РОССИЙСКАЯ АКАДЕМИЯ НАУК Ордена Ленина Сибирское отделение

В.Ф. Дмитриев

ВЛИЯНИЕ ПОЛЯРИЗАЦИИ НА СЕЧЕНИЕ И УГЛОВОЕ РАСПРЕДЕЛЕНИЕ ПРОДУКТОВ РЕАКЦИИ $^{11}B(p,\alpha)^8Be^*$

ИЯФ 2005-34

 ${}^{\rm HOBOCИБИРСК}_{\rm 2005}$

Влияние поляризации на сечение и угловое распределение продуктов реакции $^{11}B(p,\alpha)^8Be^*$

В.Ф. Дмитриев

Институт ядерной физики им. Г.И.Будкера 630090 Новосибирск СО РАН

Аннотация

В работе рассматривается влияние поляризации начальных частиц на выход α -частиц и их угловое распределение. Показано, что поляризация начальных частиц может увеличить выход α -частиц в 1.6 раза. При этом угловое распределение α -частиц становится анизотропным.

Polarization dependence of the reaction products yield and the angular distribution for the reaction $^{11}B(p,\alpha)^8Be^*$

V.F. Dmitriev

Budker Institute of Nuclear Physics 630090 Novosibirsk, SB RAS

Abstract

We discuss the influence of the initial particles polarization on α -particles yield and their angular distribution. It is shown that 100% polarization of the initial particles can increase α -particles yield by the factor 1.6. The angular distribution becomes anisotropic.

1 Введение

Использование безнейтронных реакций для получения энергии в реакциях ядерного синтеза представляет определенный интерес ввиду их большей радиационной безопасности и экологической чистоты. Одной из таких реакций является реакция ${}^{11}B(p,\alpha){}^8Be^*$ с последующим развалом $^8Be^*$ на 2α -частицы [1]. Реакция имеет ярко выраженный резонанс при энергии протона в с.ц.м. 670 КэВ. Резонанс отвечает возбужденному состоянию ядра ^{12}C с энергией $16.57 \text{ M}{ ext{B}}$ В, с квантовыми числами 2^- и с изоспином $T{=}1$. Основная мода распада на α -частицу и возбужденное состояние $^8Be^*$ с энергией $3.06 \text{ M} \rightarrow \text{B}$ и квантовыми числами 2^+ и T=0. Распад идет с нарушением изоспина, поэтому ширина резонанса достаточно мала. При энерговыделении 6.14 МэВ она составляет примерно 200 КэВ. Это приводит к тому, что сечение в пике оказывается большим, ~ 1.2 барна. Поскольку возбужденное состояние углерода имеет отрицательную четность, то орбитальный момент относительного движения α -частицы и $^8Be^*$ может принимать только нечетные значения. В нашем случае L=1, 3.

2 Амплитуда реакции

Поскольку протон захватывается в s-волне, то амплитуду реакции можно представить в виде:

$$F_{\sigma\mu}^{\lambda} = C_{1/2\sigma \, 3/2\mu}^{2M} \left[f_1 C_{1m \, 2\lambda}^{2M} Y_{1m}(\theta \phi) + f_3 C_{3m \, 2\lambda}^{2M} Y_{3m}(\theta \phi) \right], \qquad (1)$$

где $C_{1/2\sigma\,3/2\mu}^{2M}$ — коэффициент Клебша-Гордана описывающий сложение спинов начальных частиц в полный момент J=2, а два

других коэффициента отвечают сложению орбитального момента L=1 и 3 и спина конечного ядра $^8Be^*$ в полный момент распадающегося состояния. f_1 и f_3 – амплитуды распада в каналы с орбитальным моментом L=1 и 3 соответственно. По повторяющимся индексам подразумевается суммирование.

Для неполяризованных частиц дифференциальное сечение получается возведением амплитуды (1) в квадрат по модулю, суммированием по конечным и усреднением по начальным спиновым состояниям

$$\frac{d\sigma}{d\Omega} = \frac{1}{8} \sum_{\sigma\mu\lambda} |F_{\sigma\mu}^{\lambda}|^2.$$

Это дает:

$$\frac{d\sigma}{d\Omega} = \frac{5}{8} \left[\frac{|f_1|^2}{4\pi} + \frac{|f_3|^2}{4\pi} \right],\tag{2}$$

в силу ортогональности коэффициентов Клебша-Гордана с разными орбитальными моментами. Таким образом, в случае неполяризованных частиц α -частицы летят изотропно. Коэффициент 5/8 есть вес состояния с полным моментом J=2 в произведении волновых функций со спином 1/2 и 3/2. Полное сечение в резонансе дается просто умножением выражения (2) на 4π ,

$$\sigma = \frac{5}{8} \left[|f_1|^2 + |f_3|^2 \right]. \tag{3}$$

В случае, когда обе начальные частицы поляризованы в одном направлении, полное сечение увеличивается в 8/5 раз за счет того, что состояние с полным моментом 2 реализуется с вероятностью 1, а не 5/8, как в случае неполяризованных частиц. Угловое распределение при этом становится анизотропным. Оно сильно зависит от соотношения между амплитудами f_1 и f_3 . Если вклад f_3 мал, то оно упрощается и принимает вид:

$$\frac{d\sigma}{d\Omega} = \left(\frac{d\sigma}{d\Omega}\right)_{unpol} \frac{4}{5} (1 + 3\cos^2\theta). \tag{4}$$

В этом случае сечение сильно анизотропно. Вдоль поля летит в 4 раза больше α -частиц, чем в поперечном направлении. На рис.1

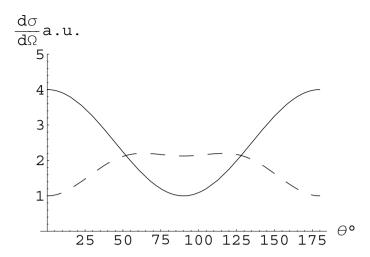


Рис. 1: Угловые распределения альфа-частиц в случае доминирования p-волны (сплошная кривая) или f-волны (пунктирная кривая)

приведены угловые распределения α -частиц в случаях, когда доминирует одна из волн. Видно, что степень анизотропии разная. В случае p-волны альфа-частицы летят, в основном, вдоль поля, как упоминалось выше, а в случае доминирования f-волны — поперек поля и с меньшей степенью анизотропии. В общем случае угловое распределение имеет вид

$$\frac{d\sigma}{d\Omega} \sim |f_1|^2 (1 + 3\cos^2\theta) - \frac{1}{2} Re(f_1 f_3^*) (3 - 6\cos^2\theta - 5\cos^4\theta)
+ \frac{1}{8} |f_3|^2 (17 + 6\cos^2\theta - 15\cos^4\theta).$$
(5)

Различные варианты случаев, когда f_1 и f_3 сравнимы приведены на рис.2. Видно, что анизотропия существенно зависит от знака интерференции p- и f-волн. В случае отсутствия интерференции кривая (штрих-пунктир на рис.2) есть просто усредненная сумма двух кривых рисунка 1.

В заключение, в работе исследовано влияние поляризации на выход альфа-частиц в реакции $^{11}B(p,\alpha)^8Be^*$. Показано, что поля-

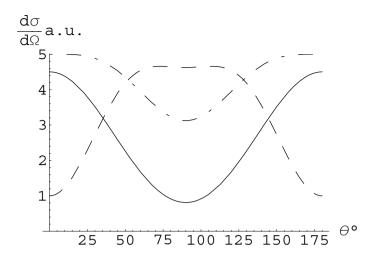


Рис. 2: Угловые распределения альфа-частиц в случаях сравнимого вклада p- и f-волн. Сплошная кривая отвечает положительной интерференции p- и f-волн, пунктирная кривая — отрицательной интерференции. Штрих-пунктирная кривая отвечает отсутствию интерференции.

ризация протона и ядер бора увеличивает выход альфа-частиц в среднем в 1.6 раза. Угловые распределения альфа-частиц анизотропны. Характер анизоторопии существенно зависит от соотношения амплитуд распада в конечные состояния с L=1 и L=3.

Автор выражает признательность В.И. Волосову за постановку вопроса о влиянии поляризации.

Список литературы

[1] W.M. Nevins, R. Swain, Nucl. Fusion 40, 865 (2000).

В.Ф. Дмитриев

Влияние поляризации на сечение и угловое распределение продуктов реакции $^{11}B(p,\alpha)^8Be^*$

V.F. Dmitriev

Polarization dependence of the reaction products yield and the angular distribution for the reaction $^{11}B(p,\alpha)^8Be^*$

ИЯФ 2005-34

Ответственный за выпуск А.М. Кудрявцев Работа поступила 29.06.2005 г.

Сдано в набор 30.06.2005 г. Подписано в печать 30.06.2005 г. Формат бумаги $60\times90\ 1/16$ Объем 0.4 печ.л., 0.3 уч.-изд.л. Тираж 100 экз. Бесплатно. Заказ N^0 34

Обработано на IBM PC и отпечатано на ротапринте ИЯФ им. Г.И. Будкера СО РАН Новосибирск, 630090, пр. академика Лаврентьева, 11.