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Abstract

New mlnuni?ation strategy is suggested for non-smooth functions. Main el
ement -::;f this strategy is a combination of Simplex method anti modiﬁeci
Newton s one. Probability of reaching the ”true” minimum point is hi hei
mcreasfed by sfuccessive minimization runs from different startin intslg 4
This algorithm is implemented in Fortran-77 in subroutine CSIE[%I. (_:)nm-

parison of minimization results obtained with COMBI
‘ and MINUIT pro
1s performed on the set of functions with complicated profile. iy

©Budker Institute of Nuclear Physics SB RAS

1. Introduction

Function minimization is a very typical problem in data processing in high
energy physics experiments. For interactive work with data the code MI-
NUIT [1] is generally used, providing very good convergence to the minimum
point of function and nice service (statistical errors evaluation, contour plot,
fixing and releasing some of the function parameters etc.) User manual of
MINUIT has a special warning that this program ”...is not intended for the
repeated solution of identically parametrized problems (such as track fitting
in a detector) where a specialized program will in general be much more
efficient ...”. : .

Trying to apply some new approach for kinematic reconstruction of events
[2] to the experimental data of SND-detector [3], the author encountered this

. very problem: what general purpose minimization code can be used? Despite

the mentioned warning the program MINUIT was used first. The trouble was
that sometimes a message like ”...arithmetic fault, floating divide by zero
» was issued from one of MINUIT subroutines. It was very difficult to
override this trouble, and if SIMPLEX mode was used instead of MIGRAD
then troubles disappered but minimum was found with less probability and
hence selection efficiency was significantly decreased. These circunstances
gave rise to the search of some minimization strategy, which would be reliable
enough (as compared to MINUIT) even is slower than MINUIT.




2. Description of the new algorithm

The main idea of this new algorithm is to combine two well-known algo-
rithms: SIMPLEX [4] and Newton’s method (which is rarely used for func-
tion minimization because in general case it does not provide convergence to
the minimum point; one of the possible implementation is discussed in [5]).
This combination proved to be rather efficient, but nevertheless rather often
minimization is stopped far from the ”true” minimum point. In order to in-
crease the probability to find ” true” minimum point several minimizations by
SIMPLEX method are performed from different start points. Achieved min-
imum points of differents: minimization runs are stored in an array, and the
information about these minimum points influences on the choice of the next
start point and is used to make a decision when to stop the minimization.
At any moment not more than four results of previous minimization runs are
stored, and extra minimum points are rejected by a special rule.

Here is a brief description of the algorithm.

2.1 Sta.rt of new SIMPLEX minimization

The choice of the starting point of the new SIMPLEX minimization depends
on the number of SIMPLEX run:

1. The starting point of the first SIMPLEX run is supplied by a user in
the input parameters.

9. The starting point R,¢are of the second run of SIMPLEX minimization
is derived by the following rule:

Rﬂ‘ =7 Rl
Rﬂ a — R + R.um Y e 1
tart 2 jump IRﬂ - Rll ( )

where R is an initial point supplied by the user and Rs is a minimum
point found by the first SIMPLEX run, Rjump i8 & variable which for
the second run is set to :

Rjump = 0.01 x |R, — Ry| + 0.1,

and for all successive runs is varied according to results of the current
minimization. If the new minimization result is better than any previous
one, then Rjump 18 increased by a factor of 3, otherwise it is divided
by 2. The latter assures the convergence of the algorithm.

3. For all other SIMPLEX runs the starting point is chosen along the

» parabolic” curve
Rypare = Rz (141 — Ry -t+t(t+1)e (2)

where R is the best minimum point of all the previous SIMI?LE}{ run;&
and R, is the most distant minimum poini to R of all points, stor

i inl i »history” array). The
i ent in the array of minimum points ("history y):
B o | to the vector (R1 — R;) and provides minimum

vector e is orthogona ' pr : .
sum of squared deviations of this curve from the minimum points R,

stored in the »history array:

dz[ﬂi—ﬂzfti;(R1-Rzﬂii*(ii+_)_ ' )
iz T2+’

where i Ra)(R1 = R1)

< (R1 — R2)?

If the absolute valuee of this vector exceeds the current value of Rjump

or |R; — Ral then the length of this vector is'sl_m?teufed to the leas;
of th;sé two values. 1f there are only two minimization results an

ertainty in the definition of the vector e then 1t 18

thus there is an unc | :
set to zero. Parameter ¢ in formula (2) is chosen SO that thg distance

|Rstart — R;| is equal to Rjump-

The initialization SIMPLEX step H, 18 set to Rjump % 0.1 (for the first SIM-

PLEX run Rjump i set tO unit).

2.2, Initialization of SIMPLEX

First, the initialization step in each coordinate f:c; 18 ji;j tc} hi T ;i ,; :;zzt?;lel
i i dinate is performed by functl

eliminary descent along this coordl . function

1;:. the points Zj + h;. If the function value In sOIme direction is less than

that at the initial point, then h; is multiplied by 1.5 and the function check

is proceeded from this new point. Since the function value at the points

2. + hy is greater than that at the point Z; the preliminary descent along this
] 1 2 &
i i ; d by 2. |
dinate is stopped and h; is divide + : - _
mm’:]fltms we obtain an improved starting point R;ti“-t w1t]:‘| n (;ncrd*xﬁateﬁ
Ti, i = 1} n. Then we construct a set of (n+ 1) points which we shall ca
R L o g

further as simplez. One point is the starting point Rstart) all other points are
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obtained increasing all coordinates by
there

e , h; in turn. Among these (n+ 1) points
18 one with the lowest value of function. This point will be called the

"best point”. Similarly there is the ”worst point” with the greatest value of

the function. SIMPLEX minimization is perform
the worst point to a new better one.

2.3. Choice of a new point for the simplex

Let us denute the points of the simplex as R;, the best point as Ryes: and
the worst one as Ry op ;. F;'r_st, the "center of gravity” R, is calculated:

1
R,c::; Z Rj

RJ #anrit

(4)

Now four new points in turn are tested as a replacement for the worst point
If any of these points has a function value less than that of the worst point'
then the worst point is replaced by this new point, and the new best anci
worst points are determined.

P:Iew points are searched along a straight line going through the center of
gravity and the worst point, defined by a parameter p

R=(1+P)XRc_PXRworst (5)

The first point is tested at p = 2, the second one at p = 1. If none of
these points is better than the ” worst” point, then the function is evaluated at
p = —0.5. The parabolic interpolation by the least squares’ method is done for
the four points: three new points with different p and the "worst” point. At

the .n_linh.num point of this parabola the function is also evaluated and the final
decision is made. If one of these points is better than the ”worst”

?implex, Fhen the latter one is replaced, and the new ” worst” point in simplex
is dn_etermu?ed'. If the replacement is impossible, then initialization parameter
H s is multiplied by 0.2 and simplex initialization is repeated around the best
point of the simplex (jump to 2.2). '

In parallel :with simplex minimization all points and the function values
are used to estimate the minimum point by the modified Newton’s method.

point in a

2.4. Modified Newton’'s method

The bﬁase ot: the Newton’s method is reconstruction of the quadratic form
coefficients in the n-dimensional space using function values in N, = (n +

1)(n +2)/2 points. Since the coefficients of the quadratic form are obtained,

6

ed by successive change of

-

one can derive the minimum point Rg and predict the minimum function

value fg. e |
Singe we often deal with functions strongly differing from the quadratic

form and the chosen points are not optimal for the evaluation of quadratlg
form coefficients, it is more reasonable to use least squares methu::l for thlfi
approximation of the function surface with the quadratic form ;Wlth muc
i N _ e
mmi‘; ﬁ?lli:tzlzgjilzhnf all the successive points agd function values during sim-
plex minimization are used to store the appropriate sums for the least squares
method. If the number of used points exceeds (3Ng+5) then' the coei"ﬁgents
of the quadratic form are evaluated, which are used to predic the minimum
point R, and minimum function value fg. tI‘he stnr:ad sums are reset to zer]:c:.
If the actual function value at the predicted point S(Ry) is less th‘an the
best function value of the simplex, then we go to 2.2 to start a new simplex

around Ry.

25 End of simplex minimization

To stop the simplex minimization a user deﬁneil parameter ¢ 1s used {daﬂx;;d
accuracy). Simplex minimization is stoptped if the rf!1ﬂ'erent:je between ;
function values at the best and worst points of the simplex is less than o -
10" we ' : & g
The results of simplex minimization are stor{fd in a‘specm,l array (”history
array). The number of remembered results is h_:mte_d to 4, 80 wheu the;
number of minimization results exceeds 4, the new l'result subsilnt'utes onaej o
the previous ones. This substitution is always dont_a if a new minimum v u?
is less than all previous minimum values. Otherwise su!}s!;;tutlon is df:me i
a distance from the new minimum point to the global. minimum pofnt is less
than that of any minimum point. This most distant minimum point is deleted
fantgecZ]:};hen the new minimum point is the most distant point from
the global minimum, the substitution is not donejt, bl..lt the p.::r,rameter Rji,mp
is multiplied by 0.5 so that the next minimum point is more likely to be close
bal minimum. 3 s
- t'kIl‘t:kjiigs;h:1]4:e:a1:r size Rjump 18 multiplied b},_r 3 if the new minimum 'pmnt tf’
better than all previous points and the dlstam.:e from the new mmlmumh
the previous one is greater than 0.5R;jump- This can help to move along the
2 » with an increasing step. ‘ :
va'g?i}phx minimization Euns are repeated accordiig to 2;1 w‘h1‘le Rjump 18
greater than 10712 and the difference between the ”worst” minimum value




in the array of minimum points and the achieved global minimum value is
greater than 0.0le.

2.6. End of global minimization

As it was mentioned, the minimization is usually stopped when the difference
between the minimum values in the "history array” becomes less than 0.01e.
But sometimes an estimation of the minimum point R4 by Newton’s method
is considered to be good enough to be the global minimum. It occurs when
the difference between the estimated minimum function value f; and actual
function value f(R,) is less than 0.01 - e.

~ Minimization is also stopped if the number of function evaluations exceeds
the user defined limit. In all cases the best point is output as a minimum
point.

The subroutine COMBI performing minimization according to this algo-

rithm was written in Fortran-77.

3. Test of the algorithm

For program debugging and test of the algorithm the following functions of
two parameters were used:

fi(z,y) = [(z - 9)? — 4] + 100 - [6(z? + 3?) + Bzy — 4]

: _ ; 4 fl 1:_1
mlﬂfl(i’:y) =0= { f1%—]-! 1%

falz,y) = 100- [y — 0.0122 + 1]% + 0.01 - (z + 10)?
min f(z,y) = f2(—10,0) = 0

fa(z,y) = 100 [y — cosz]” + (y — = — 1.5x)?
min f3(z,y) = fa(—1.57,0) = 0 ¢ f3(—4.712388980385, 0)

fa(z,y) = 100y? +0.01 - |z + 10]
min fy(z,y) = f4(-10,0) =0

fs(2;9) = 100+ |z + 10| + 0.01?
min f5(2,y) = f5(-10,0) =0

fe(z,y) = 100+/]y — 0.0122| + 0.01}z + 10|
min fs(z,y) = fe(—=10,1) =0

I EEEEEEEEEERRERRRRRREEI I

fr(z,y) = 100-/[25 + zy| + 100 1z + exp(y) — exp(5) + 5]
~5,5)
min fa(e,y) =0 = { ﬁ%m.m, ~0.17535)

fo(z,y) = 1000 - |y + =2 — 800] + |y + = + 40|
min fs(z,y) = fs(—20, —-20) =0

2
folz,v) = 1[}00(::—53;—3;2) +|ly+z+9|
. min fo(z,y) = fo(—6,-3) =0

-
frolz,y) = 1000 (z* + 20|z| +¥* - 270) + 3z +y + 30}

—7,—9
min fio(z,y) = 0= { iEE—g, —3% =0

2
y) = 1000sin?(z — y) + (z +5)* + (¥ +5)
T I:;;linfn(x,y) = f11(-5, -5)=0

fi2(z,y) = 1000z +9 — pcos ol + 1000]y + 5 + psinp| +p
where p=+/(z+5)* + (¥ + 5)2
min fi2(2,y) = fi2(-5,-5) =0
= p+ 100sin® (10p — @), i
fla(rigierep; =/(z+3)2+(y—-05)7%%z= —3+ pcose, y=0.5+ psing
min f13(:L', y] = flg(—g,ﬂﬁ) =0

= - ? + 11
fra(z,y) = 1000]y — 0.0012%| +y + 2
min fi4(z,y) = f14(=10,-1) =0 .

fis(z,5) = 1000jy + 2% + 10z — 25| + 0.1 - |y + 102 + 75|
{ f15(—10,25)

min fis(z,y) = 0= f15(10, —175)

fie(z,y) = 1000 - |(y+ = — 10)(3y — =z + .10)(315 —y+10)|+ly+z+ 10
~ min fis(2,9) = f1s(=5,-5) =0
| fiz(z y) = 1000 |(y+ 2z - 10)By = + 10)(32 — y + 10)| + |y + = + 10}
’ f12(=5,-5)
min fiz(z,¥) =0= { fi:'EQU, —30)
fis(z,¥) = 1[}00~‘(y+15:c+80)(y—21::f1{10}{10{13-{—1.'—100)[+ly+17m+90!

; f18(=5,—5)
min fis(z,y) = 0= { f15(2.28916, —128.91566)




fro(z,y) = 1000 |y — 22+ 10|+ 0.1 |y — z — 62|

| = e, T
min fig(z,y) =0 = { flz(—ﬂ, 54) =0

fao(z,y) = 1000 (y — 5z — 9)" + 0.1 - (4y + = + 6)?
min fzo(2, y) = fo0(~2,-1) =0

As one can see, all functions have a minimum value equal to zero. The
initial point was always * = 1,y = 1, initial steps were equal to 0.1. While
using COMBI the required accuracy of function minimization was equal to
0.01, a search for minimum by MINUIT program was performed at default
conditions (MINUIT release 95.03 was used at VAX /3600 station).

Table 1 demonstrates the achieved minimum points from the main MI-
NUIT algorithms and COMBI with a limit on the number of function calls
equal to 10%. The remaining distance to the real minimum point r(® from

2
the estimated one r equals Ar = , (3 (r; - rgu}) . The ” Abend” instead
:
of the results of minimization means that no results were obtained because
of some error message, something like ”. . . arithmetic fault, floating divide by

zZero ...”".

First of all, these results show the well-known fact that the Minuit modes
MIGRAD and MINIMIZE work much better than the modes SEEK and SIM-
PLEX, therefore let us compare only MIGRAD or MINIMIZE with COMBI.
For all 20 functions in Table 1 COMBI successfully found the minimum point,
whereas Minuit has reached the minimum point in 6 cases. On the other hand,
in these 6 cases COMBI used for the search 2 to 10 times more function eval-
uations than Minuit (the last function is extremely simple and is used only
to test the correct work of the modified Newton’s method).

It is interesting of course to check the algorithm with functions of more
parameters. Table 2 demonstrates similar minimization results for twelve
different functions F; of 4 variables. It is more difficult to construct some
interesting functions in the 4-dimensional space, so the first 10 functions

Fi(%1y...,24) were constructed of the former 2-dimensional functions
fr(z,y) in the following way

Fi(z1y...,24) = fai—1(z1, 22)+ f2i(x3, 24) + f2i-1(z1, x2)- foi(z3, 124;
6

The function number 11'is defined as follows

Fi1(zq, 2, 3, 24) = p + 100 sin®(10p — @1 — 22 — 3p3) (7

10

Table 1: Results of minimization of 20 two-dim
algorithm and MINUIT. ﬁir is
number of function evaluations,

R R R R R R R R R R R E—EERRREEERRRRRRREREIRRRRR™

a distance to the

ension functions fi(z1,%2) by COMBI
mgrue” minimum point, Neat equals the
which were used to reach a minimum point

fmin
ﬁf/Ngm
Function MINUIT command COMBI
Number | —eerr—TaIMPLEX | MIGRAD | MINIMIZE =
§ 58-10° | 5.0-107" 1_6.?45 1]:65.1;45 E'i,;sl;}
1.5 . .

g:g{zigﬁ %%?2 17-.10-° | 1.7-10°° | 4.0- .Y T

; 0.0/36631 | 9.3/87 0.0/280 0.0/280 0.0 ;1891
6.0-10-° | 9.8 9.77 9.77 2.4.10

¥ 0.0/31298 3.3/48 3.1/99 3.1/99 u_unm:ig
36.10-7 | 4.6-107* | 100.1 T 7.7 -51;;

4 | g.0/21320 | 0.0/33 | 11.0/46 | o.o/s51
5.5.-10~* | 0.18 989.0 2.2:10 1.5-10

: 0.0/15100 | 0.7/47 9.9/56 0.0/210 ﬁ.ﬂjszz:r
0.56 0.22 0.28 0.22 3.8-10

2 11.1/12014| 19.0/103 | 19.1/146 | 19.1/223 | 0.0/27643
26.5 0.21 1300.0 | 1287.5 3.8-10

¢ 0.0/51453 | 0.0/138 | 20.4/97 | 20.4/202 | 0.0/54474
T8.Y 69.3 68.6 68.6 6.2-10

8 | 56.0/20053| 52.6/77 | 52.4/190 | 52.4/190 | 0.0/16405
1.8-10-+ | 1.8 5.4-10"° | 5.4-10 3.4-10

3 10.0/23639 | 1.4/216 0.0/598 0.0/598 0.034621_ _

11




Table 1: continued

.fmin
Ar/Necai
Functio
Numbe:l PP MINUIT command COMBI
SEEK | SIMPLEX | MIGRAD [ MINIMIZE |

= 57.5 60.4 §.7-10°" 1 871077 1 1,110 |
18.4/24941( 19.9/65 0.0/5222 0.0/5222 0.0/51504

- 5.2; 10-% | 8.1-10-° | 1.0-10~°¢ | 1.0.10"%° | 5.7.107"*
0.0/24105 | 0.1/55 0.0/35 0.0/35 3

5 5.44 10.1 1:"1.’; 13,{; 2,3{31534_
5.3/24218 | 10.1/72 ' | 13.9/125 13.9/206 | 0.0/14308

5 4.4; 10— 4.:/ 5.1/ 98 b ks
0.0/26914 | 4.4/32 5.1/60 5.1/60

i 10.2 22.0 26.2 21.4 g:g{sféisr
9.2/2211{} 20.1/55 19.8/112 19.8/229 0.0/8512

e 9.9 9.6 9.6 9.6 26.10"° |
26.4/17720| 26.8/60 26.8/159 | 26.8/159 | 0.0/20075

= 6.4 8.0 4.8 4.8 1.1-10-°
4.7/18445 6.3/81 3.8/187 3.8/187 0.0/15449

17 26.0 24.1 15.0 15.0 1.4-10"° |
11.3/E425 19.0/84 11.2/156 11.2/191 0.0/31227

55 11903.8 | 107.8 110.9 107.3 2.6+10-°
8.5/25779 | 8.5/90 8.1/95 8.1/145 0.0/40544

R 6.4 6.4 6.4 6.4 36-10-° |
54.3/16197| 54.2/58 53.8/179 | 53.8/179 | 0.0/18054

20 14-10-%° | 7.0-10-% | 8.4:.10~° | 8.4-10~ % | 2.4.10™%
0.0/14165 | 0.0/62 0.0/45 0.0/4% 0.0/24

12

where

p=+/(z1+1)*+ (=2 +1)2 4+ (zs+ 1) + (24 + 15,

+1)%+ 1)3+(za+1)2
w1 = arctyvim } E::a:I} HewtD ’

s4+1)3 a+1)2
w2 = ﬂrdg\/{m—i-,:i_:_l(m ) ’
w3 = arctgi-;-'_ﬁ—
miﬂF:u == F11(—'1, -"1._. —1, '—1} =0

The last function Fiz is a quadratic form:

Fia(®1, 22,23, ®4) = (1 + 22 + 23 + 24+ 4)2+
+100 « (x1 — 222 4+ 323 — 4x4 — Z)E-I- 8
4100 - (251 + 29 — 2x3 — 234 o 2)2+ ( )
4100 - (21 + 223 + 223 — 324 + 2)°

with min Fi3 = Fi2(—1,-1, —-1,—-1) = 0.

The limit on the number of function calls was set to 108 for all algorithms
except for the random search SEEK of MINUIT program, where parameter
mazcalls was set to 10%. A starting point for minimization was always equal
to (1,1,1,1). Here the program COMBI found the ?{rue” minimum point in
8 cases from the total of 12 functions. Minuit found the minimum point in 3
cases (the failture of COMBI was always followed by that of Minuit). In those
cases when both programs failed, the minimum function value of COMBI
was usually considerably lower than that of Minuit. Again, for successful
minimizations Minuit works (4 + 10) times faster than COMBI.

The table 3 shows results of the minimization of 8 functions R; of 8 pa-
rameters. The first 6 functions are constructed from the previous 12 functions

of 4 parameters:

Ri(z, ..., 28) = Fai-1(21, 2, 3, z4) + Fai(xs, 26, 27,28)  (9)

13



Table 2: Results of minimization of 12 four-dimension functions F; by COMBI algorithm
and MINUIT. Ar is a distance to the "true” minimum point, Neat equals the number of
function evaluations, which were used to reach a minimum point :

Fmin
&T/Nga:
Function MINUIT command COMBI
Nimberl e - i g
SEEK SIMPLEX | MIGRAD | MINIMIZE
3 8.9-102 | 5.74 16.0 16.0 3.1-10" 1
2.9/32235 | 23.6/129 1.5/476 1.5/476 0.1/3814
> 0.15 10.97 53:100° | 5.3-10"" | 9.2-10™"
13.7/19275| 10.8/75 0.0/1049 | 0.0/1049 | 0.0/3939
A 1434.1 0.298 0.312 0.195 2.3-10-7 |
15.9}118071} 21.0/184 18.9/279 18.8/408 0.0/36570
2.5-107" | 8.8-10%* 1.2:10°%%
4 20.1/43114| 53.3/276 fend Abend | 4 /84782
370.4 1099.8 60.8 60.8 6.4-10"
; 18.9/37398| 24.4/148 | 19.5/1318 | 19.5/1318 | 0.0/100009
449.5 809.4 438.1 | 5.15 8910 *
< 9.4/17312 | 13.2/200 | 9.8/181 | 5.0/488 | 0.0/47901
1.8 125.4 I7L.7 116.5 3.2
- 11.4/17268] 19.7/338 | 20.5/193 | 20.5/338 | 3.2/24986
8 1.2-1077 | 1.2-1077 | 92.6 90.9 78.1
28.0/33588| 28.1/266 | 27.5/326 | 27.5/519 58.2/40931
1.6-107° | 2691.6 107.8
» 12.5/11319] 20.4/310 e Abend | g 5 /89885
¥ 101.8 31437 SUL.T 8.56 .
54.1/20667| 56.4/192 | 54.8/388 | 54.2/650 | 56.3/18726
= 1.04 3.99 1.2.10-% | 1.2-10°° | 1.2-10~° |
4.0/10276 | 4.0/32 0.0/6823 | 0.0/6823 | 0.0/88470
12 0.138 9.2.10-% | 1.7-10-%° | 1.7-10~°° | 3.3-107"°
0.0/29407 | 0.0/164 0.0/93 0.0/93 0.0/47
14

Table 3: Results of minimization of 8 eight-dimension function
and MINUIT. Ar is a distance to the "true” point of minimun,
of function evaluations, which were used to reach a minimum point

R; by COMBI algorithm
Neat equals the number

R'rnin
-&F/Ncﬂl
ﬁ““;;i"‘% MINUIT command COMBI
u er — et ]
SEEK SIMPLEX | MIGRAD | MINIMIZE -

. 14.0 28.7 16.0 16.0 2.0-10"°
16.5/14584| 26.2/268 | 1.6/1798 | 1.6/1798 | 0.0/29573
2.3-1075 | 1.9-107° 78.4

2 60.6/66877| 61.4/564 | “bend Abend - | 5g.1/10034

& T387.5 1430.9 54340.3 535234 T1Z.1
23.6/22257| 25.2 /979r 34.5/1313 | 33.0/3086 | 20.4/108464
1.3.-307 ] 1.2° 107 219.9

4 Abend Abend
30.6/21796| 32.3/592 o 32.4/10060]
2.8-107° | 1.0-107" 1828.7

,

H 54.9/16458| 255.1 fmaom“bend Abend 57.7/100799

P 5.67 13.3 1.0-10-2 | 8.6.-10"* | 2.9 :
4.4/57156 | 4.6/268 0.0/11929 | 0.0/12813 | 2.9/101047

v 19.0 18- 107% | 1.69 1.69 1.66
16.7/40834| 16.7/1502 | 16.9/1943 '16.9/1943 | 16.6/34378

8 39.6 114.5 98-10-° | 9.8.10"° [ 2.2-107"
0.6/17793 | 1.2/427 0.0/240 0.0/240 0.0/136
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One more function is defined by the following formula:

R; = 1000 X [(m; + 1 — pcos(5p))?
+ (z2 + 2 — psin(5p) cns(ﬁp)): -
+ (23 + 3 — psin(5p) sin(6p) cos(7p))* +
+ (24 + 4 — psin(5p) sin(6p) sin(7p) cos(8p))® +
+ (z5 + 5 — psin(5p) sin(6p) sin(7p) sin(8p) cos(9p))? +
+ (ze + 6 — psin(5p) sin(6p) sin(7p) sin(8p) sin(9p) X
x cos(10p))® +
+ (27 + 7 — psin(5p) sin(6p) sin(7p) sin(8p) sin(9p) X
x sin(10p) ﬂvn::uus(ll,.t:;))3 +
+ (28 + 8 — psin(5p) sin(6p) sin(7p) sin(8p) sin(9p)
x sin(10p) sin(11p) cmmp))*] +0.1p -

(10)
where

- .
p= \JE(HH-I- i)?

- And the last function is a quadratic form:

Rg = (1 + 22+ @3+ 24 + 25 +$ﬁ+37+53+3)2+
4200 X (1 — #2 + 223 + 224 + 2@5 + 226 + 227 + 225 + 8)* +
+150 X (21 — 233 + 3z3 — 34 + 325 — 36 + 227 — 228 + 8)> +
4300 X (21 — 322 + 223 — 224 + 45 + 22e + 27 — 325 + 8)° +
4100 X (21 — 422 + 3 + 5x4 — 625 + Txg — 8z7 + 9z + 8)° +
+100 X (21 + 223 — 3x3 + 424 — 525 + 62g — Tz7 + 825 + 8)* +
+400 X (z1 + 32 — 423 + 324 — 225 + 26 + 327 — 425 + 8)* +
+250 X (21 -I" 4:!33 - 52‘.3 — 434 + 3-1'-5 et 2:33 — 7 + g + 8)’

: (11)

In this check there is only one function where both programs had suc-
cess, but since it is an exact quadratic form very convenient for COMBI,
we can’t use it to compare the convergence time. The only case when Mi-
nuit performed successful minimization (function number 6) appeared to be
very difficult for COMBI. Minimization stopped due to a function calls limit.
If this limitation is removed, then COMBI reaches a minimum point after
347813 function evaluations (that is 30 times more than Minuit). Among the
other four variants where COMBI stopped by Ngq; limitation, waiving this
limitation has not helped. So the final score of searched minimum points for
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8 dimensions is: 3 found by COMBI (without limit on Neat) and 2 found
by Minuit for 8 different functions. When both programs failed to reach the
»true” minimum point, estimation of COMBI was usually much better than
that of Minuit.

All these test functions look artificial and exotic. So the last trial of
the algorithm is performed with a function typical for data processing in
high energy physics experiments. Let us fit the ”experimental data” with a
resonance curve defined by a simple formula:

5 N,p®(W)[2M?
AW) = Z5@0) - (W7 - M?)? + D207

+b (12)

where

rom = { {GTT W >

Here we have b free parameters: M, ', m, Ny, , b. Let us choose such ?{rue”

values for them: M = 1020, T = 4, m = 490, N,, = 1000, b = 10.

Then for 21 energy points W; = 1010,1011, 1012,...,1029,1030 let us

calculate the ”experimental” numbers of events: n; = p(W;). For the

first test let us use the fractional number of events that provides the known

minimum value of the likelihood function and optimal parameters estimation.
The log-likelihood function can be used in the following form:

[ 2}

> [p(Wi) —ni +m4 In (ni/p(Ws))] |
L = 4 1"1-.6%“.‘a-<:{1+21rn-—1'4»4’),, if M < 2m (13)

1010 x (1 —b), if b < 0
1010 x (1 — p(Wy)), if any p(Wi) < 0

.

The Table 4 shows the results obtained with different minimization pro-
grams. Starting point is always M = 10153, I' = 3.5, m = 450, N,, =
900, b = 1. Initial steps are equal to 0.1.

The table 5 presents results of the fit, when the ”experimental” data are
smeared according to Poisson distribution. Of course here we do not know
the ”true” minimum point and minimum function value.

In order to test the program with two times greater number of free param-
eters let us do the simultaneous fit of ”experimental” data with three decay
modes of the resonance. Let the ”true” values of the resonance parameters
be M = 1020, I' = 4, m; = 490, Ny,; = 1000, b; = 10, mz = 490,
N,.2 = 1000, b; = 10, m3 = 0, N,,3 = 500, bs = 20. After evaluation
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Table 4: Results of minimization of log-likelihood function with different minimization
routines. Number of "experimental” events are equal to average value of events with

"true” parameters of the resonance curve

Minimization - MINUIT COMBI
routine SEEK | SIMPLEX | MIGRAD | MINIMIZE

min L 6.60 11.92 | 3.7-10-7 | 3.7.10-7 | 3.7-10" % |

Number of - :

Yetir ot 85466 160 352 352 769

M 1020.0 1020.0 1020.0 1020.0 1020.0

T 4.3 4.5 4.0 - 410 4.0

m 486.9 487.3 490.0 490.0 490.0

N 922.8 900.1 1000.0 1000.0 1000.0

b 5.7 1.2 10.0 10.0 10.0

Table 5: Results of minimization of log-likelihood function with different minimization
routines. Number of "experimental” events are smeared around the average value and

rounded

Minimization | MINUIT COMBI

routine SEEK | SIMPLEX | MIGRAD | MINIMIZE
min L 28.724 32.511 21.919 21.919 | 21.919

umber of '

ST Tl 100001 191 275 275 871
M 1019.96 1019.96 1019.98 1019.98 | 1019.98
5 4.263 4.367 4.032 4.032 4.032
m 493.06 491.90 491.49 491.49 | 491.48
N, 920.87 900.40 999,53 099.53 | 999.52
b 2.42 1.38 2.11 2.11 2.10
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of all expected average ”experimental” number of events, let us *smear” them
in accordance with Poisson distribution. Results of the minimization of the
likelihood function over 10 free parameters are shown in Table 6 (parame-
ter mg is fixed at the known value 0). The starting point is M = 1015,
' = 3.5, m; = 450, N,,; = 900, by = 1, ma = 450, N3 = 900,
by = 1, N,.3 = 600, bz = 1. Initial steps are equal to 0.1.

Table 6: Results of minimization of log-likelihood function with different minimization
routines. Number of "experimental” events of the three decay modes of resonance are
smeared around the average value and rounded

Minimization MINUIT COMBI
routine SEEK | SIMPLEX | MIGRAD | MINIMIZE |
min L 114.97 108.926 41.115 41.115 41.115
Number of
s g 31187 275 764 764 2810 .
M 1020.09 1019.97 1019.97 1019.97 | 1019.97
r 4.159 4,312 3.941 3.941 3.941
ma 450.80 491,53 492.39 492,39 | 492.38
N1 906.57 900.03 1010.37 1010.37 | 1010.36
by 7.47 1.00 4.44 4.44 4.43
ma 454.71 488,55 490.69 490.69 | 490.68
Newes 904.86 899.94 971.17 971.17 | 971.15 |
ba 9.52 0.95 10.62 10.62 10.61
Noiaooo 1-:586.52 599.96 500.05 500.05 | 500.06
bs 7.97 0.99 21.60 " 21.60 21.60

4. Conclusions

Minimization strategy suggested in the present paper can be an alternative
to the Variable-metric method in the cases when a minimized function has
no derivatives or has a very complicated profile. .

The main feature of this strategy is a combination of Simplex method
and modified Newton’s one. The probability of finding the ”true” minimum
point is increased by successive minimization from different starting points
until the function values in the found minimum points coincide within the
desired accuracy. This algorithm is implemented in the code COMBI, written
in Fortran. . :

For smooth functions the time of convergence of COMBI to the minimum
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point is close to that of the MIGRAD algorithm of the well known program
MINUIT.

The general purpose minimization routine COMBI was designed for use in
event processing, so it has no such a brilliant service for interactive work and
writes no messages to SYS$OUT float. Tested on thousands events from the
SND detector [3], it has demonstrated very reliable work without arithmetic
faults of the computer. .

I would like to thank E.V.Pakhtusova and S.I.Eidelman for fruitful dis-

cussions.

References

[1] F.James. Function Minimization and Error Analysis. Reference Manual.
CERN Program Library Long Writeup D506, March 1994

[2] A.D.Bukin.
On the Kinematic Reconstruction of Multiparticle Events. Reported at
the ” Computing in High Energy Physics” Conference, April 7-11, 1997,
Berlin. ;
Optimal Rotation Procedure. Preprint Budker INP 97-50, Novosibirsk,
1997

[3] V.M.Aulchenko et al. SND — Detector for VEPP-2M and ¢-factory.
Proceedings of the Workshop on Physics and Detectors, Frascati, April
9-12, 1991, pp.605-613.

M.N.Achasov et al. Status of the experiments with SND detector at
ete— collider VEPP-2M. Preprint Budker INP 96-47, Novosibirsk,
1996. '

[4] Nelder J.A. and Mead R. A simplex method for function minimization.
Comput. J. 7 (1965) 308.

[5] A.D.Bukin and S.I.Eidelman. Computer in Planning and Data Process-
ing of Experiment. Manual for students of the Physics Faculty of the
Novosibirsk State University, Publishing Department of NSU, Novosi-
birsk, 1995 (in Russian).

[6] PAW Physics Analysis Workstation. An Introductory Tutorial. CERN
Program Library Long Writeup Q121, CERN Geneva, Switzerland, 1995

20

A. Simple test program

The following simple test program was written to demonstrate how to use
subroutine COMBI:

Test of minimization routine COMBI:
Combined Simplex algorithm + modified Newton’s method
INP RAS, Novosibirsk, Russia, September 10, 1997
A.D.Bukin

O 00000

implicit mnone
integer *4 NPAR,NCAL,ISG(2)
real *8 Fmin,X(2) ,DFM
integer i
external TesFun
c NPAR is a number of the function arguments
NPAR=2
c DFM is a desired accuracy
DFM=0.01
¢ Ncal is a limit for the number of function evaluations
Ncal=100000
do i=1,NPAR
¢ ISG(i) is a flag of variable parameter:
¢ ISG(i)=1 means that parameter is variable
¢ ISG(i)=0 means that parameter is fixed
18G(i)=1
c X(i) is initial value of parameter
X(i)=1.
end do
print 10,DFM,Ncal, (i,X(i),ISG(i),i=1,2)
10 format (t5,’Test of minimization routine COMBI:*/
t5, '======mssesssss=s=s=ssssssssssamss ) I/
' Desired accuracy DFM=’,£8.3/
» Limit for the number of function evaluations=’,i5//
» Par.No.’,t10,’: Init.Value’,t25,’: Minim.flag’/
1x,36("=*),t10,:7,£26,":*/
2(i5,t10,°:',£8.2,t25,%:7,18/))
call COMBI (TesFun,NPAR,X,ISG,DFM,Ncal,Fmin)
print 20,Ncal,Fnin,X E
20 format(® Minimum searched after’,i6,

%* % ¥ % B ¥

* » function evaluations’/
* ) Minimum function value Famin=’,1p,d10.3/
21



* * found at the point X1=’,0p,£8.3,°, X2=’,£8.3)

C m———————— - - Cmmmmmmmml L

subrout ine TesFun (NPAR,F,Xp)
implicit none
. integer *4 NPAR
real *8 F,Xp(NPAR) ,x,y,r,W
parameter (W=5.d+0)
x=Xp(1)+3.d+0
y=Xp(2)+4.d+0
r=sqrt (xs*2+y**2) _
F=r+i.d+i%((x-r*cos (Wsr))**2+(y-r*ain(W+r) ) **2)
return
end

C ————— - ==m=mmmmd

include ’COMBI.FOR’

The profile of the minimized function used in this example (drawn with
PAW code [6]) is shown in Fig. 1. The output listing of the test program is
the following: |

Tegt of minimization routine COMBI:

e eSS ST R EESEEEEERES

Desired accuracy DFM= 0.010
Limit for the number of function evaluations=100000

[ — pe——T P P e b

Hiniuum.hearched after 28993 function evaluations
Minimum function value Fmin= 2.214D-06
found at the point X1= -3.000, X2= -4.000

In Fig. 2 one can see the development of minimization. The path from
starting point to the estimated minimum point for every Simplex minimiza-

tion run is shown with an arrow. Dashed line connects the end of every arrow

with the beginning of the next arrow. The stopping points for MINUIT pro-
gram are shown by special symbols. In the modes MIGRAD, MINIMIZE and
SIMPLEX the program stopped almost near the start point making the deci-
sion that the minimum point is found. SEEK mode obtained better point of
minimum but it is also far from the ”true” point. The minimization process
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Figure 1: Profile of the test function

of COMBI algorithm seems to be almost chaotic, but it cannot get in the
infinite loop and converges anyhow.
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Minuit(Seek) X

Figure 2: Schematic view of the development of minimization
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