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Abstract

Relative order a{Za)® shift of the energy levels induced by the vac-
uum polarization is reexamined for a bound system of two particles
with masses m and M. Recent results for hydrogen and for positro-
nium are shown to contain an error due to the inadequate procedure
of the infrared divergence handling. Numerically, the correction to the
ground state energy constitutes 0.647 kHz for hydrogen and 46.7 kHz

for positronium.
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I. INTRODUCTION

The radiative correction of the relative order a(Za)? to the energies of
positronium and the radiative-recoil correction of the relative order a(Za)> 33
to the hydrogen energies should be taken into account when one compares
the recent experimental results [1, 2] with the QED predictions. An attempt
to calculate such the corrections, induced by the vacuum polarization, was
undertaken in Ref.[3] for hydrogen. In Ref.[4], the same correction was cal-
culated for a two-body system of particles with an arbitrary mass ratio and
the result was applied to hydrogen and positronium.

In the present note the calculation of the vacuum polarization correction
is reexamined with the purpose to clarify the issue of the infrared regulariza-
tion. Such a regularization is necessary for a control over the linear infrared
divergence arising in the course of the calculation and through which the
leading order correction reveals itself,

In order to separate the contribution of the leading order, which comes
from the atomic scale, from the next-to-leading one, saturated by the rel-
ativistic scale, we introduce the auxiliary parameter N, mZa <« X <« m.
Subtracting the Yukawa potential from the Coulomb one,
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we find the contribution to the energy due to the range of r’s satisfying
#7 < r ~ —3—. On the other hand, the subtracted contribution is saturated
by the short range, 5z > r ~ }fﬁ In the sum of two contributions, the
dependence on the parameter A’ is cancelled away.

Below we use a standard scheme of calculations, taking the vacuum po-
larization into account by means of the substitution
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for a propagator of the photon, which polarizes vacuum. An energy correction
which thus becomes a function of X is then integrated over A with a density
of intermediate states p()), which equals

2a A\? + 2m? 4m?
2o 1= S~ 2m) (3)

for a free particle-antiparticle pair.
II. ORDER ma(Za)* CONTRIBUTION

If bounded particles are non-relativistic, vacuum polarization manifests
itself primarily due to the Coulomb field. Since the atomic momentum is
much less than a mass A of the particle-antiparticle pair, this momentum
can be neglected in the right-hand side of (2), so that an effective potential
induced by the Coulomb vacuum polarization, at fixed A turns out to be

Val(r) = —42?& a(r), (4)

while the corresponding (lowest-order) contribution to an atom’s energy 1s
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After the integration with respect to A with the weight function (3) it turns
g taZalb(0)1
aZo
ABLo=———1 4 (6)

Now let us find the correction to this result induced by the modification
of the Coulomb potential at short ranges (recall that X > mZa),
Z o Z X Z Cx 2 Jﬁj'."
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To this end we calculate the average value of the operator (4) over the
state, whose wave function is perturbed by the short-range correction to
the Coulomb potential {7):
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Here G (#', r|E) is the reduced Green’s function of the Schrodinger equation
in the Coulomb field, ¥(r) is the solution of this equation. To the lowest
order in Za, we can disregard the Coulomb interaction in § and the atomic
momentum as compared with X":

G(0,r|E) =~ 12, $(r)->¥(0), ©)

(= mM/(m + M) is the reduced mass) and obtain

2
en = T o3 (10)

iI. ORDER ma(Za)® CONTRIBUTION

In the next-to-leading order, let us consider the double photon exchange
accounting for vacuum polarization by one of these photons. According to
the Feynman’s rules, corresponding contribution to the energy at fixed A is
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This expression can be represented graphically as two fermion lines connected
by two photon ones. The first and the second terms in the angle brackets
correspond to the graphs with uncrossed and crossed photon propagators,
respectively. In {11), k* = k2,

K=1kZ=22 K =1/kE-2%

w=\[kE+2mko, D = \/kE + 2Mko;

~u (T ;) are the Dirac matices for the light (heavy) particle. The parameter A
will be used below as a mass of the virtual pair, in accord with (2), while the
parameter X' is introduced to regularize the otherwise infrared divergent inte-
gral in (11). Two possible ways to insert A and X' into the photon propagators
are accounted for in (11) by the overall factor 2. Choosing A\, X > mZa, we
can neglect atomic momenta so that taking the average over a bound state
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reduces to that over the Pauli spinors which is denoted by angle brackets,
together with the multiplication by $? = |(0)|>. The spinor averages are
trivial:

(1 +70)%) (T (1 4+ To) o) =4, (12)
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(YuvoTv) (rﬁ(,,rﬂrpm} = 4 F 200, (14)
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Before proceeding further, let us consider the analytic properties of the
integrand in (11) as a function of kg. The photon propagators have the poles

at the points £V k? + 22 and +1/k2 + X2, After the integration over k these
poles turn into the cuts that go from —oo to —A (—=A") and from A (A to
o0o. Similarly, the light fermion propagator gives rise to the cuts (—oo, —2m]
and [0, 00). The heavy fermion propagator in the second term of (11), which
corresponds to the graph with crossed photon lines, gives rise to the cuts
(—00,~2M] and [0,00). Finally, the heavy fermion propagator in the first
term, corresponding to the graph with uncrossed photon lines, produces the
cuts (—o0,0] and [2M, o).

It is convenient to extract the heavy fermion propagator from the first
term of (11),

: = : : 16
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and then to change the sign of the integration variable ko— — ko 1n all terms
containing 1/(k% — Q2 ). In this way the integral over ko is naturally splitted
into two parts. The former one,
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where Q = ., is taken over the contour C_, wrapping the left cut. The
latter part is a residue at the ko = 0 pole, which appears in terms containing
kyl(k? —Q2)7! after the change ko— — ko:
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Let us begin with the latter contribution. In (18), the first term in the
brackets is singular when one of the lambdas approaches zero. This term 1S
just the regulator contribution subtracted from the leading order correction.
In fact, neglecting ) as compared with A in the sum X+ A above, we see
that the infrared-singular term in (18) is compensated by the effect of the
Coulomb potential modification (10). Hence, only two last terms in the right-
hand side of Eq.(18) comprise the genuine order (Za)® contribution of the
ko = 0 pole, so that we can safely set A’ = 0 in those terms:

Za)?)? 4x 200’
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Likewise, we can set A’ = 0 in the left-cut contribution (17) as far as
this procedure does not spoil the infrared convergence of the integral. The
integration over k gives for Eeut(N) = Ecur(A,0):

__4(211)21,!12[ { 2m m) 1
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Finally, integrating with respect to ko and adding up the pole contribution
(19), we obtain:

Here

VI—2z2? Vvz? -1
z e

A(z) = 6(1 - z) cos™ g — b{z — 1) cosh™' z. (22)
From (21), the known results for the vacuum polarization contribution to
the hyperfine splitting in muonium [5, 6] and positronium [7] can be obtained:
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is the Fermi splitting with the anomalous magnetic moments omitted.
For the spin-independent part of the correction to the energy levels of
hydrogen and positronium, we have
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where
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These results differ from those obtained in Refs. [3, 4] for hydrogen and in
Ref. [4] for positronium. The error made in both works has the same origin
— inaccurate treatment of the infrared divergence. In fact, the authors of
Refs. [3, 4] do not introduce in (11) the parameter X', which, as we have
seen above, regularizes the infrared divergence. Instead, they subtract from
the integrand in (11) its asymptotic value at small k’s. ‘Giving the finite
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results of Refs. [3, 4], this last procedure cannot be correct, since those finite
results arise as a difference between two divergent integrals. In contrast, the
regularization procedure used in the present work deals with the well-defined
finite expressions.

Numerically, the correction (28) constitutes 0.647 kHz for the ground-
state energy of hydrogen, while (30) equals 46.7 kHz for the ground-state
energy of positronium. In the case of hydrogen, the correction exceeds the
uncertainty of the recent measurement [2].
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