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Abstract

Discovery of superconducting materials that operate at high temperatures revive in-
terest in the use of rf field for plasma confinement [1]. This paper discusses feasibil-
ity of a scheme where resonant rf cavities are attached to the mirror ends of an open
system for plasma confinement.
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1. Introduction

In the late 1950s, several papers were published regarding the use of rf electromag-
netic field pressure to confine thermonuclear plasma by field buildup in a resonant
cavity. These papers, as summarized by Glasstone [2], concluded that such an ap-
proach to fusion power was unpromising because Ohmic energy losses in cavity
walls with normal conductors would be huge compared to all other energies in-
volved, including possible thermonuclear yield, and because the electric field were
impracticably large (exceeding 10° V/em).

In the 1960s, high-Q superconducting cavities were developed [3] that could re-
duce the Ohmic energy losses in the cavity walls. In a typical calculation of fusion
energy balance, cavity Qs in excess of 10° were required for the fusion power to ex-
ceed Ohmic losses. In fact, Qs exceeding 10'° have been achieved in empty cavities
[4,5]. Also during the 1960s, the electric fields of the order of 10° V/cm were char-
acterized as “about within the reach of current rf technology” [6]. A general survey
of to-date viewpoint on the plasma confinement by rf field has been elucidated by
S.0. Dean [1]. Here we discuss the use of superconducting rf-cavities to plug the
plasma end losses from a mirror device. We restrict our consideration to only one
but the key problem of the approach, namely that of damping of the rf oscillations
at the plasma boundary.

The principal scheme of the device under consideration is shown in Fig. 1. To be
more specific, we assume that the resonant cavities have cylindrical shape. Making
this choice, we take into account that the axial symmetry of plasma body is crucial
for reduction of transverse plasma transport.




Central Cell

Figure 1: Sketch of an open confinement system with the resonant rf-cavities attached to the
mirrors plugs in order to reduce the plasma end losses. MHD stability may be provided by
rf-stabilizers (additional antennas installed at central cell of the device; not shown).

2. Pressure balance

If f electromagnetic radiation inpinding on the plasma boundary is largely reflected,
it exerts the “pressure”

1
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on the reflecting surface, where subscripts n and 7 denote components of the electro-
magnetic field normal and tangent to the surface respectively. As long as the plasma
is considered to be an ideal conductor, E, = 0 and B,, = 0 at its boundary. Then

the equation (1) reduces to
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The magnetic component of 1f field really exerts a pressure while the electric field
yields “tension of the field lines” and acts in the opposite direction. Thus we con-
clude that for better confinement the electric field must be zero at that part of the
resonant cavity shell that faces the plasma.

A confined plasma exerts an outward pressure n7". This must be balanced by the
radiation pressure (JB2 i 31‘1‘). The overall equilibrium requires the ratio of these two
pressures
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to be less than or at least equal to 1. Since the transverse equilibrium also requires
a similar condition 8 = 8mnT/H? < 1 to be satisfied, the amplitude of rf field

Emax ~ Bmax should be of the order of the ambient magnetic field H. We will
refer the inequality H < B as the case of magnetic confinement, and the opposite
inequality H > B as the case of rf-confined plasma.

The ideal case of complete normal reflection, discussed above, will be difficult
to achieve in a resonant cavity that plugs longitudinal losses in an open confinement
system. Indeed, the plasma boundary will not be smooth and flat because of radial
dependence of the plasma pressure, it will not be sharp as the plasma may do some
degree penetrate into the cavity. As a result, refraction and field rearrangement
will occur, Furthermore, evanescent tails of the cavity’s electromagnetic field will
penetrate into the plasma shell through the cavity’s opening and interact with the
shell itself instead of the plasma. Thus, 8 < 1 is only a rough upper estimate, while
the realistic value of 3 will be lower, depending on the system design and plasma
parameters. In particular, one possibility is the “close wave guide regime”, when
the field frequency is so low that a corresponding wave cannot propagate along the

waveguide formed by the plasma shell. We will briefly discuss this possibility in the
concluding section.

3. Choice of frequency

In the case of unmagnetized plasma, H = 0, an electromagnetic wave impinging on
the plasma boundary is reflected if f radiation frequency w is less than the electron
plasma frequency w,. so that the operational range of frequencies is restricted only
from above, w < wp.. In a plasma, immersed into a magnetic field, the range of
frequencies is limited also from below, moreover, it shrinks to zero in low density
plasma.

Consider for example waves propagating along the magnetic field lines of .
Eigen waves are circular. Electric vector of the right-hand wave (R) rotates in elec-
tron direction while that of the left-hand wave (L) co-revolves with ions. The square
of the refractive index
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is positive for propagating waves while it is negative ior evanescent oscillations. All
notations here are of common use with the only point to notice that the cyclotron fre-
quencies €. ; = |e|H/me ;c are assuined to be positive both for ions and electrons.
Simple algebra reveals that N7 < 0 if the frequency w comes into the range

Qi <w <y fwi, + Q2[4+ Qi /2 — Qe /2 + Qi /2 = wi, (5)




while N2 < 0 if

Qe <w < \Jw2, + Q2/4+ Qe/2= wr. 6)
The frequency bands (5) and (6) partially overlap provided that
Wpe 3 V20, )
If the above condition is satisfied, any rf radiation with the frequency in the range
Qe <w < wr, (8)

' is reflected from the plasma boundary. The dependence of N7  on w for the case

Wpe > /29, is shown in Fig. 2b. Fig. 2a illustrates the opposite case wpe < V20,
where an electromagnetic wave does not penetrate into the plasma if and only if it
is circularly polarized and its frequency falls in either of the two bands (5), (6). We
will see in the next Section that oscillations in a resonant cavity cannot have circular
polarization in the whole volume of the cavity which limits plasma parameters to
the inequality (7). In practical units, the latter leads to

ne > 2:101 H? [em™3 /kG?]. 9)

Hence, the ambient magnetic field should be as small as 20 kG at the mirrors to
be plugged for the plasma with “typical” thermonuclear density n, = 10* cm~?.
Notice that the condition (7) can be cast into the form

I
Mec?

B>4 (10)

Hence, for 7" in the thermonuclear range of temperatures 100 < 200 keV it can be
satisfied if 7 ~ 1.

4. REF field in cylindrical cavity

Consider a cylindrical cavity with radius R and width h as shown on the Fig. 3.
We assume that the coordinate z is directed along the axis of the cavity and that the
planar walls are placed at 2 = 0 and z = h. Maxwell equations in the cylindrical
system of co-ordinates take the form:
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Figure 2: Dependence of N> = k?c?/w? on w for the left-hand (L) and right-hand (R)
circular waves propagating parallel to the ambient magnetic field:
(a)—wpe < v@ﬂe, rf field penetrates into the plasma at any frequency w;
(B)—wpe > V2%, 1f field is reflected from plasma boundary if the frequency w falls into
the range e < w < wr wherewp = J/wi. + Q2/4 + 20:/2 - Q./2 + Q:/2. Regions
where the waves are evanescent are shaded. :
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| Figure 3: Resonant cavity. R
| is the radius of the cavity, h is
To plasma | e h_To pump its width, @ and b are the ra-
dius of waveguides for plasma
— and pumpout respectively.

We first consider an empty cavity with all the walls made of a superconducting
material. Then E, = By = B, =0atz=0and z = h,while £y = E;, = B, =0
at r = R. All oscillations that can be excited in such a cavity are separated into two
types. Oscillations of the electric type has no magnetic rf field along the axis z of
the cavity, B, = 0. Oscillations of the magnetic type are characterized by E, = 0.
As it is clear from discussion of the previous Section, the electric oscillations are of
less interest as they produce non-zero electric field at the cavity’s planar walls which
are exposed by plasma. Putting £, = 0 into (10), it is easy to reveal that B, obeys
the equation
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All other components of the electromagnetic field can be expressed in terms of B,.
General solution of the equation (11), which satisfies all of the above cited boundary
conditions, depends on few constant: the amplitude By of B;, the azimuthal angle
¥ and the phase shift £, :

B, = By EJ,',I(m-) sin(me + ¥m) cos kz cos(wt + &m),

By = By %Jm(mr] cos(m¢ + ¥ ) cos kz cos(wt + &m),

B. = BoJm(kr) sin(mé + ) sin kz cos(wt + &m ), (13)
E, = By ;"; Jm (K1) cos(mé + ¥, ) sin kz sin(wt + &m ),

Es = —Bo iJ:n(mr) sin(mé + ¢Ym ) sin kz sin(wt + §m)

E,=0.

Here k = wl/h withl = 1, 2, ... being integer,
w? = 2(k? + k?), (14)
« is to be found from the equation
JLikR) =0, (15)

Jm is the Bessel function, and J), is its derivative.

The solution (12) describes linearly polarized mode. Combination of two modes
(12) with different By, 9, and/or &, produces, in general, a mode with elliptic
polarization. A special choice of i, and §,,, for given By in the combination can
yield an oscillation circularly polarized near the cavity axis:

B = BUEJ:“(E:') cos(kz) sin(m¢ F wt),

By = By E%EJm{mr) cos(kz) cos(me¢ F wt),

B, = ByJm(kr)sin(kz) sin(me F wt), (16)
mw

By = FHBy Py Jm (kr) sin(kz) sin(me F wit),
Ey =FBy iJ:n (kr) sin(kz) cos(m¢ F wt)
E,=0.

The upper signs in (15) corresponds to the R mode which gyrates in electron direc-
tion; the lower sings correspond to the L. mode revolving together with ions. At the
cylinder wall the modes (15) are linearly polarized, near the axis they are of circular
polarization, and they have elliptic polarization between the axis and the cylinder
wall. To avoid possible misunderstanding, we emphasize that saying about polar-
ization of rf field we imply the shape of the curve which is drawn by the end cf the
vector E at a fixed point (r, ¢, z). Snapshot of rf electric field lines for the mode
with the azimuthal number m = 1 is shown on Fig. 4. Fig. 5 shows the electric field
lines map for the m = 2 mode. Best choice for the purpose of plasma plugging is
provided by the mode with azimuthal number m = 1 as the pressure exerted by the
m = 1 mode on the planar walls z = 0 and z = h reaches its maximal value at the
cavity’s axis. Also it is clear that the lowest radial mode provides better homogene-
ity of rf pressure at the planar wall. The lowest root of the equation (14) form = 1
is kR = 1.841. Pressure of higher radial modes has zero nodes that may play role
of holes through which plasma would escape from the device. Figs. 6 and 7 show
isobars of rf field pressure at the planar walls for the m = 1 and m = 2 modes.
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Figure 4: Map of the electric field lines  Figure 5: The same map as in Fig. 4 but
for the m = 1 mode in the resonant cav- for the m = 2 mode.

ity. The map rotates in due course of time

if the mode is circular at the cavity’s axis.

As we have seen in the previous Section, rf field does not penetrate into the
plasma provided the inequality (9) holds and the frequency w falls into the range (8).
Hence, to confine plasma with the density of n, = 10'* cm~* without any leakage
of the rf power into the plasma, the rf frequency should be as large as the electron
‘cyclotron frequency {2, = 3.5.10!! evaluated at H = 20 kG. The wavelength of the
oscillations withw = 3.5-10!! is as small as 0.5 cm. This means that the oscillations
with very big number [ of the wavelengths per the cavity’s width should be excited
in the resonant cavity of reasonable sizes. Since using high-l modes may cause
severe technology obstacles, below in this Section we consider a range of lower
frequencies where only the L mode is totally reflected while the R mode penetrates
into the plasma core thus reducing the cavity’s Q.

Now we take into account that one of the planar walls has a window for the
plasma where reflecting surface is formed by the plasma boundary instead of a su-
perconducting material. Rf power can penetrate into the plasma core thus intro-
ducing a damping mechanism for rf oscillations excited by an external source in
the resonant cavity. For the sake of simplicity, we assume that the waves, outgoing
from the cavity into the plasma, propagate almost parallel to the ambient magnetic
field, i.e., k > k. Notice that B, < By ¢ in this case. With this assumption being
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Figure 6: Instant distribution of f field

pressure at the planar wall of the resonant

cavity for the m = 1 mode. Revolution of

the mode leads to averaging of the pres-
sure over the azimuthal angle.
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Figure 7. The same as in Fig. 6 but for the
m = 2 mode.




adopted, boundary conditions at the plasma take the form

1

Eprr= N_[BL,R:'"'] (17
LR

where 72 is the unit vector normal to the surface of the boundary and directed out-
wards the plasma.

For the damping rate + of rf oscillations to be small, two conditions are required.
Firstly, the window for the plasma in the superconducting wall should comprise
small part of the surface of cavity’s walls. Secondly, polarization of excited wave
should be close to circular near the window. With tuning rf frequency to the band
where the excited circular wave does not penetrate into the plasma, one can reduce
losses of tf power. Fig. 2 indicates that appropriate mode gyrates in the ion direction
(L-wave) and its frequency satisfies to inequalities ; <w < wL. '

Assuming damping rate of the mode to be small and using a perturbation tech-
nique (see, e.g., [7]), we get

[ drrdd(kr)/Nu+ [ drrJi(skr)/N
NZ>0 Ng>0

faﬂ dr r[J3(kr) + J3(5r)]

for the m = 1 mode given by Eq. (15) with the lower sign. Integration in the
numerator of (17) goes on that part of the window where corresponding refractive
index is real. Using definition Q@ = 2v/w and substituting w with w & mcl /h we
find the cavity’s Q: ;

(18)

_ﬂ
TR

fdrrJg(mr)/NL+ [ drrJ3(kr)/Ne

24 zwgm ; N3>0 : (19)

o fﬂ dr r[J2(kr) + JZ(k7)]
0

According to our assumption, Ny, in the above formulae is imaginary almost every-
where in the window,! therefore first term in the numerator must be omitted. Other
term, containing Nr, is small since J2(kr) tends to zero near the cavity saxisr = (.

5. Collisional dissipation of energy

If rf field does not penetrate into the plasma core it nevertheless dissipates its energy
in the plasma sheath. It is customary [8,2] to compute the rf dissipation in the plasma

1 Plasma density depends on the radius so the refractive indices NL,r do.
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by using a model which is only valid for weak fields which do not appreciably alter
the presumed Maxwellian distribution of the sheath. Motz and Watson [6, p. 237]
note the absence of an applicable high-field theory and conclude that the weak-field
computation “probably enormously exaggerates the heating effect. In this Section
we extend the theory of Coulomb collisions to the case when oscillation velocity of
plasma electrons under the action of the rf field is as large as their thermal velocity.
We will see that the above cited prediction of Motz and Watson is mainly confirmed.
Our calculations indicate that dissipated power almost does not depend on plasma
temperature and that external magnetic field slightly decreases Coulomb dissipation.

5.1. Unmagnetized plasma

We first consider plasma without external magnetic field, H = 0. We also no-
tice that in order to calculate local deposition of 1f power one can treat both the
plasma density n and 1f field amplitude Ej to be homogeneous since a particle ex-
cursion v/w for the period 27 /w of rf oscillations is small as compared with the
penetration length ¢/w| Ny, r| of the f field into the plasma as long as the particle
motion is non-relativistic, v < ¢. Ignoring space dependence of the rf field, we put
E = Epcoswt. As the ions are not effectively involved in high-frequency motion
and their thermal velocity is much less than that of the electrons we assume the ions
to be unmovable. In contrast to the case of stationary current in plasma, dissipation
of the oscillatory motion of electrons in the f field occurs mainly due to the elec-
trons scattering on the ions. One can show that contribution of the electron-clectron
collisions into the dissipation is small provided that frequency w of the field is much
greater that the frequency of collisions vej. We assume the inequality

W > Vei (20)

to be the case under consideration.
Motion of an electron is described by the equation

dt metd 1)

where A is the Coulomb logarithm, and other notations are standard. Though, as we
said above, the electron-electron collisions almost do not contribute to the rf power
dissipation, they play very significant role. In particular, they preserve the shape of
electron distribution function to be of shifted Maxwellian type:

R e

Ve
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where ©(t) is the oscillatory velocity of the plasma electrons. Multiplying the equa-
tion (20) by the distribution function (21) and making integration over the velocity
v, we get the equation for v

dv 8rAee;inen; v
ﬂemea— = —en.E — 1? E s
t me'vTe UT,&_

(23)

| &t

Here

R 5 2 erf(€) - Eerf’
GE) = 7=z fﬂ dinles? e ) 25‘2“ (5]_ 24)

is Chandrasekhar’s function. Multiplying (22) by v yields the equation of energy
balance

d m, 5> : 8rAeleln.n; . _ .
Bl g R e el

In a steady state, the time average of the left-hand side is equal to zero. Hence, the
power ¢ = (3 .E) dissipated in a unit volume of plasma is equal to

8wAeZe;’n.n;

== 6
0= =t GG vre) 26
where (.. .) stands for the time average
2n fw
w
— A1
T

Since collisions frequency is small compared to the field frequency w, we can sub-
stitute ¥(t) with
7 eEq
U= -
- Mew

sin wi,

which is derived from the equation (22) without last term in the right-hand side.
Thus, we get

Swﬂezefaﬂen; ( E.EU )
= ; 27
. MeUTe 4 MW UTe &)
where
1 2w
9(é) = E dré sinT G(£sinT)
/2 dr £sinT 5

duu?e™¥". 28
13325,,/ Slﬂ’l‘f il (28)
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Figure 8: Plot of function g(¢). Dotted lines show its asymptotics (28) and (31) for small and
large £s respectively.

The function g(£) is plotted on Fig. 8. If £ K 1 (i.e,, ¥ K vre), the function g(¢&)
reduces to

&2
9€) ~ 37 (29)
It yields well known result (cf. [9, §4.6])
— . wgﬂ E‘%_ 30
q = Vei T B (30)

with

4 |2xm AeZe;%n;
BN g 31
Vei = 3 ’ TEB’!E ( )

being the frequency of electron-ions collisions.
In the opposite case of large £, we come 10

and (26) can be cast into the form :
2e E
Mo 8AeZe;Znn;w ln( eFy ) . (33)
el MeWVTe




The power absorption is inversely proportional to the rf amplitude Ey. It logarith-
mically depends on electron temperature.

52 Magnetized plasma

Consider an rf oscillation with arbitrary polarization E excited in a plasma im-
mersed into the steady-state-magnetic field H, directed along the axis z. We shall
not assume that magnetic field B of rf oscillations is smaller than the steady-state
magnetic field H allowing for arbitrary ratio B/ H. Nevertheless we neglect rf part
£[v, B] of the Lorentz’s force acting on a plasma electron as it is small in com-
parison with electric force e as far as v < ¢. Then the motion of an electron is
governed by the equation

SE-Pp foimn i e, (34)

me M. 1.:3

where 2. = |e|H /m.c.
Arbitrary 1f field has elliptical polarization, therefore in the most general case
we can set

E.(t) = E, coswt,
E,(t) = Ey sinwt, (35)
E.(t) = E, cos(wt + ¥).

Relations between the amplitudes E‘x, E‘y, E‘m and the phase shift ¢ follow from
solution of an appropriate dispersion problem. For example, circular waves propa-
gating along the external magnetic correspond to £, = :I:Ey, E, =0.

As far as ve; < w one can use, with minor amendments, the approach developed
in the previous subsection. In particular, distribution function of electrons keeps the
form of “shifted Maxwellian” distribution (21) where oscillatory velocity  is to be
found from (33) without last (i.e. collisional) term:

Up = — sl WE"” i Q;Ey sin wi = Asinwt,
Me 2z
w @ QEE} +¢.¢.r}_?f,,F .
vy = o cos wi = Bcoswt, (36)
s sin(wt + 1) = C'sin(wt + 9).

[ =
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The vector v(t) draws an ellipsis with the half-axes

Umax = \/%(AE + B% + 62) -+ \/(.Az — B2)2 4 2C?%(A? — B?)cos 2¢ + C1,

Vmnin = \/%(AE + B2 + C?) — /(A2 — B?)? + 2C?(A2? — B?) cos 2¢ + C*.
37

Its absolute magnitude is

H(t) = \/ v,y cos?wt + v2,. sin® wi. (38)

Notice that the magnitude of  is finite even for w = €2, if one takes into account the
relations between components of polarization vector E which follow from solution -
of appropriate dispersion problem.

After straightforward calculations we obtain

Sﬂﬁﬂzﬁiz'ﬂ-e ng Umax Vmin
g gt Lo ) 39)
MeVUTe VTe VUTe
where
In
gi&,n)= / dr\/‘fgccrs?r+q sin TG(\/{ECDSET-I-?} sin *r) (40)
Surface plot of g(&, n) is shown on Fig. 9.
If ¢ < 1 and 5 < 1, one can use the approximation similar to (28):
9(&,m) ~ f(§2+” ). (41)
" In this case our calculation recovers the result of linear theory (cf. [9, §5.6]):
W2 Vei FOMEN LS ) ’ Q.F; +wkE ‘ E?
pe” el W g ey ey Y e 4
¥ bR ( w? — 2 ) +( w? — Q2 ) T el

If€ > 1butn < 1 or, vise versa, £ < 1 but 7 >> 1 the asymptotics (31) gives
correct result (with additional substitution £ with 7 for the latter case).

For the special case £ & n >> 1 that stands for almost circular rf wave, one can
approximate g(&, n) with

9(£,¢) ~ 1/2€. (43)
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Figure 9; Surface plot of function g(&, n).
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Coulomb dissipation of circular wave decreases inversely proportional to its ampli-
tude as it does in the case of linearly polarized wave propagating in unmagnetized
plasma (considered in previous Section) but now relatively large logarithmic factor
In 2€ is absent.

Having calculated the power q absorbed in an unit volume of the plasma, we can
estimate total power absorption P in the plasma boundary sheath as the product of
g by the penetration length X of the rf field into the plasma and by the plasma cross
section a2, P ~ ma2)\q. The penetration length is equal to ¢|Ng 1,|/w provided
that Ng 1 is imaginary, i.e., if field does not penetrate into the plasma core.

To evaluate ¢ we note that required amplitude of 1f field E' must be of order of
the steady-state magnetic field H as discussed in Sec. 2. For the frequency range
w close to the electron cyclotron frequency €2, the ordering E' ~ H leads to the
conclusion that electron’s motion becomes relativistic since # ~ eE/m.w ~ c.
Though our theory is not applicable to relativistic motion, we can use it just to
evaluate dissipation at the plasma sheath in order of magnitude. For§ ~ n ~ c/vre,
Ng 1, ~ 1 we obtain from (38) and (42) that

B 8rAe*n? vy, € 2
MeUTe 2€ W
Cavity’s Q is equal to wW/P with W = V B?/87 being the energy, stored in the
volume V of the cavity. Combining all together, we obtain

2 ( / e il

Sy ABA mecz) malr,
where r, =_62 /m.c? is the classical radius of electron, and w has been substituted
by Qe. For@~ 8~ 1,T = 10keV, A = 15, V/ma® ~ 10 cm calculated resonator
cavity’s Q = 2-10° satisfies the requirement formulated in [1] for ¢} to be larger
than 10°. This estimation indicate principal feasibility of rf plugging of plasma in
open systems provided that technical solution to sustain rf mode specified in Sec. 4
will be found.

6. Conclusions

We considered two basic mechanism of damping of the rf field in a resonant cavity
attached to the mirror ends of an open system for plasma confinement. In particular,
we have calculated the damping rate of the rf field due to Coulomb collisions in
the sheath at the plasma boundary for arbitrary large amplitude of rf field. We con-
cluded that the power absorption in the plasma sheath due to collisional dissipation
decreases 1o a suitable level as the 1f field increases.
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We also found that possible leakage of the 1f power through the plasma waveg-
uide imposes severe restrictions on the choice of the rf mode to be excited in the
resonant cavities. We note that the ff frequency should be too high in order to pro-
vide conditions where rf field does not penetrate into the plasma core. Attempts to
lower the frequency (and consequently, to lower the mode number to be excited)
may exploit two ideas. One of them is to decrease the window in the cavity’s wall
for plasma. We have shown that the rf power escaping from the cavity decreases
as the size of the window decreases. Other possibility is to decrease the radius of
the plasma waveguide. A rf oscillation does not penetrate into the waveguide if its
wavelength is larger than the waveguide radius a, ie. if ¢N/w > a. However,
simple estimation shows that this requirements leads to the inequality c/wp; > a
which limits a to few centimeters for plasma with “thermonuclear” density of order
of 10'* cm™3. However more detailed analysis of the rf field penetration into the
plasma waveguide is required. It may reveal that the modes with frequencies of order
of (0.01+0.1)2, may provide suitable level of the rf power losses. Another anxious
problem is the calculation of the rf field absorption due to wave transformation in
imhomogeneous plasma.
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