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1 Introduction

The cross section of hadron production in ete™ annihilation belongs to the best known
quantities in high energy physics. Far away from quark thresholds the cross section is
well approximated by the results obtained in perturbative QCD (for a review see [1]).
The situation is not so clear at quark thresholds which, however, are known to be of
importance for a number of physical applications.

Among such applications, a special place is occupied by a threshold production of
{t pairs at the Next Linear Collider. It was suggested in Ref. [2], that the large width
of the top quark provides a natural cutoff for long—distance effects and, therefore, reli-
able predictions for the ¢f threshold production cross section are possible in perturbative
QCD. Since then, the threshold production cross section of ¢f was studied in great detail
(3,4, 5,6, 7]. The commonly accepted conclusion [6, 8] is that one can perform precision
studies of various quantities of direct physical interest (top mass, top width, strong cou-
pling constant, etc.), once accurate measurements in the threshold region are conducted.
However, all these studies were performed using predictions for the top threshold produc-
tion cross section valid up to O(ay) and, therefore, suffered from the ignorance of higher
order QCD effects.

It is worth emphasizing, that calculation of radiative corrections to the threshold
cross section differs from standard perturbative calculations, which are done for higher
energies. The difference is because of the fact, that, close to the threshold, the conventional
perturbation theory breaks down [9]. The physical origin of this phenomena is known from
quantum mechanics: considering Coulomb potential as a perturbation, one gets series in
a/, where a is the strength of the potential and 3 is the particle velocity. When the
velocity is small, this ratio becomes large and meaningful predictions can be only achieved
once the series is resummed. It was demonstrated in [9], that if such resummation is
performed, the threshold cross section becomes proportional to the square of the Coulomb
wave function at the origin. In Ref. [2] this result was generalized to the situation, when
the produced particles are unstable. It was concluded, that the cross section for the
quark pair production is proportional to the imaginary part of the non—relativistic Green

function of the QQ system, evaluated for complex energies.



Since then, it was also realized, that the O(a;) corrections can be easily incorporated,
because contributions of soft and hard scales completely factorize with this accuracy. The
absence of this factorization property, as well as the technical difficulties with explicit
higher order calculations, were the stumbling blocks in achieving the O(a?) accuracy. It
is remarkable, that new results, obtained in the last several years, permit a relatively easy
determination of these corrections.

In what follows, we present the calculation of the threshold cross section for the t#

pair production which is valid with O(a?, a3, 3*) accuracy.

2 The framework of the calculation

We first discuss a framework of our calculations and introduce all relevant notations. The

threshold region is characterized by a small value of the quark velocity 3:

ﬂ:,/1—45ﬁ<<1. (1)

To order O(a?, asf3, 3?), dynamics of slowly moving quark—antiquark pair is governed by

a non-relativistic Hamiltonian®:

H = Ho+Vi(r)+U(p,v), (2)
O 3)
Vi(r) = _ifr‘;g {2@0 In(u'r) + a; + Z; lﬂg (41112(//7«) + %2)
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In the above equations, the strong coupling constant is evaluated at the scale u:

as = as(p). (6)

The scale ' equals pe”, v is the Euler constant.

The operator U(p,r) is the QCD generalization of the standard Breit potential [10].
The last term in Eq.(5) is the non—Abelian contribution, originating from a correction to
the Coulomb gluon exchange, caused by a magnetic gluon [11]. The potential Vi(r) rep-
resents a deviation of the static QCD potential from the Coulomb one. It was calculated

to order a? in [12] and to order o? in [13]. The coefficients there read explicitly:
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30ne can describe the Q@ system by means of the non-relativistic quantum mechanics to this order

since the radiation of real gluons shows up only at O(3%) order.
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For the SU(3) color group, the color factors are Cy =3,Cr =4/3,Tp =1/2. N, =5
is the number of quarks whose masses have been neglected.

Given the Hamiltonian H, one can find the Green function for the Schrodinger equa-
tion:

(H—E —i§)G(E;r,v") = 6®(r —¢"). (8)

Once the Green function is found, the cross section of the non-relativistic QQ pair

production in ete™ annihilation? is obtained as:
4o
= R 9
o(s) = T R(s), ()
where
R(s) = limIm | N2 27 (12 P2 ) a0 E=\/s—2 10
(S) - 7}_{% m c€Q S - 3?2 ( 7T ) ) - — 2. ( )

In Eq.(10), we have included the O(3?) correction originating from the expansion of the
vector current which produces and annihilates a heavy Q@ pair in the triplet S-state.
The quantity R(s) will be the central object for further discussion.

If a calculation of R is attempted, one will find, that the Green function at the origin
does not exist because there are terms in the Hamiltonian H, which behave as 1/r", n > 2,
for small values of r. The difficulty originates from the fact, that the region r — 0 is not
properly treated in the Hamiltonian. Indeed, small values of r correspond to a region in the
momentum space, where a typical momentum transfer between @) and Q, is of the order
of the quark masses and therefore quarks cannot be considered as non-relativistic. For
this reason, the use of the Hamiltonian H in actual calculations leads to the divergencies,
which appear for r — 0.

The way to circumvent this difficulty is as follows. In order to perform a calculation,
one introduces a cutoff A, such that a;m < A < m. The momentaregion where & < Ais a
non-relativistic region and can be described using a Hamiltonian H. The momenta region
with &£ > X is a relativistic one and the calculation in this region should be performed
using the rules of quantum field theory. We note that this is rather standard procedure
for calculations, related to bound state problems. It is also well known that its practical

realization often requires substantial effort.

4In what follows, we consider only photon mediated process and do not take into account the Z—boson
exchange. The axial-vector coupling of the Z—boson contributes O(/3?) relative correction to the threshold
cross section. The vector Zete™ coupling is also suppressed, but can be taken into account in the same

way as the photon contribution, which we treat in this paper.



However, there is a possibility to use the result of the non-relativistic calculation with
the cutoff in the following way: one takes the limit of the obtained result, considering
kinematic region where oy < # < 1. In this particular region, the non—relativistic results
are still valid; on the other hand as long as o,/ < 1, the resummation of the Coulomb
effects is not necessary. Therefore, in this particular region, one can calculate the correc-
tions applying the standard rules of the quantum field theory. In the framework of QCD,
such calculations have been performed recently in Ref. [15]. One therefore can match the
result of the non-relativistic calculation with the cutoff, directly to the result presented
in [15] and in this way completely eliminate the cutoff dependence. This procedure was
suggested in [14] and we will call it a direct matching procedure, in accordance with that
reference.

In what follows, we pursue this program in QCD. We confine ourselves to a strictly
perturbative approach and we do not attempt any discussion of non—perturbative effects.
In order to accommodate the phenomenologically relevant case of the unstable top quark,
we will consider the total energy F as the complex variable £ — E + 11"y, in the spirit of
Ref. [2].

We have to mention at this point that a consistent implementation of the effects related
to the finite width of the quark is not attempted in this paper. To O(a;) order such effects
were studied in [7]. A reliable treatment of these effects to O(a?) is not available at the

moment.

3 Corrections to the Green function

at the origin

Let us first consider the Hamiltonian Hy, Eq.(3), as the leading order Hamiltonian. The
corresponding Green function will be denoted by G¢ (v, 7).
We first discuss a correction to the Green function G (r,7’) at the origin, caused by

the operator U(p,r) (see Eq.(5)). The first order correction is:
—/d3r Ge(r,0) Ulp,r) Ge(r,0). (11)

As long as we are interested in the QQ pairs, produced in the triplet S—states, only
a corresponding projection of the operator U(p,r) should be considered. Substituting
S? =2 and L = 0 into Eq.(5), we get:

p* N 117Cras

2
_CFCLS Q_CACFCLS
3 2 '

m2r 2mr?

5(3)(r)

Ulp.r) = — (12)

4dm 3m

At this stage, it is advantageous to express this operator in terms of the zeroth order

Hamiltonian Hy in order to apply the equation of motion for the Green function G¢(r,0):

(Ho — E)Ge(r,0) = 6C®)(r). (13)



This is most easily done by using the commutation relations:

47§O(r)  2L*  Cra,

Hy,ip,| = — , 14
[Ho, ip] m + mr3 r2 (14)
1 2 4méG)(r 2

{H07_} = _HO + ( ) + 287’7 (15)
r r m mr
where p, = —i(0d, + 1/r) is the radial momentum operator. Using these relations, one

finds that the operator U(p,r) from Eq.(12) can be presented in the form:

Hg 3Cras 1 11Cra, (ZCF +3CA) Cpaﬁ
{ 07_} . (16)

U(p,’l‘):——— 19m [H07lpr]_ 2

4m 4m 6mr

Let us consider the first three terms in Eq.(16). Inserting them into Eq.(11) and using

the equation of motion for the Green function (13), we find:

H? . 11 11Cpa,
/d?’ch(rlar) <— + 3Cra {Ho, ;} Cra [Ho,lpr]) Ge(r,7")

dm dm 12m
2
p CFas
— [m + + ZLp,,] GC(T 7‘")
E2 3CFCLSE "
+/d TGC ’f’ T‘){4m + W} GC(”',”' ) (17)

We note, that all terms in the above equation, which do not contribute to the imaginary
part of the Green function have been omitted.

Leaving aside the “surface” terms in Eq.(17), one sees that the discussed perturba-
tion can be absorbed into the zeroth order equation (13). Therefore, the corresponding
correction to Ge(r,r') can be taken into account to all orders by finding an exact Green

function for the Schrodinger equation
(H—E&)G(r,7") =6 (r —r"), (18)
with the modified Hamiltonian

- r _ Cra, < 3E) _ (Cray)? (3 %)

and the modified eigenvalue
2

E
E=E+ . (20)

m
It is clear, that the solution of the above equation will deliver G(», '), which is

definitely valid to NNLO accuracy. Moreover, such a solution provides a resummation of
some second order corrections.

But there is more important reason to believe that such a treatment is more appropri-
ate for the subthreshold (y/s < 2m) energy region, than the first order time-independent
perturbation theory. Let us consider the energy region below the threshold. For stable
quarks, one would observe an appearance of narrow resonances in this region. It is well

known, that for the realistic value of the top quark width (I'; ~ 1.5 GeV), the resonances



are smeared. Still, the excitation curve exhibits a maximum close to the position of the
lowest lying resonance.
For the purpose of discussion, we write an expression for an exact Green function:

GA0) e dk R0

G(E+il:0.0) =5 — =) ar__VR)
(E+1130,0) ZEn—E—iF o 2By — E— il

n

(21)

where 9, and F, ; are exact eigenfunctions and eigenvalues, which correspond to a
Hamiltonian H. When we calculate this Green function using time—independent pertur-
bation theory, we expand both numerators and denominators of the above equation in
power series. One readily realizes, that this procedure is not so harmless for energy de-
nominators, especially when the energy F is close to the position of the resonance. On the
other hand, if the Green function is obtained as the solution of the Schrodinger equation,
one gets the result directly in the form of Eq.(21). It is mainly for this reason, that we
think it is more safe to solve the Schrodinger equation exactly, than to perform the first
order perturbation theory calculations.

It is not so straightforward, however, to obtain a numerical solution for such a problem,
since the perturbation 1/r* (cf. Eq.(19)) is too singular at the origin. As was already
indicated above, the proper approach is to introduce a cutoff rg and to extract all terms
which have a non—analytic dependence with respect to ro. On the other hand, all terms
which have extra powers of rg, so that the limit ro — 0 can be taken, will be set to
zero. Later on, the non—analytic ro—dependent terms will be determined by a matching
of the result of such calculation to its perturbative counterpart [15]. In the next section
we will show, how this procedure can be implemented for the numerical solution of the
Schrodinger equation (18).

The “surface” terms from Eq.(17) will be discussed later. We note here, that these
terms are linear in G (r,7’) and, therefore, contain at most the first—order poles in
energy. Hence they do not contribute to the shift of the energy levels and there is no need

to account for them beyond the first order.

4 Numerical solution of the Schrodinger

equation

In this section, we demonstrate, how numerical solution of the Schrodinger equation with
the potential V(r) (cf. Eqgs.(18) and (19)) can be constructed. The Schrodinger equation
for the S—wave Green function is written as:

(_—1 lj—; + %%] V() - 5) Glr 1) = b — 1), (22)

m mr?

It is convenient to define a new function g(r,r") = rr'G(r,r’), so that the Schrodinger

equation simplifies:

m

(552 e = V) ) = =22 =), (23)

m
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According to the standard rules, the Green function can be written as:

g(r,r') = Alg<(r)g>(r)0(r' —r) + g<(r')g> (r)8(r — )] (24)

where g« 5 (r) are two independent solutions of the homogeneous Schrodinger equation
which satisfy proper boundary conditions at »r = 0 and r = oo, respectively. Also, the
constant A is defined by the jump of the derivative of the Green function at r = r'.

The solutions g<(r) and g (r) are constructed using two other independent solutions
of the Schrodinger equation, g4 (r), with a prescribed behavior at the origin [3]. However,
since the potential V/(r) in the Schrodinger equation is as singular as 1/r?, one would have
problems with setting the standard [3] boundary conditions for g4+ at r = 0. To overcome
this difficulty, we extract the leading asymptotic of the functions g4 (r) for small values

of r
g+(r) = (mCFasr)difi(r), (25)

where

. 1 . (CFCLS)2 2 CA )
di—z(li\/l—llfi), k= <3+OF)' (26)

Substituting g+ (r) to the Schrédinger equation, one obtains an equation for the function

f+(r), which is now free of the 1/r? term:

L[
m | dr? r dr

+ [S + Cra, (1 + ¢ ln(,u’r)2 + coln(p'r) + c;;)] } fe(r)=0. (27)

r

The coefficients ¢;_3 can be easily obtained using Eq.(19) and Eq.(4). One derives then
the asymptotics of the function fi(r) for r — 0:

f(r) ~ 1 —mCras;rA(r) + O(r®), A(r) = hy 1n2(,u’7“) + hoIn(p'r) + ha, (28)
&]

hy = — 9

hy = i[ (2 3)] 30

2= 5 Cy — (1 + 7)1 (30)

h—i[l—l- <1+L)—|— <2+l+—1 )] (31)

BTt 2d) " d 2]

In the above equations, f and d stand for fi and di, respectively.

There could be some doubts about the validity of the boundary conditions, as derived
from above equations, since d_ is of order a? and therefore the second power of o, appears
in the denominator. Without going into explanations at this point, we mention that upon
careful inspection the above boundary conditions appear to be absolutely legitimate.
Later, we will present more detailed arguments in favor of such conclusion.

The Green function is constructed as follows. The solution g.(r) is identified with
g+(r). The solution gs(r) is constructed from the solutions g4 in such a way, that the

boundary condition at the infinity is satisfied:

g>(r) =g-(r)+ Bgy(r), g-(r) =0, forr— oc. (32)



Therefore, one finds:

-

If the potential V(r) is real, the imaginary part of the Green function is proportional
to the imaginary part of the coefficient B. However, this is not the case for the present
problem: the Coulomb part of the potential V/(r) is energy dependent and we consider
the energy to be a complex variable. Therefore, the formula for the Green function at
the origin should be modified. The modification is however simple. It is obtained in a

straightforward way from the available asymptotics of the functions ¢4 (r). The result

reads
m3(Cras)? _
Im G(ro, 7o) = —fhriFM/)Im{(measro)Qde PB—A(r) = A_(ro)},  (34)
where W = —mCrpas(d; — d_) is the Wronskian of two independent solutions of the

Schrodinger equation.

Let us comment on the role of the second term in the above equation (34). If the
potential V(r) in the Schrodinger equation were real, the AL(r) would be real as well.
Taking the imaginary part, one then completely removes the contribution of the second
term in Eq.(34). In our case F is a complex variable, and the coefficient h3 has a non—zero
imaginary part. Moreover, this imaginary part is formally of the order of I';/(md_), which
should be considered as a contribution of order unity.

However, the limit k — 0 should exist for the Green function constructed as above.
Therefore, the purpose of the last term in Eq.(34) is to cancel the 1/d_ singularities of the
function B, obtained with the boundary conditions presented in Eqgs.(29-31). We note in
this respect, that, by switching off the logarithm—dependent perturbations in the expres-
sion for V(r), one obtains an exactly solvable Hamiltonian, so that the statements made
above can be easily verified. The corresponding discussion can be found in Appendix.

Eq.(34) then explicitly demonstrates, that the non—analytic dependence on the cutoff
ro is indeed extracted and all power corrections with respect to the cutoff are neglected.
This precisely corresponds to the desired form of the Green function of the Schrodinger
equation. The residual dependence on rg is removed using the direct matching procedure

as described in the next section.

5 Matching and final result for R

In Eq.(34) we have taken into account all corrections to the ratio R which are due to
relativistic effects in the quark—antiquark interaction and which can thus be called the
dynamic ones. However, we still have to consider kinematic corrections that are: i) O(3?)
correction to s; ii) O(p?/m?) correction to the quark current (cf. Eq.(10)) and, finally,
iii) the "surface” terms from Eq.(17).

Using equation of motion for the Green function (18), we obtain the result for R at

10



NNLO, with both types of corrections included®:

Kis

x = Im { (1= 22 [(mCra,ro) = 1B — Ay (ro) — A_(ro)] } . (35)

Rasto = 2N.c3 Cra, (1 + CiCr (2) + CoCr ()2)

Here we have factored out all energy—independent corrections. They are parametrized by
the constants C; and C,, which are divergent ¢ in the limit ro — 0. For this reason we
use ap = ag(m) as the expansion parameter for these “hard” corrections.

To get rid of the ro—dependence we use the direct matching procedure, suggested in
Ref. [14]. For this we consider /s > 2m, set the width of the top quark I'; to zero’
and equate our result (35) to its perturbative counterpart [15] in the kinematic region
as K B < 1, where both are supposed to be valid. We also set 4 = m, so that as
coincides with ay,.

Let us note, that the direct matching procedure fixes the linear combination of C'y and

In(mrg) )
CyCr <%) — 2k In(mro). (36)

If we were working strictly to NNLO, this last combination would be the only thing we
need for the final result. However, because of the large difference in scales, which govern
relativistic and non-relativistic physics, we would like to write Eq.(35) in a factorized
form and include an exact dependence on rg into the non—relativistic Green function. For
this reason, we have to set a factorization scale. We do this by choosing rq in such a way,
that the correction to the Coulomb Green function due to the 1/r? perturbation in the
region oy < [ < 1 is given by log(3), without additional constants (see Appendix for
more details). Any other choice of rq would correspond to other (also legitimate) value of
the factorization scale.

A factorized form (35) of our final result makes sense only if a dependence on a choice
of the factorization scale is weak. We have checked that changing the value of the cutoff
between r4/2 and 2rq for ro given by Eq.(37), we obtain small (~ 1 —3%) variation of the
resulting values of R.

Therefore, accoring to our choice, we fix the value of the cutoff

er

: (37)

o =
2m

and obtain finally:

Cy = —4; Cy = CFOQ4 + CACéVA + TRNLCé: + TRNHCf, (38)

SWe note that, strictly speaking, the “surface” terms in Eq. (17) were derived for the Coulomb Green

function, but we substitute the “exact” Green function instead of the Coulomb one in our final formulas.
5The strongest divergence in these factors is 1/rg, so it not obvious a priori, that the functional form

of Eq.(34) can be preserved in Eq.(35). Upon careful analysis, this turns out to be possible to NNLO,
however.
"Note, that in this case the functions A4 (rg) drop out from Eq.(35).

11



where

. 1 .
cP = §—§3—|—7r2<—1n2—§);

4 3 18
151 13 179 8
NA == - . i 2 - - _1 2) 5
Ca 36 243“(72 3n2);
44 4
CH - - _ = 2,
2 9 97T7
11
clh = 5 (39)

Eq.(35) with definitions provided by Eqs.(37 —=39) is our final result for the top quark
threshold cross section with the NNLO accuracy.

For numerical purposes, we have chosen m = 175 GeV and I'; = 1.43 GeV. As an
input value for the strong coupling constant we used a5(Mz) = 0.118. Fig.1 provides our
final results for Rynpo as a function of y/s —2m in comparison with LO and NLO results,
for three values of the soft scale p = 50, 75, 100 GeV. One can see that the NNLO

corrections are as large as the NLO ones.

0.8

0.6

-4 -2 0 2 4

Figure 1: Ryo (dotted lines), RnLo (dashed lines), Rynpo (solid lines) as a function of
energy /s — 2m, GeV. In all three cases, three curves correspond to different choices of
the soft scale u = 50 GeV (upper curves), u = 75 GeV and p = 100 GeV (lower curves).
We also use m = 175 GeV, I'; = 1.43 GeV and a,(Mz) = 0.118 as the input parameters.

There is also a moderate scale dependence of the NNLO corrections in the vicinity of
the resonance peak. The position of the resonance peak appears to be sensitive to the
variations in the scale y on the level ~ 100 MeV. We note in this respect, that the shift
of the ground-state energy due to the Breit perturbation is well known (see Ref. [10] and

Appendix) and its expected variation with p is close to this value.

12



6 Conclusions

We have presented a calculation of the next-to-next-to-leading order corrections to the
threshold cross section of the top quark pair production in QCD, summing all
O(as/B)" x (a2, 3% asf)] terms of the perturbation series. We have found, that the
NNLO effects are quite sizable.

We have also discussed how the numerical solution of the Schrodinger equation with
a singular potential can be constructed.

Let us comment on the large size of the NNLO corrections. We have checked that taken
separately, both the Breit perturbation and O(a?) terms from V;(r), provide comparable
contributions of the same sign. When we take them simultaneously into account in the
Schrodinger equation, the NNLO contribution gets enhanced by roughly a factor of two,
in the vicinity of the resonance.

When we were writing this paper, we received the preprint [16], where the same
problem was studied. Our qualitative conclusion about the size of the NNLO corrections

agrees with the conclusion reached in [16].
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Appendix

In this Appendix, we discuss the construction of the Green function G(&;rg,r9) in the
exactly solvable model, which is described by the Hamiltonian
2 C
H= %—|—V(r), Vir)= — L9 (1 o) - — (10)

M)
7 mr?

where £ and ¢ are complex parameters.
The Green function is derived following our discussion in Sect. 4. It is convenient
to introduce a new variable z = Cpagsmr for further discussion. The solution of Eq.(27),

which satisfies boundary conditions given by Eq.(28), can be written as
iz : iz
fi(e) = B F (de = iv(1 +0), 2, =), (a1)
v
where v = Cpag/ (ZN/S/m). Using the asymptotic form of the confluent hypergeometric

function for Re # = Re(—iz/v) > 1,

L)

F(a,b,z) ~ m

Tt (42)

13



one obtains the coefficient B, using Eqs.(25) and (33):
i ['(2d_)T'(dy — iv(1 4 ¢))

B — (s 2—-2dy 4
) = ) S T — (11 0)) (43)
The functions A4 (r) reduce now to the constants:
1+¢
A = ) 44
L) = o (14)

We therefore arrive at the final expression for the imaginary part of the Green function

ImG(rg, o) for this model (cf. Eq.(34)):

ImG(ro, 7o)

m*Cra, 2d4—2 1+¢
=m0 d_)Im{(mCFasro) Bl) - == } (45)

Let us first demonstrate that the proper limit Kk — 0 exists for the imaginary part
of the Green function defined through Eq.(45). In this limit, our model reduces to the
ordinary Coulomb problem, so that the Green function in Eq.(45) should give us the
imaginary part of the Coulomb Green function at the origin. To see how this happens, we
expand the Green function Eq.(45) in power series in k. The first term in the expansion
of B(v) is equal to (1 + ¢)/(2x). This term is completely canceled by the last term in

Eq.(45). The next term in the expansion provides the ro—independent result:

lim G(ro,ro) = " A (v, 9),
where
l . . d
H(v,p) = o — (Lt [y +In(=if) + ¥ (1 — (L +c))], ¥(z) = —InD(z),  (46)

which exactly coincides with the imaginary part of the Coulomb Green function at the
origin.
We then set ¢ = 0 and expand Eq.(45) up to O(k) to obtain the correction to the

Coulomb Green function due to the 1/r? perturbation. The result can be written as:

m2Crask

Im [6G(ro,r0)] = o

I { 107+ (s} (47)

where the value of ro from Eq.(37) has been used. For stable quarks, the last term in
Eq.(47) can be disregarded. For unstable quarks, it contributes an O(I'g/mg) relative
correction to the Green function at the origin, which is beyond the intended accuracy and
can be omitted.

Let us also emphasize one advantage of the Green function as obtained from Eq.(45).
Consider the stable quark case. Then, for negative energies, the Green function should
deliver the first order poles which correspond to the appearance of the QQ bound states
in the spectrum. Eq.(45) shows, that such poles are provided by the singularities of the
function I'(dy — (1 4 ¢)). The corresponding eigenvalues of the Hamiltonian (40) are

B m(Cras)*(1 + ¢)? .

bn = A(n — d_)?

(48)
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Using the relations (cf. Egs. (19) and (20))

E? 3F
& + Am’ ¢ o2m’ ( 9)
as well as | © )2 S
d_=-(1-v1—4 _ \brds <_ .A)
2 ( DR 2 \37Cp) (50)

one easily finds that the energy levels are located at

7~ m(CFas)2+m(CFas)4 11 1 Cy
m 4n? n3 64n 6 4CF

We note, that this is precisely what one gets, if the energy shift due to the perturbation

. (51)

(5) is calculated using the standard rules of quantum mechanics.
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