{T,E}^{(\varsigma)} = -\frac{1}{V_{nucleus}} \int_{V_{nucleus}} \ln \left[ S_X(d_{T,E}^{(\varsigma)}(P)) \right] dV \,.$$

При этом используется кривая  $S_X(D)$  вероятности выживаемости ядер клеток биологической системы в зависимости от дозы, поглощенной при прохождении рентгеновского облучения. Это ключевое место LEM-подхода: биологическое повреждение ядер клеток в малом объеме определяется только дозой, поглощенной в этом объеме, независимо от того, пучок каких частиц приводит к этой поглощенной энергии, так что можно использовать кривые выживаемости, измеренные (или полученные какимлибо другим способом) для фотонов.

6. Определяется «локальная» вероятность выживания мишени при воздействии на нее выбранных вторичных T,E-частиц, характеризуемых выбранным прицельным параметром G:

$$S_{T,E}^{(\varsigma)} = \exp(-v_{T,E}^{(\varsigma)}) .$$

7. Интегрированием найденного распределения величины  $S_{T,E}^{(\varsigma)}$  по всем возможным значениям прицельного параметра находится «полная» вероятность выживания мишени при воздействии на нее всех выбранных вторичных *T*,*E*-частиц:

$$S_{T,E} = \frac{1}{\zeta_{\max}^2 / 2} \cdot \int_0^{\zeta_{\max}} S_{T,E}^{(\varsigma)} \zeta d\zeta .$$

8. Определяется начальный наклон кривой выживаемости под действием выбранных вторичных *T*,*E*–частиц:

$$\alpha_I^{(T,E)} = 1 - S_{T,E} \,.$$

9. Для выбранных вторичных *Т*,*Е*-частиц: определяется их биологическая эффективность:

$$RBE_{T,E} = \frac{\alpha_I^{T,E}}{\alpha_X}.$$

Массивы значений  $RBE_{T,E}$  вместе с параметрами  $\alpha_X$ ,  $\beta_X$ ,  $D_{X\_cut}$  и  $r_0$  запоминаются в базовых таблицах для последующего их использования в TPS (Therapy Planning System).

Следующие шаги описывают определение величины наклона  $\alpha_I$ , характеризующего первичные частицы в целом; при этом предполагается, что треки вторичных частиц практически не перекрываются – это необходимо для выполнения условия малости полной поглощенной дозы.

10. Для выбранных вторичных *Т*, *Е*-частиц определяется выделенная ими поглощенная доза:

$$D_{T,E} = N_{T,E} \cdot LET_{T,E},$$

а вслед за этим и полная поглощенная доза:

$$D = \sum_T \int D_{T,E} \ dE \ .$$

11. Определяется НАЧАЛЬНЫЙ наклон кривой выживаемости под действием ПЕРВИЧНОЙ частицы («породившей» все вторичные *T,E*-частицы) суммированием по всем типам вторичных частиц и интегрированием по всем их энергиям:

$$\alpha_I = \frac{\sum \int \alpha_{T,E} \cdot D_{T,E} \, dE}{D} \equiv \alpha_z \,.$$

12. Алгоритм определения наклона кривой выживаемости для больших значений поглощенных доз (коэффициент β в «линейно-квадратичном» приближении для кривой выживаемости) в рассматриваемых источниках [2,6] прописан не вполне невразумительно. С одной стороны предполагается вычисление (по невнятно прописанной «технологии») величины

$$\ln S(D) = \frac{1}{V_{nucleus}} \int_{V_{nucleus}} \ln [S_X(d)] dV ,$$

где d — локальная поглощенная доза в данной точке мишени от всех вторичных частиц (всех типов и энергий).

Замечание 3: по смыслу это уже должна быть макроскопическая доза!

Далее строится график зависимости величины  $\frac{\ln S(D)}{D}$  от *D*, который в «линейно-квадратичном» приближении должен иметь вид прямой  $\alpha + \beta D$ , т.е. иметь наклон, численно равный  $\beta$ , и отсекать на оси ординат отрезок, численно равный  $\alpha$ .

С другой стороны, ссылаясь на подтвержденное экспериментальными данными моделирование, предлагается находить <u>НАЧАЛЬНОЕ</u>  $\beta_I$  с помощью такого простого соотношения (см. замечание 2):

$$\beta_I \approx \frac{S_{\max} - \alpha_I}{2D_{cut}}; \quad \beta_z \approx \frac{S_{\max} - \alpha_z}{2D_{cut}}$$

Массивы значений начальных значений наклонов кривых выживаемости – параметры α<sub>z</sub> и β<sub>z</sub> – также запоминаются в базовых таблицах для последующего их использования в TPS.

<u>Схема 1а.</u> Приближенный расчет. В этой схеме используется следующий расчетный и ранее экспериментально обнаруженный факт [12]: оказывается, что для очень малых значений поглощаемой дозы (именно это приближение принципиально используется для нахождения начального наклона кривой выживаемости) основную роль при определении величины  $d_{T,E}^{(\varsigma)}(P)$  играют частицы с практически нулевым значением прицельного параметра. Поэтому в упрощенной схеме все вторичные частицы характеризуются нулевыми значениями прицельных параметров, так что схема включает следующие шаги.

1. Для заданного сечения по Z МК-методом «разбрасываются» «вторичные» частиц разного типа T и энергии E в количестве  $N_{T,E}$ . Типы, энергии и относительные количества вторичных частиц определяются сечениями образования этих частиц и их энергетическими спектрами, которые должны быть заложены в моделирующую программу.

2. Задается размер «мишени»  $r_0$  (радиус ядра клетки), определяемый типом облучаемой ткани.

3. В каждой точке P мишени вычисляется поглощенная доза  $d_{T,E}(P)$  от всех вторичных частиц с их выбранными фиксированными T,E- параметрами в соответствии с областью перекрытия трека (он проходит через центр мишени; его радиус  $r_{\text{max}}$  определяется энергией вторичной частицы по вышеприведенной формуле [5]) мишени и радиальным распределением дозы, которое нормируется на величину  $LET_{T,E}$  (берется из таблиц [10,11]) для этой вторичной частицы в веществе мишени.

22

4. По найденной дозе  $d_{T,E}(P)$  для всех выбранных вторичных T,Eчастиц интегрированием по объему мишени определяется их суммарный биологический эффект:

$$v_{T,E} = -\frac{1}{V_{nucleus}} \int_{V_{nucleus}} \ln[S_X(d_{T,E}(P))] dV$$

При этом используется кривая  $S_X(D)$  вероятности выживаемости ядер клеток биологической системы в зависимости от дозы, поглощенной при прохождении рентгеновского облучения. Это ключевое место LEM-подхода: биологическое повреждение ядер клеток в малом объеме определяется только дозой, поглощенной в этом объеме, независимо от того, пучок каких частиц приводит к этой поглощенной энергии, так что можно использовать кривые выживаемости, измеренные (или полученные какимлибо другим способом) для фотонов.

5. Определяется «локальная» вероятность выживания мишени при воздействии на нее всех выбранных вторичных *Т*,*E*-частиц:

$$S_{T,E} = \exp(-\nu_{T,E}).$$

Пункты 6÷10 совпадают с пунктами 8÷12 схемы 1 соответственно.

Понятно, что нет необходимости при использовании схем 1 и 1а повторять эти вычисления каждый раз при составлении плана облучения. Они проделываются один раз для необходимого набора значений энергий первичных частиц и типов тканей, после чего составляются таблицы значений  $\alpha$  и  $\beta$  для этих энергий и типов тканей. Таблицы в дальнейшем используются как непосредственно, так и для интерполяции на необходимые значения энергии и тип тканей.

В схемах 1 и 1а очень важным является первый пункт, требующий знания сечений рождения вторичных частиц и их энергетических спектров и обеспечивающий тем самым правильное "рождение" вторичных частиц, включая и их количества. Обойти этот момент не удается и в следующей предложенной схеме [6].

<u>Схема 2</u>. Последовательно выполняются следующие вычисления [1,6] сначала для гамма-квантов, а затем для вторичных частиц, порождаемых первичным пучком.

#### Сначала «работаем» только с фотонами.

1. Зная размер мишени (ядра клетки) и параметры фотонного пучка (полное число частиц и энергию), методом МК моделируется прохождение треков частиц через объем мишени.

2. Для каждой точки P мишени с помощью зависимости  $D_X(r)$  подсчитывается вклад в поглощенную в этой точке дозу от всех треков и тем самым определяется распределение дозы  $D^{nucleus}(P)$ , поглощенной в мишени.

3. По этому распределению дозы с помощью зависимости S(D) определяется  $S_X(P) = S(D^{nucleus}(P))$  – распределение по объему клетки вероятности выживаемости мишени, облученной данным пучком фотонов.

4. Определяется среднее число летальных исходов  $\overline{N_X^{lethal}}(P)$  в соответствии с соотношением

$$\overline{N_X^{lethal}}(P) = -\ln S_X(P).$$

5. Наконец, используя значение  $\overline{N_X^{lethal}}(P)$ , находится плотность числа летальных исходов  $v_X$ :

$$v_X(P) = \overline{N_X^{lethal}(P)} / V_{nucleus}$$
,

где V<sub>nucleus</sub> – объем ядра клетки.

#### Переходим к ионам.

6. В точности повторяем пункт 1 для фотонов - по размеру мишени (ядра клетки) и параметрам ионного пучка (атомный номер и заряд частиц, их энергия и поток) методом МК моделируется "рождение" вторичных частиц разного типа T и энергии E в количестве N<sub>T E</sub>, т.е. моделируются треки вторичных частиц. Типы, энергии и относительные количества этих частиц определяются сечениями образования этих частиц И ИХ которые энергетическими спектрами, должны быть заложены в моделирующую программу.

7. Для каждого точки P мишени с помощью зависимости  $D_I(r)$  подсчитывается вклад в поглощенную в этой точке дозу от всех треков и тем самым определяется распределение дозы  $D^{nucleus}(P)$ , поглощенной в клетке.

Замечание 4: В соответствии с обсуждением схем 1 и 1а можно, повидимому, ограничиться лишь треками, проходящими через центр мишени. Но, вообще-то это выглядит странно! 8. Ключевой момент LEM: поскольку биологическое повреждение ядер клеток в малом объеме определяется только поглощенной в этом объеме дозой независимо от того, пучок каких частиц приводит к этим энергетическим потерям, то плотности числа летальных исходов в случаях фотонов и ионов одинаковы:

$$\mathsf{v}_I(D^{nucleus}(P)) = \mathsf{v}_X(D^{nucleus}(P)) \to \mathsf{v}_I(P) = \mathsf{v}_X(P).$$

 Так что можно определить среднее число летальных исходов для рассматриваемого ионного пучка:

$$\overline{N_{I}^{lethal}}(D_{I}^{nucleus}) = \oint_{V_{nucleus}} \mathfrak{v}_{I}(P) dV = \oint_{V_{nucleus}} \mathfrak{v}_{X}(P) dV = \frac{1}{V_{nucleus}} \cdot \oint_{V_{nucleus}} \overline{N_{I}^{lethal}}(P) dV$$
$$= -\frac{1}{V_{nucleus}} \cdot \oint_{V_{nucleus}} \ln S_{X}(P) dV,$$

где  $D_I^{nucleus} = \int_{V_{nucleus}} D^{nucleus}(P) dV$  (или  $D = \sum_T \int D_{T,E} dE$  и при этом

 $D_{T,E} = N_{T,E} \cdot LET_{T,E}$ ) – полная доза, поглощенная в клетке при данной реализации набора вторичных частиц по типам *T*, энергии *E* и количеству  $N_{T,E}$ .

10. По значению  $\overline{N_{I}^{lethal}}(D_{I}^{nucleus})$  определяется вероятность выживаемости клеток, облученных данным пучком ионов, т.е. строится зависимость

$$S_I(D_I^{nucleus}) = e^{-\overline{N_I^{lethal}}(D_I^{nucleus})}.$$

11. Значение RBE определяется стандартным образом по кривым  $S_I(D^{nucleus})$  и  $S_X(D^{nucleus})$  как отношение фотонной и ионной доз, приводящих к одинаковому биологическому эффекту  $S_X(D_X^{nucleus}) = S_I(D_I^{nucleus}) \equiv S$ :

$$RBE(S) = D_X^{nucleus} \Big|_S / D_I^{nucleus} \Big|_S.$$

В этой схеме не вполне прозрачным является последний шаг, поскольку предыдущие шаги дают значения  $D_I^{nucleus}$ ,  $\overline{N_I^{lethal}}(D_I^{nucleus})$ ,  $S_I(D_I^{nucleus})$ , используемые для определения *RBE*, только для одной реализации набора вторичных частиц, т.е. определяется не вся кривая  $S_I(D^{nucleus})$ , а только одна ее одна точка. Более определенной является комбинирование схем 1,2 в следующую.

<u>Схема 3.</u> Первые 9 шагов схемы 1, будучи выполнены однократно, позволяют, как указывалось ранее, записать массивы значений  $RBE_{T,E}$  вместе с параметрами  $\alpha_X$ ,  $\beta_X$ ,  $D_{X\_cut}$ ,  $s_{x\_max}$  и  $r_0$  в специальных таблицах. Далее для каждого выбранного сечения по Z исполняются следующие шаги.

1. По параметрам первичного ионного пучка (атомный номер и заряд частиц, их энергия и поток) методом МК моделируется "рождение" вторичных частиц разного типа T и энергии E в количестве  $N_{T,E}$ , т.е. моделируются треки вторичных частиц. Типы, энергии и относительные количества этих частиц определяются сечениями образования этих частиц и их энергетическими спектрами, которые должны быть заложены в моделирующую программу (шаг 6 в схеме 2).

2. По этим данным и значению площади ядра клеток подсчитывается среднее число вторичных частиц  $\overline{N_{hit}}$ , пролетающих через ядро, т.е. число испытанных им «летальных ударов».

3. Поскольку реальное число ударов  $N_{hit}$ , испытываемых ядром, является случайным числом, распределенным по Пуассону с параметром  $\overline{N_{hit}}$ , то это реальное значение находится с помощью соответствующего пуассоновского датчика.

Следующие два шага повторяются  $N_{sample}$  раз.

4. МК-методом (аналогично шагу 1) моделируются  $n_i = N_{hit}^{(i)}$   $(i = 1...N_{sample})$  «пар» значений  $T_k$ ,  $E_k$   $(k = 1...n_i)$  для вторичных частиц.

5. Табличные параметры  $RBE_{T,E}$ ,  $\alpha_X$ ,  $\beta_X$ ,  $D_{X\_cut} \equiv D_{cut}$ ,  $s_{X\_max} \equiv s_{max}$  и таблицы [10,11] энергетических потерь  $dE_{T,E} / dx$  разных ионов в средах используются для определения «однократных» значений количества летальных столкновений  $N_{lethal}^{(i)}$  и величины поглощенной дозы  $D_{abs}^{(i)}$  в следующем итерационном процессе  $(i = 1...N_{sample})$ :

$$N_{lethal,0} = D_{abs,0} = 0$$

$$\alpha_{I}(T_{k}, E_{k}) = \alpha_{X} \cdot RBE_{T_{k}, E_{k}}$$

$$s_{k} = \begin{cases} \alpha_{I}(T_{k}, E_{k}) + (s_{\max} - \alpha_{I}(T_{k}, E_{k})) \frac{D_{abs,k-1}}{D_{cut}} & D_{abs,k-1} < D_{cut} \\ s_{\max} & D_{abs,k-1} \ge D_{cut} \end{cases}$$

$$k = 1 \quad k = 1 \quad$$

$$N_{lethal,k} = N_{lethal,k-1} + s_k \frac{dE_{T_k,E_k}}{dx} \cdot C$$
$$D_{abs,k} = D_{abs,k-1} + \frac{dE_{T_k,E_k}}{dx} \cdot C$$

Константа *C* позволяет пересчитать вклад каждой вторичной частицы в поглощенную дозу. После окончания описанного итерационного цикла «однократные» (для каждой выборки!) значения числа летальных столкновений  $N_{lethal}^{(i)}$  и поглощенной дозы  $D_{abs}^{(i)}$  определяются очевидным образом при каждом выполнении шагов 4,5:

$$N_{lethal}^{(i)} = N_{lethal,n_i}, \qquad D_{abs}^{(i)} = D_{abs,n_i}.$$

По смыслу итерационный процесс означает суммирование по всем типам вторичных частиц и интегрирование (суммирование) по их энергетическим потерям.

6. Вычисляются средние значения числа летальных столкновений, поглощенной дозы и функции выживаемости *S*:

$$\overline{D_{abs}} = \frac{1}{N_{sample}} \sum_{i=1}^{N_{sample}} D_{abs}^{(i)},$$
$$\overline{S} = \frac{1}{N_{sample}} \sum_{i=1}^{N_{sample}} e^{-N_{lethal}^{(i)}},$$
$$\overline{N_{lethal}} = -\ln \overline{S}.$$

7. Согласно LEM-подходу <u>биологическое повреждение ядер клеток в</u> <u>малом объеме определяется только поглощенной в этом объеме дозой</u> <u>независимо от того, пучок каких частиц приводит к этим</u> <u>энергетическим потерям</u>. Следовательно, найденное число летальных столкновений  $\overline{N}_{lethal}$  может быть использовано для определения среднего значения физической дозы  $\overline{D}_{bial}$  (т.е. дозы, поглощенной от фотонного пучка!), которая приведет к такому же числу летальных столкновений. Для этого нужно решить уравнение

$$-\ln \overline{S} = \alpha_X \overline{D_{biol}} + \beta_X \overline{D_{biol}}^2.$$

При этом, естественно, предполагается, что  $\overline{D_{biol}} < D_{X\_cut}$ , поскольку такая зависимость степени выживаемости от поглощенной дозы имеет место при ее (дозы) малых значениях. Понятно, что смысл имеет только положительный корень используемого квадратного уравнения и он должен быть больше значения  $\overline{D_{abs}}$  в силу того, что для ионного пучка биологическая эффективность всегда >1. Таким образом, используя *LEM*-параметры  $S_{X\_max}$ ,

$$D_{X\_cut} \text{ и вводя} -\ln S_{cut} = \alpha_X D_{X\_cut} + \beta_X D_{X\_cut}^2, \text{ имеем:}$$

$$\overline{D_{biol}} = \begin{cases} \sqrt{\frac{-\ln \overline{S}}{\beta_X} + \left(\frac{\alpha_X}{2\beta_X}\right)^2} - \frac{\alpha_X}{2\beta_X} & -\ln S \le -\ln S_{cut} \\ \frac{-\ln \overline{S} + \ln S_{cut}}{s_{X\_max}} + D_{X\_cut} & -\ln S > -\ln S_{cut} \end{cases}.$$

8. Последний шаг состоит в вычислении искомого значения биологической эффективности первичного ионного пучка в выбранном сечении по Z:

$$RBE = \overline{D_{biol}} / \overline{D_{abs}}.$$



Естественно, что от числа  $N_{sample}$  повторения шагов 4,5 существенно зависит время расчета и выгодно это число уменьшать, насколько это возможно. Рисунок 9.6 слева [6] показывает, что вполне удовлетворительный

результат достигается уже при  $N_{sample} \ge 100$ ; при  $N_{sample} \ge 1000$  расчет характеризуется точностью порядка нескольких процентов.

Оказывается, что можно существенно ускорить время расчета *RBE*, если использовать

«Приближение низких доз» [13]. Оно в качестве исходных данных использует рассчитанные ранее и записанные в базу данных *TPS* начальные значения коэффициентов наклона кривых выживаемости  $\alpha_z$  и  $\beta_z$  и опирается на «линейно-квадратичное» представление зависимости этих кривых от макроскопического значения дозы *D*, поглощенной в ядрах клеток:

$$-\ln S(D) = \begin{cases} \alpha_D D + \beta_D D^2 & D < D_{cut} \\ \alpha_D D_{cut} + \beta_D D_{cut}^2 + s_{max} (D - D_{cut}) & D \ge D_{cut} \end{cases}$$

Рассматриваемый подход позволяет определить искомые значения коэффициентов наклона  $\alpha_D$ , и  $\beta_D$  и, тем самым, величину *RBE*. Обоснование этого подхода состоит в следующем. Из вида зависимости  $-\ln S(D)$  следует, что

$$\alpha_D = \lim_{D \to 0} \frac{-\ln S(D)}{D}.$$

При малых значениях дозы D, т.е. при малом потоке вторичных частиц, налетающих на мишень (ядро клетки), вероятность  $\eta$  попадания частицы в мишень тоже мала. Эта вероятность, как известно, распределена по Пуассону:

$$\eta_k = \overline{N}^k e^{-\overline{N}} / k!$$

где  $\eta_k$  – вероятность k-попаданий при среднем значении числа попаданий  $\overline{N}$ . Последняя величина определяется потоком падающих частиц  $\Phi_0$  (т.е. их числом на единицу площади) и площадью мишени  $A_0 = \pi r_0^2$ :

$$N = A_0 \cdot \Phi_0$$

Вероятность однократного попадания какой-либо частицы в мишень равна, таким образом,  $\eta_1 = \overline{N}e^{-\overline{N}}$ . Найдем поток  $\Phi_0$ , при котором заданное значение  $\eta_1$  может быть достигнуто, т.е. решим уравнение  $\eta_1 = \overline{N}e^{-\overline{N}}$  относительно  $\overline{N}$ . Для этого представим это уравнение в виде  $e^{\overline{N}} = \overline{N} / \eta_1$  и будем решать его графически. На рисунке 9.7 показано пересечение экспоненциальной кривой  $e^{\overline{N}}$  с прямыми  $y = \overline{N} / \eta_1$  при разных значениях



параметра  $\eta_1$ . Нетрудно получить, что предельной прямой  $y = \overline{N} / \eta_1$  (проходящей через начало координат) является та, которая касается экспоненциальной кривой. Ей соответствует значение  $\eta_1 = e^{-1} \approx 0.368$ .

Рис. 9.7.

Нижеследующие графики (Рис. 9.8) в соответствующем масштабе показывают, что при меньших значениях  $\eta_1$  решение обычно близко к значению  $\overline{N} \approx \eta_1$ .



Рис. 9.8.

Поэтому если искать решение рассматриваемого уравнения в виде  $\overline{N} = \eta_1(1+\delta)$ , то в линейном по  $\delta$  приближении нетрудно найти, что  $\delta \approx \frac{e^{\eta_1} - 1}{1 - \eta_1 e^{\eta_1}}$ . Данные, приведенные в таблице, подтверждают, что с вполне достаточной точностью можно полагать, что искомое решение при малых значениях  $\eta_1$  имеет вид  $\overline{N} = \eta_1$ , так что теперь нетрудно выразить поток частиц  $\Phi_0$ , при котором достигается желательная вероятность однократного попадания вторичной частицы в мишень площадью  $A_0$ :  $\Phi_0 \approx \eta_1 / A_0$ .

| $\eta_{_1}$                            | 0.01    | 0.05    | 0.10    | 0.20    |
|----------------------------------------|---------|---------|---------|---------|
| δ                                      | 0.01015 | 0.05411 | 0.11824 | 0.29297 |
| $\overline{N} = \eta_1(1+\delta)$      | 0.01010 | 0.05271 | 0.11182 | 0.25859 |
| $(\overline{N} - \eta_1)/\overline{N}$ | 1.00%   | 5.13%   | 10.6%   | 48.7%   |

Замечание 5: В цитируемой статье [13] приведено следующее выражение для вероятности однократного попадания какой-либо частицы в мишень:  $\eta_1 = 1 - e^{-\overline{N}} = 1 - e^{-A_0 \Phi_0}$  (??!), так что для потока  $\Phi_0$  получается такое соотношение:  $\Phi_0 = \frac{-\ln(1-\eta_1)}{A_0}$ , переходящее, тем не менее, в  $\Phi_0 \approx \eta_1 / A_0$  при малых значениях  $\eta_1$ . Таким образом, ошибочное выражение  $\eta_1(\overline{N})$  в последствии не сказывается.

Пусть  $S_1$  – выживаемость мишени после однократного попадания в нее вторичной частицы, т. е.  $S_1$  – вероятность выжить после однократного попадания. Тогда  $1-S_1$  – это вероятность летального исхода после однократного попадания, которое само по себе имеет вероятность  $\eta_1$ , так что полная вероятность  $\eta_{lethal}$  такого сценария событий равна  $\eta_{lethal} = \eta_1 \cdot (1-S_1)$ . Следовательно, выживаемость в таком сценарии равна  $S = 1 - \eta_{lethal} = 1 - \eta_1 (1-S_1)$ . В полученном соотношении выживаемость выражена не через поглощенную дозу D, а через вероятность  $\eta_1$ . Свяжем эти величины друг с другом. Как известно, с потоком  $\Phi_0$  частиц (тип T, энергия E; линейная передача энергии  $LET_{T,E}$ ) ассоциируется поглощенная доза D:

$$D[Gy] = C \cdot \Phi_0[\frac{particles}{mm^2}] \cdot LET[\frac{MeV}{g \cdot cm^{-2}}] \quad \rightarrow \quad D_{\eta_1} = C \cdot \frac{\eta_1}{A_0} \cdot LET,$$

где константа  $C = 1.602189 \cdot 10^{-8}$  «обеспечивает» согласование единиц измерения величин, входящих в вышеприведенное выражение.

Таким образом, теперь может быть найден «линейный» наклон  $\alpha_{\scriptscriptstyle D}$ :

$$\alpha_{D} = \lim_{D \to 0} \frac{-\ln S(D)}{D} = \lim_{\eta_{1} \to 0} \frac{-\ln (1 - \eta_{1}(1 - S_{1}))}{C \cdot \eta_{1} \cdot LET / A_{0}} = \frac{0}{0} = (npasuno \ \mathcal{I}onumans) = \lim_{\eta_{1} \to 0} \frac{(-\ln (1 - \eta_{1}(1 - S_{1})))'_{\eta_{1}}}{(C \cdot \eta_{1} \cdot LET / A_{0})'_{\eta_{1}}} = \frac{(1 - S_{1})}{C \cdot LET / A_{0}} = \frac{A_{0} \cdot (1 - S_{1})}{C \cdot LET}.$$

Но выживаемость мишени после однократного попадания в нее вторичной частицы  $S_1$  выражается через «начальный» наклон  $\alpha_z$  и дозу  $D_1$ , соответствующую «единичному» (т.е. состоящего из одной частицы на все сечение мишени  $A_0$ ) потоку, для которого  $1 = A_0 \Phi_0$ . При таком потоке вкладом «квадратичного» слагаемого в выживаемость можно безусловно пренебречь, так что

$$S_1 = e^{-\alpha_z D_1}$$
, где  $D_1 = C \cdot \Phi_0 \cdot LET_0 = C \cdot LET / A_0$ 

Таким образом, получаем, что искомое соотношение между «линейным» наклоном  $\alpha_D$  и «начальным» наклоном  $\alpha_z$  равно

$$\alpha_{D} = \frac{A_{0}(1 - e^{-\alpha_{z}D_{1}})}{C \cdot LET} = \frac{1 - e^{-\alpha_{z}D_{1}}}{D_{1}} = \frac{A_{0}(1 - e^{-\alpha_{z} \cdot C \cdot LET/A_{0}})}{C \cdot LET}$$

Для определения «квадратичного» наклона  $\beta_D$  вводится масштабный фактор

$$f = \frac{\alpha_D}{\alpha_z} = \frac{1 - e^{-\alpha_z D_1}}{\alpha_z D_1} = \frac{A_0 (1 - e^{-\alpha_z \cdot C \cdot LET / A_0})}{\alpha_z \cdot C \cdot LET},$$

который следующим образом связывает значения  $\beta_D$  и  $\beta_z$ :

$$\boldsymbol{\beta}_{D} = f^{2} \cdot \boldsymbol{\beta}_{z}.$$

Справедливость этого соотношения неочевидна, и оно нуждается в подтверждении, опирающемся на расчетах, выполненных в классическом подходе.

<u>Замечание 6</u>: В статье [13] приводятся некие рассуждения и данные (экспериментальные), подтверждающие это соотношение, но они остаются не вполне понятными.

Естественно, что все вышеприведенное рассмотрение применимо к каждому типу *T* вторичных частиц с энергией *E*. Следовательно, необходимо корректным образом «складывать» полученный результат для разных частиц и энергий. Методика такого сложения такова [14-16]:

$$\overline{\alpha} = \frac{\sum_{T,E} w_{T,E} \frac{dE_{T,E}}{dx} \alpha_{T,E}}{\sum_{T,E} w_{T,E} \frac{dE_{T,E}}{dx}}; \qquad \sqrt{\overline{\beta}} = \frac{\sum_{T,E} w_{T,E} \frac{dE_{T,E}}{dx} \sqrt{\beta_{T,E}}}{\sum_{T,E} w_{T,E} \frac{dE_{T,E}}{dx}},$$

где  $w_{T,E}$  – относительный «вес» частиц типа *T*, характеризуемых энергетическими потерями  $dE_{T,E} / dx$ , а  $\alpha_{T,E}$  и  $\beta_{T,E}$  – найденные для этого типа частиц и их энергии наклоны  $\alpha_D$  и  $\beta_D$  соответственно.

В соответствии с физической моделью пучка [17] в базе данных *TPS* записаны распределения каждой из вторичных частиц по их количеству и энергии для выбранной первичной частицы заданной энергии в определенных сечениях  $z_k$  по глубине проникновения пучка. Разобьем всю мишень на элементы объема (воксели) с центрами в точках  $(x_i, y_j, z_k)$ . Пусть в каждый такой элемент попадает первичная частица с энергией  $E_{prim}^{(i,j,k)}$ . Для этого вокселя весовой множитель  $w_{T,E} = w_{T,E}^{(i,j,k)}$  может быть найден линейной интерполяцией табличных данных:

$$w_{T,E} = w_{T,E}^{(i,j,k)} = \frac{dN_{T,E}^{(E_{prim},z_k)}}{dE} \Delta E_{T,E}^{(E_{prim}^{(i,j,k)},z_k)} \cdot N_{spot}^{(E_{prim}^{(i,j,k)})}(x_i, y_j, z_k) \cdot \xi_{i,j,k} = = \Delta N_{T,E}^{(E_{prim}^{(i,j,k)},z_k)} \cdot N_{spot}^{(E_{prim}^{(i,j,k)})}(x_i, y_j, z_k) \cdot \xi_{i,j,k}.$$

Здесь  $dN_{T,E}^{(E_{prim}^{(i,j,k)},z_k)}/dE$  – нормализованный энергетический спектр вторичных частиц типа T с энергией E в сечении  $z_k$ , рожденных первичной частицей с энергией  $E_{prim}^{(i,j,k)}$ , и  $\Delta E_{T,E}^{(E_{prim}^{(i,j,k)},z_k)}$  – ширина спектрального бина (шаг по энергии вторичной частицы), так что  $\Delta N_{T,E}^{(E_{prim}^{(i,j,k)},z_k)} = dN_{T,E}^{(E_{prim}^{(i,j,k)},z_k)}/dE \cdot \Delta E_{T,E}^{(E_{prim}^{(i,j,k)},z_k)}$ 

– число вторичных частиц типа *T* с энергией *E*;  $N_{spot}^{(E_{prim}^{(f)})}(x_i, y_j, z_k)$  – число первичных частиц в рассматриваемом вокселе и  $\xi_{i,j,k}$  – относительные расстояния от центра вокселя до узлов сетки, на которых затабулированы используемые величины.

<u>Замечание 7</u>: Более правильным выражением для весового множителя  $W_{T,E}$  при билинейной интерполяции табличных данных является следующее:

$$w_{T,E} = w_{T,E}^{(i,j,k)} = \Delta N_{T,E}^{(E_{prim}^{(i,j,k)}, z_k)} \cdot \sum_{n=1}^{8} N_n^{(i,j,k)} \cdot \xi_n^{(i,j,k)},$$

где  $\xi_n^{(i,j,k)}$  – относительные расстояния от центра  $(x_i, y_j)$  рассматриваемого вокселя до указанных на рисунке 9.9 8-ми узлов сетки, наиболее



прилежащих к этому вокселю (узлы заданы в системах координат  $(x_{table}, y_{table})$  в сечениях  $Z_s$  и  $Z_{s+1}$ соответственно; используемые данпротабулированы ные В узлах именно этих систем координат), а  $N_n^{(i,j,k)} = N_{spot}^{(E_{prim}^{(i,j,k)})}(x_i, y_j, z_k)$  – значения числа первичных частиц в этих узлах соответственно. Относительные «расстояния»  $\xi_n^{(i,j,k)}$  вычисляются по следующим соотношениям  $\Delta x = x_{q+1} - x_q , \qquad \Delta y = y_{p+1} - y_p ,$  $\Delta z = z_{s+1} - z_s$  – шаги сетки по каждому из направлений соответственно):

$$\begin{split} t &= \frac{x_q - x_i}{\Delta x} \equiv \tilde{x}_q - \tilde{x}_i, \ u = \frac{y_p - y_j}{\Delta y} \equiv \tilde{y}_p - \tilde{y}_j, \ v = \frac{z_s - z_k}{\Delta z} \equiv \tilde{z}_s - \tilde{z}_k; \\ \xi_1^{(i,j,k)} &= tuv, \qquad & \xi_5^{(i,j,k)} = tu(1 - v), \\ \xi_2^{(i,j,k)} &= (1 - t)uv, \qquad & \xi_6^{(i,j,k)} = (1 - t)u(1 - v), \\ \xi_3^{(i,j,k)} &= t(u - 1)v, \qquad & \xi_7^{(i,j,k)} = t(u - 1)(1 - v), \\ \xi_4^{(i,j,k)} &= (1 - t)(1 - u)v, \qquad & \xi_8^{(i,j,k)} = (1 - t)(1 - u)(1 - v). \end{split}$$

Таким образом, выражения для  $\overline{\alpha}$  и  $\overline{\beta}$  могут быть переписаны в следующем виде:

$$\overline{L} = \sum_{i,j,k} \sum_{T,E} \frac{dE_{T,E}}{dx} \cdot \Delta N_{T,E}^{(E_{prim}^{(i,j,k)}, z_k)} \cdot N_{spot}^{(E_{prim}^{(i,j,k)})}(x_i, y_j, z_k) \cdot \xi_{i,j,k},$$

$$\overline{\alpha} = \overline{L}^{-1} \cdot \sum_{i,j,k} \sum_{T,E} \frac{dE_{T,E}}{dx} \cdot \alpha_{T,E} \cdot \Delta N_{T,E}^{(E_{prim}^{(i,j,k)}, z_k)} \cdot N_{spot}^{(E_{prim}^{(i,j,k)})}(x_i, y_j, z_k) \cdot \xi_{i,j,k},$$

$$\sqrt{\overline{\beta}} = \overline{L}^{-1} \cdot \sum_{i,j,k} \sum_{T,E} \frac{dE_{T,E}}{dx} \cdot \sqrt{\beta_{T,E}} \cdot \Delta N_{T,E}^{(E_{prim}^{(i,j,k)}, z_k)} \cdot N_{spot}^{(E_{prim}^{(i,j,k)})}(x_i, y_j, z_k) \cdot \xi_{i,j,k},$$

В этих выражениях можно сначала выполнить суммирование по типам вторичных частиц и их энергиям, вычислив тем самым величины

$$\begin{split} L_{i,j,k}(E_{prim}^{(i,j,k)}, z_k) &= \sum_{T,E} \frac{dE_{T,E}}{dx} \cdot \Delta N_{T,E}^{(E_{prim}^{(i,j,k)}, z_k)} \equiv L_{i,j,k}, \\ \alpha_{i,j,k}(E_{prim}^{(i,j,k)}, z_k) &= \sum_{T,E} \frac{dE_{T,E}}{dx} \cdot \alpha_{T,E} \cdot \Delta N_{T,E}^{(E_{prim}^{(i,j,k)}, z_k)} \equiv \alpha_{i,j,k}, \\ \sqrt{\beta_{i,j,k}(E_{prim}^{(i,j,k)}, z_k)} &= \sum_{T,E} \frac{dE_{T,E}}{dx} \cdot \sqrt{\beta_{T,E}} \cdot \Delta N_{T,E}^{(E_{prim}^{(i,j,k)}, z_k)} \equiv \sqrt{\beta_{i,j,k}} \end{split}$$

и тогда выражения для  $\alpha$  и  $\overline{\beta}$  принимают окончательный вид

$$\begin{split} \overline{L} &= \sum_{i,j,k} N_{spot}^{(E_{prim}^{(i,j,k)})}(x_{i}, y_{j}, z_{k}) \cdot L_{i,j,k} \cdot \xi_{i,j,k} = \sum_{i,j} N_{spot}^{(E_{prim}^{(i,j,k)})}(x_{i}, y_{j}, z_{k}) \cdot \sum_{k} L_{i,j,k} \cdot \xi_{i,j,k}, \\ \overline{\alpha} &= \frac{\sum_{i,j,k} N_{spot}^{(E_{prim}^{(i,j,k)})}(x_{i}, y_{j}, z_{k}) \cdot \alpha_{i,j,k} \cdot \xi_{i,j,k}}{\overline{L}} = \frac{\sum_{i,j} N_{spot}^{(E_{prim}^{(i,j,k)})}(x_{i}, y_{j}, z_{k}) \cdot \sum_{k} \alpha_{i,j,k} \cdot \xi_{i,j,k}}{\overline{L}}, \\ \sqrt{\overline{\beta}} &= \frac{\sum_{i,j,k} N_{spot}^{(E_{prim}^{(i,j,k)})}(x_{i}, y_{j}, z_{k}) \cdot \sqrt{\overline{\beta}_{i,j,k}} \cdot \xi_{i,j,k}}{\overline{L}} = \frac{\sum_{i,j} N_{spot}^{(E_{prim}^{(i,j,k)})}(x_{i}, y_{j}, z_{k}) \cdot \sum_{k} \sqrt{\overline{\beta}_{i,j,k}} \cdot \xi_{i,j,k}}{\overline{L}}. \end{split}$$

Таким образом, величины  $L_{i,j,k}(E_{prim}^{(i,j,k)}, z_k)$ ,  $\alpha_{i,j,k}(E_{prim}^{(i,j,k)}, z_k)$  и  $\beta_{i,j,k}(E_{prim}^{(i,j,k)}, z_k)$  как функции энергии первичных частиц  $E_{prim}^{(i,j)}$ , попадающих в *i*, *j*-тый воксель на глубине их проникновения  $z_k$ , могут быть предвычислены и запомнены как исходные в базе данных *TPS* и

использоваться в дальнейшем для расчета коэффициентов наклона и величины *RBE*.

Достоинство подхода «приближения малых доз» состоит в следующем. При облучении ионами углерода нужно учитывать до 18 типов вторичных частиц, гистограммы энергетических спектров которых содержат от нескольких сотен до нескольких тысяч бинов. В рассмотренных ранее подходах нужно осуществлять интерполяцию по этому огромному массиву данных. В «приближении малых доз» эти вычисления заменяются на расчет kсечений (обычно 1-3) и интерполяцию в каждом из них по всем вокселям (суммирование по *i*, *j*; порядка нескольких тысяч), что существенно меньше, чем в традиционном подходе.

Наконец, биологическая  $D_{biol}$  и физическая  $D_{abs}$  поглощенные дозы, отношение которых определяет значение *RBE*, находятся в рассматриваемом приближении по следующим соотношениям:

$$RBE = \frac{D_{biol}}{D_{abs}}, \qquad D_{abs} = C\overline{L},$$
  
$$-\ln S = \begin{cases} \overline{\alpha}D_{abs} + \overline{\beta}D_{abs}^{2} & D_{abs} \leq D_{cut} \\ \overline{\alpha}D_{cut} + \overline{\beta}D_{cut}^{2} + s_{max}(D_{abs} - D_{cut}) & D_{abs} > D_{cut} \end{cases}$$
  
$$D_{biol} = \begin{cases} \sqrt{\frac{-\ln S}{\beta_{X}} + \left(\frac{\alpha_{X}}{2\beta_{X}}\right)^{2}} - \frac{\alpha_{X}}{2\beta_{X}} & -\ln S \leq -\ln S_{cut} \\ \frac{-\ln S + \ln S_{cut}}{s_{max}} + D_{cut} & -\ln S > -\ln S_{cut} \end{cases}$$

где  $D_{cut}$  и  $S_{max}$  – *LEM*-параметры, определяющие линейно-квадратичную зависимость кривой выживаемости, и  $-\ln S_{cut} = \overline{\alpha} D_{cut} + \overline{\beta} D_{cut}^2$ .

<u>Схема 4.</u> В ней используются таблицы [10,11] энергетических потерь ионов  $dE_{T,E} / dx$  (типа *T* с энергией *E* и линейных передач энергии  $LET_{T,E} \equiv \lambda_{T,E}$  в разных средах и реализуются следующие шаги.

1. В *TPS*-базе данных (TPS – DB) запоминаются параметры  $\alpha_X, \beta_X, s_{X_{max}}, D_{X_{cut}}$  зависимости выживаемости от поглощенной дозы при облучении мишени фотонным пучком.

 Выполнение схемы 1 обеспечивает возможность запоминания в TPS – DB следующих данных для каждой глубины Z<sub>k</sub> первичного пучка с энергией E<sub>prim</sub> (для каждого из типов биологических тканей):

36

- энергетические спектры  $dN_{T,E}^{(E_{prim})}/dE$  всех возможных вторичных частиц типа *T* с энергией *E*;
- начальные наклоны α<sub>z</sub>, β<sub>z</sub> кривых выживаемости под действием пучка первичных частиц выбранного типа (ионов углерода).

3. Для вторичных частиц типа T с энергией E находятся коэффициенты наклона  $\alpha_{T,E}$ ,  $\beta_{T,E}$  кривой выживаемости для «макроскопических» поглощенных доз, не превышающих уровень  $\cong 10$  *Gy*. Для вычисления используются следующие выражения:

$$\alpha_{T,E} = \frac{A_0(1 - e^{-\alpha_z \cdot C \cdot \lambda_{T,E} / A_0})}{C \cdot \lambda_{T,E}}, \quad f_{T,E} = \frac{\alpha_{T,E}}{\alpha_z}, \quad \beta_{T,E} = f_{T,E}^2 \cdot \beta_z,$$

где константа  $C = 1.602189 \cdot 10^{-8}$  «обеспечивает» согласование единиц измерения физических величин и  $A_0 = \pi r_0^2$  – поперечное сечение мишени (ядра клетки).

4. По спектрам вторичных частиц  $dN_{T,E}^{(E_{prim})}/dE$ , выбирая соответствующие значения шага  $\Delta E_{T,E}^{(E_{prim})}$  по энергии, рассчитывается  $\Delta N_{T,E}^{(E_{prim})}$  – число вторичных частиц типа *T* с энергией *E*:

$$\Delta N_{T,E}^{(E_{prim})} = \frac{dN_{T,E}^{(E_{prim})}}{dE} \Delta E_{T,E}^{(E_{prim})}.$$

5. Поскольку положение каждого вокселя мишени описывается тремя индексами (i, j, k), где i, j – позиция вокселя в сечении, расположенного в точке  $Z_k$  в направлении распространения первичного пучка, то величины, найденные на предыдущих шагах, и табличные данные по энергетическим потерям ионов  $dE_{T,E} / dx$  (типа T с энергией E) позволяют вычислить для каждого вокселя следующие его характеристики:

$$\begin{split} L_{i,j,k} &= \sum_{T,E} \frac{dE_{T,E}}{dx} \cdot \Delta N_{T,E}^{(E_{prim})}, \\ \alpha_{i,j,k} &= \sum_{T,E} \frac{dE_{T,E}}{dx} \cdot \alpha_{T,E} \cdot \Delta N_{T,E}^{(E_{prim})}, \\ \sqrt{\beta_{i,j,k}} &= \sum_{T,E} \frac{dE_{T,E}}{dx} \cdot \sqrt{\beta_{T,E}} \cdot \Delta N_{T,E}^{(E_{prim})} \end{split}$$

В правых частях приведенных соотношений индексы (i, j, k) «сидят» в множителе  $\Delta N_{T,E}^{(E_{prim})}$ , который зависит от того, в каком сечении  $Z_k$  он

рассчитывается и какова энергия  $E_{prim}$  первичной частицы, пришедшейся на *i*, *j*, *k*–тый воксель.

<u>Вычисленные таким образом массивы</u>  $L_{i,j,k}$ ,  $\alpha_{i,j,k}$  <u>и</u>  $\sqrt{\beta_{i,j,k}}$  запоминаются в TPS – DB.

Следующие шаги схемы уже относятся к решению поставленной задачи. Если она состоит в непосредственном определении для заданной мишени искомой биологической эффективности, то осуществляются такие шаги.

6. Вся мишень, расположенная в сечении  $z_k$ , «разбивается» но воксели, центры которых имеют координаты  $(x_i, y_j, z_k)$ . Пусть  $N_{spot}^{(E_{prim}^{(i,j,k)})}(x_i, y_j, z_k) -$ количество частиц первичного пучка, имеющих энергию  $E_{prim}^{(i,j,k)}$  и попадающих в этот воксель. Тогда коэффициенты наклона кривой выживаемости находятся по следующим соотношениям:

$$\overline{L} = \sum_{i,j,k} N_{spot}^{(E_{prim}^{(i,j,k)})}(x_i, y_j, z_k) \cdot L_{i,j,k} \cdot \xi_{i,j,k},$$
$$\overline{\alpha} = \overline{L}^{-1} \cdot \left( \sum_{i,j} N_{spot}^{(E_{prim}^{(i,j,k)})}(x_i, y_j, z_k) \cdot \alpha_{i,j,k} \cdot \xi_{i,j,k} \right),$$
$$\sqrt{\overline{\beta}} = \overline{L}^{-1} \cdot \left( \sum_{i,j} N_{spot}^{(E_{prim}^{(i,j,k)})}(x_i, y_j, z_k) \cdot \sqrt{\beta_{i,j,k}} \cdot \xi_{i,j,k} \right),$$

где  $\xi_{i,j,k}$  – относительные расстояния от центра вокселя до узлов сетки, для которых затабулированы используемые величины (см. замечание 7, в котором приведены выражения для этих расстояний).

7. Определяется поглощенная (физическая) доза  $D_{abs}$  и связанное с ней значение функции выживаемости S:

$$D_{abs} = C \cdot L,$$
  
- ln  $S = \begin{cases} \overline{\alpha} D_{abs} + \overline{\beta} D_{abs}^2 & D_{abs} \leq D_{X\_cut} \\ \overline{\alpha} D_{X\_cut} + \overline{\beta} D_{X\_cut}^2 + s_{X\_max} (D_{abs} - D_{X\_cut}) & D_{abs} > D_{X\_cut} \end{cases}$ 

где  $C = 1.602189 \cdot 10^{-8}$  — введенный выше коэффициент, согласующий размерности физических величин.

8. Определяется поглощенная биологическая доза  $D_{biol}$ :

$$-\ln S_{cut} = \overline{\alpha} D_{X_{cut}} + \overline{\beta} D_{X_{cut}}^{2};$$

$$D_{biol} = \begin{cases} \sqrt{\frac{-\ln S}{\beta_{X}} + \left(\frac{\alpha_{X}}{2\beta_{X}}\right)^{2}} - \frac{\alpha_{X}}{2\beta_{X}} & -\ln S \le -\ln S_{cut} \\ \frac{-\ln S + \ln S_{cut}}{s_{X_{max}}} + D_{X_{cut}} & -\ln S > -\ln S_{cut} \end{cases}$$

9. Последний шаг состоит в вычислении искомого значения биологической эффективности первичного ионного пучка в выбранном сечении *Z<sub>k</sub>*:

$$RBE = \frac{D_{biol}}{D_{abs}}$$

Важным достоинством схемы 4 является возможность ее использования для оптимизации плана радиационного лечения.

#### 10. Оптимизация плана радиационного лечения

Для оптимизации плана радиационного лечения воспользуемся минимизацией следующего функционала [7]<sup>1</sup>:

$$\chi^{2} = \sum_{i,j,k} w_{i,j,k} [D_{presc}^{(i,j,k)} - D_{biol}^{(i,j,k)}]^{2} = \sum_{i,j,k} w_{i,j,k} [D_{presc}^{(i,j,k)} - RBE \cdot D_{abs}^{(i,j,k)}]^{2},$$

где  $D_{presc}^{(i,j,k)}$  – желательное, т.е. предписанное планом лечения значение поглощенной дозы в вокселе с центром в точке  $(x_i, y_j, z_k)$ , а  $D_{biol}^{(i,j,k)}$  – значение <u>биологической</u> дозы, реально поглощенной в этом вокселе при искомом (в результате минимизации рассматриваемого функционала) распределении числа  $N_{spot}^{(E_{prim}^{(i,j,k)})}(x_i, y_j, z_k) \equiv N_{i,j,k}$  первичных частиц с энергией  $E_{prim}^{(i,j,k)}$ , попадающих в *i*, *j*, *k*-тый воксель. Наконец,  $D_{abs}^{(i,j,k)}$  – значение <u>поглощенной физической</u> дозы, приходящейся на *i*, *j*, *k* -воксель, и  $w_{i,j,k}$  – весовой фактор каждого слагаемого, входящего в минимизируемый функционал.

<sup>&</sup>lt;sup>1</sup> Далее приводится возможная «реконструкция» развитого в [17] алгоритма, поскольку собственно алгоритм не описан с нужной степенью подробности.

Для первичных частиц, у которых  $RBE \neq 1$ , минимизация функционала является нелинейной задачей, т.к. биологическая эффективность первичных частиц сама очень сильно зависит от искомого распределения потока первичных частиц  $N_{i,j,k}$ . Воспользуемся итерационным подходом, вычисляя значение  $RBE^{(n)}$ биологической эффективности на *n*-той итерации по значениям потоков  $N_{i,j,k}^{(n-1)}$ , найденных на предыдущей итерации. Таким образом, речь идет о минимизации последовательности таких функционалов (n = 1, 2, ...):

$$\chi_n^2 = \sum_{i,j,k} w_{i,j,k} [D_{presc}^{(i,j,k)} - RBE^{(n-1)} \cdot D_{abs}^{(i,j,k,n)}]^2,$$

при этом

$$RBE^{(0)} = 1,$$

$$D_{abs}^{(i,j,k,n)} = C \cdot L_{i,j,k} \cdot \xi_{i,j,k} \cdot N_{i,j,k}^{(n)}.$$

Из приведенных соотношений видно, для определения потоков  $N_{i,j,k}^{(1)}$  необходимо найти решение системы уравнений

$$0 = \frac{\partial \chi_1^2}{\partial N_{i,j,k}^{(1)}} = 2 \cdot \sum_{i,j,k} w_{i,j,k} [D_{presc}^{(i,j,k)} - C \cdot L_{i,j,k} \cdot \xi_{i,j,k} N_{i,j,k}^{(1)}] \cdot C \cdot L_{i,j,k} \cdot \xi_{i,j,k},$$

Откуда для всех *i*, *j*, *k* сразу получаем

$$N_{i,j,k}^{(1)} = \frac{D_{presc}^{(i,j,k)}}{C \cdot L_{i,j,k} \cdot \xi_{i,j,k}}.$$

Замечание 8: Если принять во внимание более правильную билинейную процедуру интерполирования данных (см. замечание 7), то найденное выражение для потоков  $N_{i,j,k}^{(1)}$  следует видоизменить следующим образом. Пусть в расчетах используется  $N_{slice}$  слайсов вдоль направления распространения пучков, т.е.  $k = 1, \ldots, N_{slice}$ . Тогда:

$$\begin{split} & N_{i,j,1}^{(1)} = \frac{D_{presc}^{(i,j,1)}}{C \cdot L_{i,j,1} \cdot \xi_{i,j,1}}, \\ & N_{i,j,k}^{(1)} = \frac{D_{presc}^{(i,j,k)} - C \cdot L_{i,j,k-1} \cdot \xi_{i,j,k-1} \cdot N_{i,j,k-1}^{(1)}}{C \cdot L_{i,j,k} \cdot \xi_{i,j,k}} \quad \text{для} \quad k = 2, \dots, N_{slice} \bigg\}. \end{split}$$

После того, как потоки  $N_{i,j,k}^{(1)}$  найдены, минимизация функционалов  $\chi_n^2$ (n = 2,3,...) осуществляется рекуррентным образом: сначала вычисляется значение  $RBE^{(n)}$  в соответствии с последовательностью выражений

$$\begin{split} D_{abs}^{(n)} &= C \sum_{i,j,k} \cdot L_{i,j,k} \cdot \xi_{i,j,k} \cdot N_{i,j,k}^{(n)}; \\ \overline{L}^{(n)} &= \sum_{i,j,k} L_{i,j,k} \cdot \xi_{i,j,k} \cdot N_{i,j,k}^{(n)}; \\ \overline{\alpha}^{(n)} &= \frac{1}{\overline{L}^{(n)}} \cdot \left( \sum_{i,j} \alpha_{i,j,k} \cdot \xi_{i,j,k} \cdot N_{i,j,k}^{(n)} \right), \quad \sqrt{\overline{\beta}^{(n)}} = \frac{1}{\overline{L}^{(n)}} \cdot \left( \sum_{i,j} \sqrt{\overline{\beta}_{i,j,k}} \cdot \xi_{i,j,k} \cdot N_{i,j,k}^{(n)} \right); \\ -\ln S^{(n)} &= \begin{cases} \left( \overline{\alpha}^{(n)} + \overline{\beta}^{(n)} D_{abs}^{(n)} \right) D_{abs}^{(n)} \text{ если } D_{abs}^{(n)} \leq D_{X_{-}cut} \text{ иначе} \\ \overline{\alpha}^{(n)} D_{X_{-}cut} + \overline{\beta}^{(n)} D_{X_{-}cut}^{2} + s_{X_{-}max} (D_{abs}^{(n)} - D_{X_{-}cut}); \\ -\ln S_{cut}^{(n)} = \overline{\alpha}^{(n)} D_{X_{-}cut} + \overline{\beta}^{(n)} D_{X_{-}cut}^{2}; \\ D_{biol}^{(n)} &= \begin{cases} \sqrt{\frac{-\ln S^{(n)}}{\beta_{X}} + \left(\frac{\alpha_{X_{-}}}{2\beta_{X}}\right)^{2}} - \frac{\alpha_{X_{-}}}{2\beta_{X}} & \text{при } -\ln S^{(n)} \leq -\ln S_{cut}^{(n)}, \\ \frac{-\ln S^{(n)} + \ln S_{cut}}{s_{X_{-}max}} + D_{X_{-}cut} & \text{при } -\ln S^{(n)} > -\ln S_{cut}^{(n)}; \end{cases} \\ RBE^{(n)} &= \frac{D_{biol}^{(n)}}{D_{abs}^{(n)}}, \end{split}$$

после чего потоки  $N_{i,j,k}^{(n)}$  находятся с помощью следующих соотношений:

$$N_{i,j,k}^{(n)} = \frac{D_{presc}^{(i,j,k)}}{RBE^{(n-1)} \cdot C \cdot L_{i,j,k} \cdot \xi_{i,j,k}}.$$

<u>Замечание 9</u>: Вновь, принимая во внимание более правильную билинейную процедуру интерполирования данных (см. замечание 8), найденное выражение для потоков  $N_{i,j,k}^{(n)}$  следует видоизменить следующим образом:

$$\begin{split} N_{i,j,k-1}^{(n)} &= \frac{D_{presc}^{(i,j,1)}}{RBE^{(n-1)} \cdot C \cdot L_{i,j,1} \cdot \xi_{i,j,1}}, \\ N_{i,j,k}^{(n)} &= \frac{D_{presc}^{(i,j,k)} - RBE^{(n-1)} \cdot C \cdot L_{i,j,k-1} \cdot \xi_{i,j,k-1} \cdot N_{i,j,k-1}^{(n)}}{RBE^{(n-1)} \cdot C \cdot L_{i,j,k} \cdot \xi_{i,j,k}} \quad \text{для} \quad k = 2, \dots, N_{slice} \end{split} \right\}. \end{split}$$

Входящие в вышеприведенные выражения массивы  $L_{i,j,k}$ ,  $\alpha_{i,j,k}$  и  $\sqrt{\beta_{i,j,k}}$ , как это описано в схеме 4, берутся из базы данных *TPS*, в которой они запомнены после предвычисления; как и ранее (схема 4),  $\xi_{i,j,k}$  – относительные расстояния от центра *i*, *j*, *k*-вокселя до узлов сетки, для которых предвычислены используемые массивы.

Естественно, что следует ожидать следующего поведения коэффициента биологической эффективности с ростом номера итерации: значение коэффициента должно «насыщаться» (как качественно показано на рис. 10.1),



так что величины искомых потоков  $N_{i,j,k}^{(n)}$  также будут выходить на постоянные значения.

Весовые множители  $w_{i,j,k}$  в выражении для минимизируемых функционалов выбираются так, чтобы уменьшить вклад исходных данных в точность определения искомых потоков. Практический опыт [17] показывает, что они могут быть выбраны в следующем виде:

Рис. 10.1.

$$w_{i,j,k} = \frac{1}{\left(f_w \cdot D_{prescr}^{(i,j,k)}\right)^2},$$

причем множитель  $f_w$  может варьироваться; его обычное значение порядка 2÷3% соответствует такой же точности определения поглощенной биологической дозы.

## 11. Программный пакет TRiP98

В программном комплексе TRiP98 [6-9,17] были последовательно реализованы различные (рассмотренные выше) схемы расчета и оптимизации плана лечения ионами углерода в центре радиационной терапии в GSI (Дармштадт, Германия), опирающиеся на LEM-модель. В настоящее время этот пакет включает версию расчета 4D распределения поглощенной мишенью дозы с учетом ее (мишени) движения [18,19]. Методика такого учета будет проанализирована в отдельном документе.

TRiP98 означает **TR**eatment planning for Particles – систему, созданную в 1998 году. Пакет включает большое число команд, реализующих весь спектр действий по созданию и оптимизации плана лечения, основанного на расчете распределений поглощенной физической  $D_{abs}$  и биологической  $D_{biol}$  доз. Оптимизация осуществляется «обратным планированием» для используемой при облучении магнитной сканирующей системы [20]. Каждая команда включает большое число опций и параметров, обеспечивающих надлежащее выполнение самой команды. В качестве примера перечислим несколько команд [21] пакета, а также приведем для одной из них список ее опций и параметров [22]:

<u>СТ</u> – управление входными/выходными СТ-данными, представляющими собой «стандартные» распределения в томографических изображениях, дозовые распределения и т.п.;

cubemerge – слияние однотипных данных из разных файлов в один;

**DDD** – работа с входными/выходными распределениями дозы по глубине проникновения пучка, включая соответствующую интерполяцию данных (если необходимо);

<u>dEdx</u> – работа с входными/выходными данными по линейным потерям энергии;

**<u>DVH</u>** – работа с входными/выходными гистограммами доза/объем;

<u>Optimize</u> – оптимизация числа частиц в пучке для получения требуемой дозы;

<u>**RBE**</u> – интерполяция входных/выходных таблиц с данными по биологической эффективности пучка;

<u>Rifi</u> – расчет входных/выходных передаточных функций сглаживающих фильтров;

**SIS** – подготовка таблиц управления пучком ускорителя SIS;

<u>Yield</u> – реализация модели пучка для расчета спектральных распределений пучков вторичных частиц, их распределений по глубине проникновения пучка и т.п. Синтаксис команды выглядит следующим образом:

| yield | beamenergy / | echannels(0)       | write  | delete     |
|-------|--------------|--------------------|--------|------------|
|       | projectile   | braggpos()         |        | export(gd) |
|       | target       | erelfwhm(0)        | path() | debug      |
|       | 0            | outbins(8,8,16,16) | • · ·  | Ū.         |

#### <u>Параметры</u>

beamenergy – энергия (МэВ/нуклон) первичного пучка (если указана), при которой осуществляется последующий расчет;

projectile – тип частиц первичного пучка (ионы углерода по умолчанию);

target() – тип материал мишени (вода по умолчанию).

## <u>Опции</u>

**echannels(echn)** – количество шагов в распределении по энергии. Если *echn*  $\leq 0$ , то количество шагов выбирается автоматически, так чтобы относительные энергетические потери не превышали значение  $2 \cdot 10^{-3}$  на каждом шаге. Если *echn* > 0, все шаги по энергии эквидистантны, а их количества должно хватить для правильного описания положения брэгговского пика. Поскольку последний зависит от энергии первичной частицы, то для нее используется число шагов, увеличенное в 8 раз, а энергия фрагментов (МэВ/нуклон) выбирается в 1.1 раза превышающей энергию первичной частицы;

braggpos(bpos) – ожидаемое положение пика Брэгга (г/см<sup>2</sup>). Это очень важный параметр, Т.К. «внутреннее» положение пика выбирается *bpos* > 0. Обычно относительно величины в вычислениях делается несколько (2÷3) итераций, пока устойчивое положение пика не будет достигнуто. Таким образом, предварительная оценка позиции пика должна быть как можно более точной для уменьшения времени вычислений. Если bpos = 0, то процесс вычислений регулируется набором дополнительных параметров;

erelfwhm(erelf) – предполагаемый разброс (в % от FWHM) энергии первичного пучка;

write – запись рассчитанных спектров и распределений по глубине проникновения пучка. Имена файлов конструируются по специальному соглашению;

**export(fmt)** – экспорт рассчитанных распределений в некоторые «несобственные» форматы, в частности fmt = "gd" формирует данные для графических приложений. Имена файлов конструируются по специальному соглашению;

**path(path)** – «путь» вывода записываемых данных, являющийся префиксом при создании имен файлов, конструируемых по специальным соглашениям. Может быть именем директории(й) или просто частью имени файла;

**outbins(oblist)** – список значений шагов по энергии для выводимых энергетических распределений. Используется при сжатии объема данных для уменьшения времени вычислений и используемой памяти;

**delete** – освобождение памяти, используемой для хранения дозовых распределений и спектров, найденных в предшествующих вычислениях; команда полезна при больших размеров массивов данных. «старые» данные теряются лишь при успешном завершении вычисления новых данных;

debug – флаг режима отладки, обеспечивающий вывод большого числа отладочных данных.

Таким образом, команды пакета TRiP98 обеспечивают эффективный процесс формирования плана лечения, позволяя записать этот процесс в виде понятной последовательности инструкций такого типа:

## yield 270 / braggpos(14.4) write path(/s/bio/kraemer/) outbins(8,16,32)

Расчет пучка энергии 270 МэВ/нуклон и ожидаемой позицией пика Брэгга при 14.4 см воды. Спектры и таблицы распределения доз должны быть записаны сразу после завершения вычислений в директории /s/bio/kraemer/. Спектры фрагментов должны быть сжаты с фактором 8 в первой трети энергетического диапазона, фактором 16 в следующей трети и фактором

! 32 в последней трети соответственно.

## dedx H2O /proj(10B) energy(270) dx(1)

! Для первичного пучка <sup>10</sup>В энергии 270 МэВ/нуклон рассчитать dE/dx в ! воде и потери энергии на длине пути 1 г/см<sup>2</sup>.

## ct xxxxxx /dim(8,4,2) steps(1,1,1) num(17)

! Создать СТ-данные в объеме 8х4х2 мм<sup>3</sup> с кубическим вокселем стороной ! 1 мм и постоянным значением 17 для числа Хаусфилда.

## dose xyz. / bio write field(1,3) voi(rand)

! Рассчитать и вывести распределения биологической дозы, RBE и ! выживаемости в файлы xyx.bio.dos, xyx.rbe.dos и xyx.svv.dos соответственно ! (записать также соответствующие HED файлы). Учесть вклад пучков только ! с направлений 1 и 3. Для уменьшения времени счета воксели должны ! рассматриваться только в области интереса (VOI).

dose z005. / window(\*,\*,\*,\*, 0, 10) calculate write

dose z015. / window(\*,\*,\*,\*,10, 20) calculate write

## cubemerge merge.dos / infile(z0\*.phys.dos)

! Рассчитать дозовые распределения раздельно в двух слайсах и затем ! объединить их в единый результат.

## dose phys.dos /read

## dose biol.dos /read bio

## dose export. /export(gd) window(128,128,128,128,\*,\*) bio

! Прочитать распределения поглощенной физической и биологической доз и ! затем экспортировать эти данные для одномерного распределения вдоль

! Z — оси в графическом формате.

#### Литература

- Mariani. Nucleus-Nucleus Interaction Modelling and Applications in Ion Therapy Treatment Planning. // PhD Thesis, – University of Pavia, Italy, 2007.
- [2] M. Kramer, W.K. Weyrather, M. Scholz. The Increased Biological Effectiveness of Heavy Charged Particles: From Radiobiology to Treatment Planning. // Technology in Cancer Research & Treatment, vl. 2 (2003) N5.
- [3] M. Scholz, A.M. Kellerer, W. Kraft-Weyrather, G. Kraft. Computation of cell survival in heavy ion beams for therapy. // Radiat. Environ. Biophys., 36 (1997) 59-66.
- [4] M. Scholz, G. Kraft. Track Structure and Calculation of Biological Effects of Heavy Charged Particles. // Preprint GSI-95-22 (1995).
- [5] J. Kiefer, H. Straaten. A model of ion track structure based on classical collision dynamics. // Phys. Med. Biol., 31 (1986) 1201-1209.
- [6] M. Kramer, M. Scholz. Treatment Planning for Heavy-Ion Radiotherapy: Calculation and Optimization of Biologically Effective Dose. // Phys. Med. Biol., 45 (2000) 3319-3330.
- [7] M. Kramer, O. Jakel, T. Haberer, G. Kraft, D. Schard, U. Weber. Treatment Planning for Heavy-Ion Radiotherapy: Physical Beam Model and Dose Optimization. // Phys. Med. Biol. 45 (2000) 3299-3318.
- [8] O. Jakel, M. Kramer, C.P. Karger, J. Debus. Treatment Planning for Heavy Ion Radiotherapy: Clinical Implementation and Application. // Phys. Med. Biol., 46/4 (2001) 1101.
- [9] M. Kramer. Treatment Planning for Heavy Ion Radiotherapy: Biological Optimization of Multiple Beam Ports. // J. Radiat. Res., 42 (2001) 39-46.
- [10] F. Hubert, R. Bimpot, H. Gauvin. Range and Stopping Power Tables for 2.5÷500 MeV/Nucleon Heavy Ions in Solids. // Atomic Data and Nuclear Data Tables, 46 (1990) 1-213.
- [11] W. Heinrich, B. Wiegel, G. Kraft.  $\beta$ ,  $Z_{eff}$ , dE / dx, Range and Restricted Energy Loss of Heavy Ions in the Region  $1 \le E \le 1000$  MeV/nucleon. // Preprint GSI 91-30 (1991).
- [12] J. Kiefer. The Physical Basis for the Biological Action of Heavy Ions. // New Journal of Physics, 10 (2008) 1-15.
- [13] M. Kramer, M. Scholz. Rapid Calculation of Biological Effects in Ion Radiotherapy. // Phys. Med. Biol., 51 (2006) 1959-1970.
- [14] T. Kanai, Y. Furusawa, K. Fukutsu, H. Itsukaichi, K. Eguchi-Kasai, H. Ohara. Irradiation of Mixed Beam and Design of Spread-Out Bragg Peak for Heavy-Ion Radiotherapy. // Radiat. Res., 147 (1997) 78–85.

- [15] M. Zaider, H.H. Rossi. The synergetic effects of different radiations. // Radiat. Res., 83 (1980) 732-9.
- [16] A.M. Kellerer, H.H. Rossi. A Generalized Formulation of Dual Radiation Action. // Radiat. Res., 75 (1978) 471–488.
- [17] http://bio.gsi.de/DOCS/TRiP98/CLASSIC/DOCS/trip98.html.
- [18] Q. Li, S. Groezinger, T. Haberer, E. Rietzel, G. Kraft. Online Compensation for Target Motion with Scanned Particle Beams: Simulation Environment. // Phys. Med. Biol., 49 (2004) 3029-3046.
- [19] C. Bert, E. Rietzel. 4D Treatment Planning for Scanned Ion Beams. // Radiation Oncology, 24 (2007) 2-24.
- [20] T. Haberer, W. Becher, D. Schardt, G. Kraft. Magnetic Scanning System for Heavy Ion Therapy. // NIM, 330A (1993) 296-305.
- [21] <u>http://bio.gsi.de/DOCS/TRiP98/CLASSIC/DOCS/trip98cmd.html</u>.
- [22] http://bio.gsi.de/DOCS/TRiP98/CLASSIC/DOCS/trip98cmdddd.html.

Ю.И. Эйдельман

Планирование радиационного лечения ионным пучком

Yu.I. Eidelman

Planning of the radiation treatment by the ion beam

ИЯФ 2009-15

Ответственный за выпуск А.В. Васильев Работа поступила 18.05. 2009 г. Сдано в набор 19.05. 2009 г. Подписано в печать 28.05. 2009 г. Формат 60х90 1/16 Объем 2.5 печ.л.,2.3 уч.-изд.л. Тираж 85 экз. Бесплатно. Заказ № 15 Обработано на РС и отпечатано на ротапринте «ИЯФ им. Г.И. Будкера» СО РАН,

Новосибирск, 630090, пр. Академика Лаврентьева, 11