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Abstract

The Landau, Pomeranchuk, Migdal (LPM) effect (suppression of
the bremsstrahlung from high energy electron due to a multiple scat-
tering of an emitting clectron in dense media) is considered for the case
when thickness of a target is of the order or less than the formation
length of radiation. The cllects of the polarization of a medium and
transition radiation are taken into account as well. Qualitalive pic-
ture of the phenomenon is discussed in detail. Comparison with recent
experimental data is carried out.
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1 Introduction

"The process of bremsstrahlung from high-energy electron occurs over a rather
long distance, known as the formation length. If anything happens to an
clectron or a photon while traveling this distance, the emission can be dis-
rupted. Landau and Pomeranchuk showed that if the formation length of
bremsstrahlung becomes comparable to the distance over which a mean an-
gle of multiple scattering becomes comparable with a characteristic angle of
radiation, the bremsstrahlung will be suppressed [1]. Migdal [2], [3] devel-
oped a quantitative theory of this phienomenon. An influence of polarization
of a medium on radiation process leads also to suppression of the soft photon
cmission ("Ter-Mikaelian effect, see in [4]).

A very successful scries of experiments [5] - [7] was performed at SLAC
during last years. In these experiments the cross section of bremsstrahlung
of soft photons with energy from 200 KeV to 500 MeV from clectrons with
cner. . 8 GeV and 25 GeV is measured with an accuracy of the order of a few
percent. Both LPM and dielectric suppression is observed and investigated.
These experiments were the challenge for the theory since in all the previous
papers calculations (cited in [8]) are performed to logarithmic accuracy which
1s not enough for description of the new experiment. The contribution of the
Coulomb corrections (at least for heavy clements) is larger then experimental
errors and these corrections should be taken into account.

Very recently authors developed the new approach to the theory of LIPM
effect. [8] where the cross section of bremsstrahlung process in the photon
energies region where the influence of the LPN is very strong was calculated
with term oc 1/L | where L is characteristic logarithm of the problem, and
with the Coulomb corrections taken into account. In the photon encrsy
region, where the LPM effect is ”turned ofl”, the obtained cross section gives
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the exact Bethe-Heitler cross section (within power accuracy) with Coulomb
corrections. This important feature was absent in the previous calculations.
The contribution of an inclastic scattering of a projectile on atomic electrons
is also included. The polarization of a medium is incorporated into this
approach. The considerable contribution into the soft part of the measured
spectrum of radiation gives a photon emission on the boundaries of a target.
We calculated this contribution taking into account the multiple scattering
and polarization of a medium for the case when a target is much thicker than
the formation length of the radiation. We considered also a case when a
target is much thinner than the formation length. A case of an intermediate
thickness of a target (between cases of a thick and a thin target) is analyzed
but polarization of a medium is not included,

In the present paper we calculated the cross section of bremsstrahlung
process in a target of intermediate thickness. In Section 2 we derived general
expression for the spectral probability of radiation in a thin target and in a
target with intermediate thickness where the multiple scattering, the polar-
ization of a medium and radiation on boundaries of a target are taken into
account. The representations suitable for numerical calculations are derived.
Useful asymptotic formulae are found. In Section 3 qualitative picture of
the phenomenon is discussed in detail. In Section 4 we compare the calcu-
lated spectral curves with recent experimental data [7] where electrons with
energy € = 256 GeV and ¢ = 8§ GeV radiated in a gold target with thick-
ness [ = 0.7(0.1)% Lyqq. Agrecment between theory and data is perfect
for § = 0.7% Lyqa at clectron energy ¢ = 25 GeV/, for the same target and
¢ = 8 (el agreement is satisfactory.

2 Spectral distribution of the probability of
radiation

Proceeding from the formulation of [8] (see Section 4) we can obtain general

expression which takes into account boundary effects for a target of arbi-

trary thickness. With allowance for multiple scattering and polarization of a
medium we have for the spectral distribution of the probability of radiation
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here £ 1s the energy of the imitial electron, w is the energy of radiated photon,
g/ = g —w, nis the density of the atoms in a medium, { is the thickness
of a targel. So, we split time interval (in the used units) into iliree parts:
before target (¢ < 0), after target (! > 7') and inside target (0 < ¢ < TY).
The mean value in Eq.(2.1) is taken over states with definite value of the
two-dimensional operator g (see [8], Section 2). The propagator of clectron

has a form
fa
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where the Hamiltonian H(t) in the case of a homogeneous medium is
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The contribution of scattering ol a projectile on atomic electrons may be
incorporated into effective potential V(o). The summary potential including
both an elastic and an inelastic scattering is

i}
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where
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In (2.1) it is implied that subtraction is made at V =0, x = 1.

It is important to note that Eq.(4.1) of Ref.8 is valid for description of
effects of multiple scattering and polarization of a medium. But for descrip-

tion of the transition radiation on two boundaries it should be modified as it
is done in Eq.(2.1).



In [8] the potential V(g) was presented in the form

V(e) = Velo) +v(0), Velo =904 7=QL,

L=L(o.})=1In }‘i:, v(g) = —qfd (]11 ‘:'E; + EC') (2.6)

where the parameter p. is deflined by a set of equations:
ge=1for oy < 1; AQu E(o)=10or v > 1; 0 v = 4QL;. (2.7)

This form is convenicnt for expansion over powers of 1/ (typical value L ~
10).

The formation length of radiation (for w < ¢) inside target with regard
for the multiple scattering and the polarization of a medium (sce Eqgs.(3.3),

(7.1) in [8])
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We calculated in [8] the probability of radiation inside a thick target
taking into account the correction term v(g) to the potential V.(p), see 2.6.
This was important for sewing together with Bethe-Heitler cross section in
the region of photon encrgies where influence of the multiple scattering is
very weak (v; < 1). The contribution of boundary photons was calculated
without the correction term v(p).

In the case when a target has intermediate thickness ([ ~ 1) the men-
tioned separation of contributions becomes senseless. We consider this case
neglecting by the correction term v(g). The typical mean value we have to
calculate (sce (2.1)-(2.6)) is

(0 lexp(iHoty) exp(—iH12)|0) — (0 lexp(illot) ) exp(—iH 12)|0) =
(0 lexp(ifioty) |@) {o| exp(—iH t2)]| 0) = / doK;(0, 0,1) K. (0,0,1s), (2.10)
where Hy = p*, I = Hy+ V (o), H. = Iy + V.(p). The Green [um‘iioln

Ke(@,, 05,1) and Ko(@,, 04,1) are defined in [8] (see Eqs.(2.27), (2.24)). Car-
ing out the calculations (some results obtained in Sections 4, 6 [8]) we find
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for the spectral probability of radiation

. .
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e sinh vis + vt cosh vis’ " sinhr(t —i0)’
v 141 .
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Note that in left-hand side of formula (2.11) m is an index, while in right-hand

side m is a degree of a relevant functions. The functions F{ ) LS ESY
are respectively the contributions of four domains of mtegratmu over {1 and

t> (sce [8], section 4):
1. 1451 <0, 0% i
2.0y <T, 0<t2 < T,
S pehen 12T
4. 1 <0, 215

in two more domains t; » < 0 and ¢; 2 > 1" an electron is moving entirely [ree
and there is no contribution from these domains.
Rearranging the subtraction terms in Eqs.(2.11), (2.12) we present the

spectral probability of radiation as

j_w B Pt i [—rlIm J:::l} + raRe J;EEB] ;
w
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The functions J:Em}(f{’} we split into two parts:

m}{j} - J{m[ }_|_ {m} (211}

Ilere J{ }[r‘@} is the sum of the two first terms in the expression for Jém] (7"
where thc upper limit of integration 7" is substituted T — oc. So, the ex-

. (m) -
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In the two-fold integrals 1n expressions for Jé :'{’x;} and j: )

variables to f = {; + ¢+ and t» take integrals over {». After this the expression

we replace the

for J;;l}{-:c-} contains the integral

00 1y | 253 iy it : .
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The first. term on the right-hand side is the Froullani integral equal to In k. In

the second term the integration contour can be closed in the lower half-planc,

o

where the integrand has no singularities, so that this integral vanishes. Using

the above analysis we have

(1) (1) i dt ; L
=Imi.Jd: "{oey2'J.," =2 — |tsint — 7 (cost — cosnt)| —
Ju b 5T
ay : . 1 2
dt (sint —sinwt) = 1 4+ — — —Inx (2.17)
0 kK Kk—1
Similarly we have
’ (2) Tt : -
Re J;"'(o0) = JE', =2 F tcost — (sin kt —sint)| —
z s
2
df cosl — coskl) = o Ink — 2, (2.18)
where integration by parts is fulfilled. ;

It is easy to check directly that the sum of tle terms in jim} which don’t
contain the parameter x vanishes. Because of this we can write J'{ " in the
form

W] oyt
{m) di b i
g o et E_({ 1=V (t
8= [ [0+ (-8
Bgli) e e~ ie=ih) (2.19)

Integrals in (2.19) can be expressed in terms of integral sine si(z) and integral
cosine ci(z) (see [9]):
2

Y
‘ -Im 32" = ——
I5 w—1

: |
AR, 1) =TB (s, T) — (I - —) cos kT’
K
'{2} 2 e rre g e e Y T
Re JE- mE 1 -+ ;'-'_—1 1(-‘-; [ ;] + 1 B‘_r(H, i ) + 2 cos H_f, {JZU)

where

Ak, T) = ci(kT) — cos @ ci(T) + sin ¢ si(1),
By (k,T) = s1(rT) + cos ¢ si(1') + sin ¢ ci(T),

By(k,T) = £ si(kT') +cos @ si(T) +sinp ci(T), ¢ =(x—-1)7.(2.21)

In the expression for the spectral probability of radiation in form (2.13)
in the limit »yT" < 1 contribution of terms Ji* (k=1,2,3) becomes small (it is
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proportional to powers of 1T'). Moreover, for kT > 1 the main contribution
gives term JI* which is v-independent. This term describes transition radi-
ation (see (2.14), (2.18), (2.20), (2.21)). The term JL[E} is known expression
for probability of transition radiation on one boundary, while Jﬁm as a whole
deseribes the transition radiation on the plate with two boundaries (in the
frame of the classical electrodynamics) and coincides with corresponding re-
sults in the transition radiation theory (sce e.g.[10]). Our complete result in
this case gives the probability of transition radiation in high-energy quantum
electrodynamics,

For numerical calculations it is desirable to improve a convergence of the
integrals in (2.13). For example, in the integral sz} we rotate the integration
contour over £, at an angle -7/2 and pass on to the variable -#f;. Then we
have

iy +ita)?
1 141 i 14+il
= Yy, = T

~ 1ycosh vty + (i/v) sinhvia’ T V2 YO

) -~ IIT ]- 3
JE‘} — ;/ dty n:-cp(—f.l]f din [(——— — G7| exp(—ikta),
0 0

G L (2.22)

Taking integral over {; we obtain representation of .Ji ) as a single integral
which is more convenient for numerical calculations

rj‘ .-
JE'!} == if dt e:-:p{—fr.‘.z‘.){ exp(it)Ei(—it) — %
a .

= lq {exp (itanhm‘.) o (—_..it,'rmhu!’.) 2 iV } }, (2.23)
cosh” vt v I tanh ¢ -

where Ei(z) is the exponential integral function defined as in [9]. In calcula-
tions one has to use appropriate branch of the function Ei(z) in the complex
plane.

In the integral J,EEJ we substitute t; — —it; and {a — —its and then
replace the variables § = {) + s, 0 = to. The result is

o2 L
(2) 2 opi . I “
J = exp(—ini dt expl—t f dex | ———= — Uj] »
) = exp(—int) [ diesp(=1) | [{H”)_ ]
|

'l(_-; 4 =

; 2.24
(1 — v2e(t — 2)) (i/v)sinh 1"+ Lcosh vT =y

We consider first the case when LPM eflect is weak (v < 1). We assume
here that condition vy (wy) > 1 (definition of wy sce in (2.2)) is fuliilled, that
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is in the region where v, < 1 one has w > w, and eflects of the polarization
of a medium are negligible. This is true for high energies (¢ > 10 Gel/).
Then for thickness T < 1/ the transverse shift of the projectile due to
the multiple scattering in a target as a whole have no influence on coherent
effects defined by the phase ¢ = wl(1 — nv) in the factor exp(—i¢). Indeed,
for the projectile traversing a target in the case v;T' < 1 an increment of the
phase ¢ is small

g
A¢ ~ wli? ~ w!%; ~iT? &1 (2.25)
)
The angle of multiple scattering ¥, is small also comparing with an char-
acteristic angle of radiation 1/ (¥*9? = viT <« 1). So, in the case v <
1, T « 1 the radiation originates on separate atoms of a target and an
interference on target b - daries is defined by the value wl(l — v) = 7. At
T < 1 this interference is weak, while at 7" > 1 there 1s a damping of the in-
terference terms due to integration over photon emission angles. Ixpanding
over v in (2.13) we obtain (x = 1):

"'1 ) .
) A 2) s pviT i ¥ "—].2
J! )(T] = RHe E Ji_ }(I'] ~ {I. ~.34 / (—L"_--}"sin{;u]f')d:c}
k=1 :

3 24

Rk Yo Neaid o i Sl vt gun T
= 1+ 31 l—? 5!(.F]-—-21f_'.|[lj—|—g:-_iinl—ECO:'-;’F.-”)](Q.QG}

[For case 1" < |

|:3,I|' Lo ok TP Ul_ll’fr v 3'“-: 1 srprd }' “y )
JEHT) 3 [1 = '+ 61 In 7t 1 - C 4], (2.27)
and for case T' > 1
{i_;] ] e y?!l';r 1(:0.‘5 Iil’ll R .
Jim (Y o 3 (1 +6 T ) : (2.28)

s, in the case vy <€ 1, 11" < 1 the probability of radiation is delined
by Bethe-Heitler formula both for T < 1 and for 1" > 1. llowever, lor
e . . . - :
II ~ 1 Lll:lél}lll.t{,lf{:u.lli;ﬂ c?nl;lire;tm'gﬁt I]Dlll}tlal‘l{fﬁ 1s essential. I[ we present as
above J'=) as product of v;1'/3 (Bethe-1leitler formula) and some interference
factor, then this factor attains 0.53 at 7" = 0.32 (minimum of the interference
factor) and 1.33 at T' = 1.84 (maximum of the interference factor).
F e Y g il R i rre - . . A

When the parameter » 1" is large (v, < 1, T > 1) the radiation is

formed inside a target and the interlerence terms are damping exponentially.,
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In this case formulae derived in [8] for thick target are applicable. In Lhis case
value of separate terms in the sum for Re J)(T') could strongly oscillate:

! L
Re J(T) = Re J$2(T)) = Re J{*(c0) — f .fnl/ dzf“‘“ v
(£ + a)*
= Re JP(0) = A(T), Re J{(T) ~ Re J{P(o0) + A(Z
(N i L{)b{t[-l-f:—E—T) e
Re JS(T) ~ f .:m/ LT = A,
A(T) = f ikl Lobzfd:m-uf PO Bl (2.29)
P t B 313

It is seen from (2.29) that in the sum for J©*}(T") the contribution of terms
A(T) is canceled exactly. In the considered case (v) < 1) the value J*)(oc)
gives the formula Bethe-Heitler with corresponding corrections. Remind that
in the limit »; — 0 the exact Bethe-1leitler formula can be obtained only if
the terms oc 1/L are taken into account [8]. The expression for J @) found in

Sect.4 of [8] is

o 1o ey
Tt vil | 1 % 160y y 21 5 30
i b ( e 21" i

where Ly and vy are defined in (2.4) and (2.7).

We consider now the case when the LPM ellect 1s strong (#y > 1) and
the parameter 7" < 1 while the value which characterize the thickness of a
target 1T ~ 1. Such situation is possible at w < . So, we can omit terms

with r; = w?/g? and put r+ ~ 2. We expand the expressions for I( ) in a
gt A . . . o Ecige. T4

power series in — and 1" including hinear terms in and T'. The resulting

40 Iy '

decompositions are

(2) (2) vl fifaanhyl. o ( . __:r)
Ji7 = i o I it —_— T | - — i—
E 2 tanh 7 [ ( 7 p.

+ta.nh vl | v T L 5 2 /”T fdi T ]
I ~Thh=4+xr| - —_— ,
v tanh 1 i v fo  sinh2f J

" Y g '| ] TEH i \\.
IO st wieryln 2L Lo (T— —/ fu.tcm-hs) :
£ vl 0

'

i

- %4
._f,.i‘} ~ exp(—inT') { 2Intanh 1"+ = colh 'y ———
. i coth 17
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1’ 2 o
— tanh vT'] C (1_6_:_)
ani i in tanh T i sinh 207 LQ }

- {14 %T) (1.1T+G+fg-) s g0 iT}. (2.31)

: ; 2 2 2 :
The presented here expressions for functions JE !, J.E. s J:E_ ) are not valid

in the case kT > 1. However, in this case (under condition that vT < 1)
the contribution of terms Jfr"]', ,;’:Ejj1 J;EE:' 1s negligible both i the asymptotic
expressions (2.31) and exact formulae (2.13). This means that expressions
(2.31) may be used at any value x1" when vy > 1,1 < 1. Substituling
obtained asymptotic decompositions into Eq.(2.13) we find for 1" < 1

{fm__}]f_r (2) () (g}m{h—l} |
2 (), 92 851 (43 ).

4
J& = Re Z JF} = e { In{rsinhvT) -1 - C — h.fj”-
g
k=1
i

2i
s P tivil 8 W
+.u e {1“(# ‘II].I ¥T)+1=C 5 ]

s cosh vT° vl
+ixd" [ In — — -

tanh 17 Lanh v71

T i At {2 3
i it : i i 1 = CX (—') : i
i 0 : (.ﬁum 21 gi“]ri) } e 8 S Ko (2.32)

For a relatively thick target (17 3> 1) we have [rom (2.32)

MR L0 = d=
i N = 24 s T

+M;1rf' (l Tk ) (4:33)
V2 221y

Here the terms without 7" are the contribution of boundary photons (formula
(4.14) of [8]) while the term ox 7' gives in (2.33) the probability of radiation
inside target (with correction ~ x/yy but without corrections ~ 1/L). The
relative value of the last corrections at vy 3> 1 is (Iq.(2.45) of [8])

I s lnpg — 1 ==

1 Cmy 0451 e
b (m2-c+ l)_i{m. (2.34)

13



In the limiting case when a target is very thin and vy1' < 1 but when
uST >> 1 we have from (2.32)

!;5_
('UUTJ4 E(Jz'uT) . T 4
e+ ST (T - C) - — (). (2.35)

J2) ~ (1 -+ f ) (g T) +1—-C] -2+ 4,

d =

The terms without § in this expression coincide with formula (5.15) of [8] (up
to terms oc C/Ly).

In the photon energy region where vyT' <€ 1 the contribution of the terms
J;Em} (k=1,2,3) is very small (~ §) and decreases with photon energy reduc-
tion (x w), so that in the spectral distribution of radiation only the terms
J,Em},.f_.lim] contribute. We coisider now the function J_EBJ i the case when
(14 1.)7T & 1 and the parameter »3T', which characterizes the mean square

angle of the multiple scattering in a target as a whole, has an arbitrary value. «

Under the mentioned conditions the function Ny in (2.12) may be written as

o0
= — [ drxexp [—-:'.'1: (y:”;'.”h'i’.g +i + ig)] :

0

h’f i (.Ifszrilf-g 4+ %) + f-:;)_h

(2.36)
Substituting this expression in (2.13) we find
{ ik T / dJ.L/ dh] dtyexp (—i(l + x)({1 + t2))
x lexp (=izv Tlyts) — 1] . (2.37)

Making the substitution of variables

£ £L
B oebomily o, Pkoaie
{1t

we obtain

A” o .'r.-": H
P dath / drrj ; lf . 5 eXp (-— (1-{' mr) (¢ +'f3})
0 ]

X [I —exp (—apgl)]| = l] da K7 (24/x) [l —exp (=2 7))

a

=2 [ .ffégh'f(g} [1 —exp (=ko®)], 4k=13T, (2.38)

JA(
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where K(p) is the modified Bessel function. Formula (2.38) corresponds at
x =1 to result for a thin target obtained in [8] (see Eq.(5.7)) without terms
o 1/L. Since the dependence on the parameter & is contained in (2.38) as a
commnn phase multiplier exp(—ixT'), one can write more accurate expression

for J 4) (with terms o 1/L) using the results of [8](see Eq.(5.9)):
O}
J,.E'” = Qc‘“’T/ deoKi(e)[1 —exp (=V (0)T)],
0

ZE ik ! 2 4 4
s (ln f* -2(;) (2.39)
m- A2 o2

V(e)T =
For the case v3T > 1 it has the form

grr Jf} = (l - 21.{.) Indk+1-C1-2+ i

t

b = Mh L =ln a5

R
m A2 o7

—2C, kle)et=1 (240)

In the case when parameter & is not very high one has to use an exact

expression found in [8] (formula (5.7)). For & < 1 one can expand the

expunent in the integrand of (2.39). Then we [ind

inT +(2) UFFF 1 T ‘fl?rzzf.‘l'ﬂn-b; :
R s [ 14— ], "= ——— ;. 2.11
® ; 3 ( GLL) el m- ] il

At kT < 1 the spectral distribution of probability is

dw 2oy 1 e
T I b et (1 = —) : T4
dw ~ 3mw ( A 6.1 ) 3 Sk

This is the Bethe-lleitler formula for not very hard photons (terms o (i)

are omitted). §
When a photon energy decreases, the parame ter & increases as well as the

combination kT = 1/w, while the value (pyT')* decreases o w. Just this value

defines an accuracy of Fq.(2.39). Using Eqs.(2.14)-(2.21) at 7' 1, k1" > 1

we find for the probability of the transition radiation following expression

dutiy,. 2o s o 55
s { (I L h:—l) [Inn.—u(h )+ cos(kT)(InT + C)

3

kT ' _
+g—5ill{fﬂj')} + wT's1(kT’) — 4s1n” FJ } (2.43)

e
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In the limiting case kT >> 1 the probability (2.43) turns into standard prob-
ability of the transition radiation with oscillating additions

df;ijr s [J“. + cos(&T) (InT + C + 1) + %sin(ﬂ“}} (2.44)
Note, that there is a qualitative difference in a behaviors of interference terms
in Eqs.(2.28) and (2.44). In the former an amplitude of oscillation with w
increase decreases as 1/w? whilst in the latter the corresponding amplitude
weakly (logarithmically) increases with w decrease.

From the above analysis [ollows that in the case when T <€ 1 (vy > 1)
the spectral distribution of probability of radiation with the polarization of
a medium taken into account has the form

{ lwy lw;p, ]
Lttt B oy +CUS{HTT}{ Y i [2“3]

dw dw dw

where dwyp/dw is the spectral distribution of probability of radiation in a
thin target without regard for the polarization of a medium. In the case
4k = viT > 1 the probability dw,;/dw is defined by Eq.(2.40) and for the
case k < 1 it is defined by Eq.(2.41). More accurate representation of the
probability of radiation dw;y,/dw may be obtained using Eq.(2.39). It follows
from Eqs.(2.44) and (2.45) that if we make allowance for multiple scattering
at KT 2> 1 this results in decreasing of oscillations of the transition radialion
probability by magnitude of the bremsstrahlung probability in a thin target.

3 A qualitative behavior of the spectral
intensity of radiation

We consider the spectral intensity of radiation for the energy of the initial
electrons when the LPM suppression of the intensity of radiation takes place
for relatively soft energies of photons: w < w, < &:

vilwe) = 1; We =~y I} Lo (3.1)
i
see Iqs.(2.4), (2.6), (2.7) and (2.9). This situation corresponds to the
experimental conditions.

A ratio of a thickness of a target and the formation length of radiation
(2.8) is an important characteristics of the process. This ratio may be written

LG

as

Blw) =T (vo + k) =T, [i PO D AR ] 1

We W Wy
[w 4 A |

T e e = T.=T ~ — : k¥

1 2’}":} : HJ; wn‘}r! . (wc) ¥ LI'{HI‘- ( }

[We A
where we put that vy =~ —Z . Below we assume that w, > wyp which 1s true
W

under the experimental conditions.
If 3(we) = 2T, < 1 then at w = w, a target 1s thin and the Bethe-Tleitler
spectrum of radiation is valid at w < w, in accordance with Eq.(2.39) since
4k = v&.’{‘ = T, <« 1. This behavior of the spectral curve will continue
with w decrease until photon energies where a contribution of the transition
radiation become essential! In this case the spectral distribution of radiation
has the form (2.45) for all w
dw  duwy, o QBT
= =~ + cos(kT)

dw dw dw

(3.3)

Since for soft photons (w < ¢)

dl_ 20 [ gy T ( b %) m.;h-.:e‘)] (3.1)

dw T 3 3L

and 1./3 < 1 a contribution of the transition radiation become visible al-
ready at T € 1. Vor w > w, (1. < 1) the probability of radiation is delined
by (2.26)-(2.28). In this case a considerable distinction from Bethe-Tleitler
formula will be in the region w ~ w, /7.

If Blw:) > 1 (1 > 1) then at w 2 w, a target is thick anél one has the
LPM suppression for w < w,. There are two opporiunities depending on the
minimal value of the parameter /7.

—_ 1/3 2/3
8 : W "1';-411;} # o {-‘-J,r* i
Peni e Tagd =+ W=y — W ‘ [*—L'}}
2 e -i' e e

If 3,, < 1 then for photon cnergies w > wy it will be wa such that

]
Wl

[Pa—
Ilrff

(3.6)

J’[.l.-r] =1 tfn =

and for w < ws the thickness of a target becomes smaller than the for-
mation length of radiation so that for w < ws the speetral listribution
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of the radiation intensity is described by formula (2.39). In this case for
4k = vgT ~ T. > 1 one has (2.31). Under conditions k7' < 1,w < wa the
spectral intensity of radiation is independent of photon energy w. It should
be noted that due to smallness of the coeflicients in expression for § (2.35),
such behaviors of the spectral curve begins at w < wyy = dwe ~ 4;.:3,/1'3.
Such beliavior of the spectral curve will continue until photon energies where
one has to take into account the polarization of a medium and connected
with it a contribution of the transition radiation.

As well known, for soft photons (w < g) the Bethe-Ileitler formula for
the spectral intensity ol radiation doesn’t depend on a photon encrgy as well.
So, the ratio of these spectral intensities (see Eqs. (2.39) and (2.42)) is an
important characteristics of the phenomenon under consideration:

i dr 6 R 2
P, H/f R f;j‘ (| + : ) / dooKi (o) 1 = exp (=V(o)T)

dw *° dw 6Ly 0 |
(3.7)
For T, <1 one has R = | and for 7. > 1 one has using expression (2.40)
3 | _ G
R~ —11 Indk+1-0C]—-24+ — 3.8)
: -'f';( +iz,a.-)[“ thalnids, 5.5

For estimates one can put with a good accuracy 4k =~ 7, and L; ~ L.

At J, > 1 a target remains thick for all photon energies and radiation is
described in details by formulae of Sections 2 and 3 of [8] whete comparison
with experimental data was carried out as well.

For very high energies when the LPM eclfect becomes significant at w ~ ¢
Eq.(3.1) should be substituted by

16 2% a” _._}( W‘c) T
= —) |l — nin

ot T : 3.9
m= £ b o] (3.9)
so that / . ;
We/f& 4w Ap
;D P W - (3.10
b %o d2) " et (3.10)

It is evident that for w < w, the radiation losses diminish (lor very rough
estimation one can use ds reduction factor »/(1 4+ #)) and due to this the
racdhation length enlarges. Of course, for the clectron encrey ¢ = 25 Gel Lhis
clfect 1s very weak (order of 1%). However, for very high energy il becomes
quite sizable. For example, for the electron energy = = 500 /¢ this ellect
is of the order of 16%.
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There is, in principle, an opportunity to measure the electron energy (in
region of high energies) using the LPM eflect. For this one can measure the
spectral curve on a target with thickness a few percent of L,qq and compare
the result with the theory prediction [8]. .

Existence of the plateau of the spectral curve in a region ol photon encrgies
where a target is thin was found in [11] within Migdal approach (quautl.lm
theory). Recently this item was discussed in [12] (in classical theory), [13]

and [14].

4 Discussion and conclusions

In [8] the qualitative analysis of the data [5]-[7] was performed. It was .110%@:[
that for targets with thickness [ > 2%Lyqa the formation length of radmtl_on
l; < [ for any photon encrgy w. So, these targets can be considered as thick
targets. The gold targets with thickness | = 0.7%L;aq and | = 0.1%L, .4
are an exception. We calculated energy losses spectra in these t.argel..s. l'(.:rr
the initial electron energy € = 25 GeV and € = 8 GeV. The characteristic
parameters of radiation for these cases are given in Table.

Table: Characteristic parameters of the radiation process
in gold with the thickness { = 0.7%Lyaq and | = 0.1%Lyad
all photon energies w are in McV

e (GeV) | we W T.(0.7) | T.(0.1) | «i(0.7) B (0.7) | Am(0.1) | wen

25 ‘235) 3.92 R 0.96 1.6 0.75 0.12 28
8 24.5: | 1,29 0.82 0.96 0.76 1.6 (.25 3.0

In Fig.1(a) results of calculations are given for target with a tlal{_-.l{lmﬁs_
| = 0.7%L,qq at € = 25 GeV. The curves 1,2,3,4 present correspondingly the
functions JET": JE], Jéﬂ, JFJ (2.13). At w = 500 A eV the value

w 3 ¥ a ’ e ooy e =
nT = /—T, = 84> 1. he interlerence terms are exponentially small and
e

one can use formulae for a thick target. In this case the }_Jﬂl’:’:‘ll'l"lilltf:i; 1y = 0.69
2 (2) R ey
and contribution of boundary photons (J, = J{: g J3' + Jy7) is small
i e : .‘
(o 2= —zﬂ, see [8], Eq.(1.16)) and distinction Bethe-Heitler formula (Jpr =
NS :

1e/3 = 1.94) from Re J?) = Re (J.F:I + ..,-'.E,:} -+ J:';E] + J‘EEJ} is ol the order

: 161
10% according with asymplotic damping factor (1 a5
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Energy losses wdw/dw
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Fig.1. The energy losses w
((a) is for the initial electrons energy € = 25 GelV and (b) is for e = 8 GeV'). The
Coulomb corrections and the polarization of a medium are included. Curve 1 is
the contribution of the term Re J]':?Il
term Re JEJ; curve 4 i1s the contribution of the term Re .;_1[2]1 all (2.13); curve S

= Re JIEE]: curve 2 is the contribution of the

- . . * . L ) & . . .

is the sum of the previous contributions Re J'¥): curve 3 is the contribution of the
boundary photons (2.20): curve T is the total prediction for the radiation cnergy
losses. Iixperimental data from Fig.12 of [7].
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Energy losses mdw/dm
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Fig.2. The energy losses w9 in gold with thickness I = 0.0038 mm in units 22,

o
((a) is for the initial electrons energy ¢ = 25 GV and (b) is for ¢ = 8 G V). The
Coulomb corrections and the polarization of a medium are included. Curve 1 is
the contribution of the term Re J:?’I = Re J.L_Ej]; curve 2 1s the contribution of the
term Re J._?m; curve 4 is the contnbution of the term Re J’jzj: all (2.13); curve §
is the sum of the previous contributions Re J'?): curve 5 is the contribution of the
boundary photons (2.20); curve T is the total prediction for the radiation energy
losses . Experimental data from Fig.13 of [7].
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At w < wip =~ 30 MeV for the case T, > 1 and 8, < 1 the spectral
curve turns into plateau according with discussion in previous Section. In
this photon ecnergy region the parameter 1y > 3 and Eq.(2.32) for a target
with intermediate thickness describes the spectral probability of radiation
with a good accuracy. With the further photon energy decrease one can use
limiting formula (2.35) where v3T = 4k ~ 7.4. TFor this case the ratio of
ordinate of the plateau to ordinate of the Bethe-Teitler intensity (sece (3.8))
is R ~ 0.57. Note, that in formulae for JI{E}+* ,52:' the potential V,(p) (2.6) is
used which doesn’t include corrections ~ 1/L (v(g)). These corrections were
calculated in [8] both thin and thick targets. In our case (vp > 1, voT > 1)
the expressions with corrections ~ 1/ are given in (2.34) and (2.40) for a
thick target and a thin target respectively. Taking into account behaviors of
correction in the region vy < 1 (curve 2 in Tlig.2(a) of [8]) we construct an
interpolation factor (taking into account the term ~ 1/L) with accuracy of
order 1%. The summary curve (1') in Fig.1{a) contains this factor.

The transition radiation contributes in the region w < w, (function Re Jézj,
curve 5 in Fig.1(a)). When x7" < 1 this curve is described by asymptotic of
Re Jﬁ(j} (2.32). The contribution of the transition radiation increases with w
decrcase and for kT ~ 1 it describes by q.(2.43). The contribution of the
multiple scattering diminishes due to interference factor cos(x1') in (2.45) (at
w=0.2McV, kI' = 1.9). The curve T in Fig.1(a) gives the summary cou-
tribution of the multiple scattering (the curve S, where factor (1 — wie) is
included) and the transition radiation (the curve 5).

In I"ig.1(b} results of calculations are given for target with a thickness
| = 0.7T%L,aq at ¢ = 8 GeV. The notations are the same as in I'ig.1(a).
In this case the characteristic photon energy w, is one order of magnitude
lower than for ¢ = 25 GeV/, so that at w = 500 MeV the paramecter vy is
small (1] =~ 1/20). Because of this the right part of the curve S coincides
with a good accuracy with Bethe-Ileitler formula (the Coulomb corrections
are included). Note, that for this electron energy the effect of recoil (factor
(1 —w/e)) is more essential. Strictly speaking, a target with a thickness
0.7%L,q4q at £ = 8 GeV is not thin target for any photon energy (5, = 1.6).
However, for bremsstrahlung this target can be considered as a thin one for
W < wep =3 MeV. Since the polarization of a medium becomes essential in
the same region (w, = 1.25 MeV), the interference [actor cos(x7’) in (2.45)
causes an inflection of the spectral curve S at w ~ 1 MeV . The transition
radiation grows from the same photon energy w and because of this the total
spectral curve 7" has a minimum at w ~ 1 MeV. As far as there is some
interval of energies between wp and wey (wip —wp ~ 3 MeV), this minimum
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is enough wide. Morcover, the value of its ordinate coincide with a good
accuracy with ordinate of the plateau of the spectral curve S in Tig.1(a)
because bremsstrahilung on a thin target is independent of electron energy
(2.40).

In Fig.2(a) results of calculations are given fo: target with a thickness
0.1%L,aq at € = 25 GeV. The notations are the same as in Tig.1(a). Tor
this thickness 7, = 0.96 and one has a thin target starting from w < w,.
So, we have here very wide plateau. The lelt edge of the plateau 1s defined
by the contribution of transition radiation (w ~ w,). Since in this case
4k = vl = 1. ~ 1 (sce (2.39)=(2.42)), one has to calculate the ordinate
ol the plateau llﬁi_t!fh{-;.!.hl? exact formula for a thin target (2.39). Tor this
case the ratio of ordinate of the platcau to ordinate of the Bethe-Tleitler
intensity (see (3.8)) is & ~ 0.85. The same ordinate has the plateau for
clectron energy ' = 8 GeV (Fig.2(h)). However, a width of the plateau lor
this clectron encrey is more narrow (1 MeV =20 Mel') due to diminishing
of the interval between w, and w.. lor w > w, the formation length of
radiation bicomes shorter than target thickness (7' = T.w/w. > 1) and the
paramcter vy decreases. The value 1T =1, ‘vﬁ increases with w growth,
A target becomes thick and the speetral curves is deseribed by the Bethe-
Heitler formula in Fig.2(b) starting from photon energy w ~ 100 eV, In
Fig.2(h) the contributions of separate terms into Re JE are shown as well,
Their behavior at w > w, is deseribed quite satisfactory by formulae (2.29)-
(2.30) (see also discussion at their derivation).

We compared our calculations with experimental data [7]. The curves 7'
in Fig.1,2 give theory prediction (no fitting parameters ) in units 2a /7. We

recalculated data according with given in [7] procedure

{w boiiNees
L = k=019 (1.1)
dew exp Liag *

It is scen that in Fig.l{a) there 1s a perfect agreement of the theory and
data. In Fig.1{b) there a overall difference: data is order of 10 = are higher
than theory curve. For photon energy w = 500 AMelV the theory coincide
with Bethe-Heitler formula (with the Coulomb corrections) applicable [or this
energy. Note that just for this case it was similar problem with normalization
of data matching with the Migdal Monte Carlo simulation (4+12.2%, sce Table
Il n [7]).

For thickness { = 0.1% L, .4 there 15 a qualitative dilference belween our
theory prediction and Monte Carlo simulation in [7]. There was a number
of experimental uncertainties associated with this target. Nevertheless, we
show data for ¢ = 25 Gel” which are lying higher than theory curve.
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For target with a thickness | = 0.7%L,qq at ¢ = 25 GeV data was com-
pared with calculation in [14] (the Coulomb corrections were discarded). Af-
ter arbitrary diminishing of calculated value by 7% it was found excellent
agreement. It is seen from the above analysis that this subtraction can be
considered as taking account of the Coulomb corrections contribution.

We would like to thank S. Klein lor useful comments about data.
V.N. Baier and V.M. Kathov
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