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Abstract

The contact Darwin term is demonstrated to be of the same ori-
gin as the spin-orbit interaction. The (Za)*m®/M? correction to the
Lamb shift, generated by the Darwin term, is found for an arbitrary
nonvanishing spin of the nucleus, both half-integer and integer. There

i1s also a contribution of the same nature to the nuclear guadrupole
moment.
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1. The literature, pedagogical included, abounds with assertions on the
nature of the Darwin correction which are at least doubtful in our opinion.
In particular, we cannot agree with the conclusion that the Darwin term is
absent for a particle with spin 1, made in Ref.[1] (see also [2]). The subject
becomes of real interest now for interpreting the high precision experiments
in atomic spectroscopy [3, 4, 5].

To study the problem we consider in this note the Born amplitude for
scattering of a particle with an arbitrary spin in an external electromagnetic
field. In the case of a practical interest, that of an atom, this is the nucleus
interaction with the electromagnetic field of electron. In this way we derive
the general form of the Darwin term for an arbitrary nuclear spin and obtain
the corresponding order (Za)*m3/M? correction to the Lamb shift (here and
below m is the electron mass, Z and M are, respectively, the charge and mass
of the nucleus).

2. The wave function of a particle with an arbitrary spin can be written
15 (see, for instance, [6], §31)
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Both spinors,

and



are symmetric in dotted and undotted indices separately, and
p+q=2I,

where I is the particle spin. For a particle of half-integer spin one can choose
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=4+ =, ¢~ =.
P +2 q 2

In the case of integer spin it is convenient to use
Hoa e

Spinors £ and 7 are choosen in such a way that under reflection they go over
into each other (up to a phase). At p # ¢ they are different objects which
belong to different representations of the Lorentz group. If p = ¢, these two
spinors coincide. Nevertheless, we will use the same expression (1) for the
wave function of any spin, i.e., we will introduce formally the object n for
an integer spin as well, keeping in mind of course that it is expressed via .
It will allow us to perform calculations in the same way for both integer and
half-integer spins.

In the rest frame both & and 7 coincide with a nonrelativistic spinor €o,
which is symmetric in all indices; in the rest frame there is no difference
between dotted and undotted indices. The Lorentz transformation of &p is,
up to the terms ~ (v/c)® included,
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Here
= P p+yq
o= Z -.i o &"I 1
i=1 i=p+1
and &; acts on the ith index of the spinor o as follows:
| Fibo = (F)aip, Co)...pi.. (3)

At the Lorentz transformation (2) for £, after acting of the operator ¥ on &g
the first p indices are identified with upper undotted indices, and the next g
with lower dotted ones. The inverse situation takes place for .

4

We will use however formula (2) as it is without distinguishing anymore
between upper and lower, or dotted and undotted spinor indices. It allows us
to introduce in a natural way the “standard” representation for the spinors,
in close analogy with that for spin 1/2:

p=E+n)/2; x=(E-n/2.
In it the wave function i1s written as
[1 +(37)? ,’8] &
(ﬁﬁ/z) &
It is convenient to introduce as usual the object
."-I' £ (_qﬁ*: Tx*)*
Then =
V¥ =¢*¢ — x*x = & €o

is an invariant. We will use the common noncovariant normalization of the
particle number density

|
p= V=1, (5)

where the wave function i is

i 1+Cors e
e \/;E: (ﬁﬁ'fﬁ) & | (©)

Here E is the particle energy.

3. Let us go over now to the scattering amplitude itself. The order 1/M?
terms in it arise only in the time component of the electromagnetic current.
Restricting to the formfactors of the lowest multipolarity, electric F, and
magnetic G, this component can be written for an arbitrary spin as

g E4+E 53  Gm oxda
jo = Fe —5z—¥'¢ + 575 ¥ I'qy, (7)
where
i=7'-F
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is a natural generalization of the corresponding expression for spin 1 /2 (valid
both in the spinor and standard representations):

ol ) ©)

This generalization is fairly obvious in the spinor representation. Indeed,
here, according to (9), & connects a dotted index in the initial spinor ¢ with
undotted one in ¢, and — & connects an undotted index from 3 with dotted
one of . And this is exactly what is being done by T'. It is straightforward
now to prove the expression (8) for the standard representation. Let us
mention also that formula (8) is confirmed by the final result which reproduces
correctly the spin-orbit interaction, the form of the latter being well-known
for an arbitrary spin (see, e.g., [6], §41).
The term with G, in the current density is
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Jom = mﬁu ( 1, Zv'/2 ) ( aBg A L/2 o
Gm = - e —
= Cme (-G + 4illaxpl) . (10)

The spin operator here equals

The first term, with F,, in formula (7) reduces to an analogous structure:

: Bl 502 (E9)?  EP(E
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Thus the total charge density is

. | (Eq)? 17 % 7]
Jo = E* (FE—(QGm*Fg)B—ﬂd:E“+(QGm*—Fg}1 oM 2 . fn.
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We neglect for the time being the charge radius of the nucleus, so that
F. = F(0) = 1.

The spin-orbit interaction dependence on the gyromagnetic ratio g is
universal for any spin, this ratio enters through the factor g — 1. Therefore,
our magnetic formfactor is normalized as follows

G m(0) = %.

Let us split now (iqr")2 into the contact and quadrupole parts:

T

3
The first, contact term in (12) is

= P € P r+g p+4 :
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T qiq = =Zi%i + (g5 — 37 °6i;)TiZ; (12)
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— — I =
5 5 pq) 4I(1 +¢); (13)
(= 0, integer spin,

— | 1/(4I), half-integer spin.

When deriving formula (13), we use the symmetry in any pair of spinor
indices, a1 oz (see (3)). This symmetry means that the corresponding spins,
1 and 2, add up into the total spin S = 1. Therefore,

(G162) &0 = &o -

The interaction operator is proportional to the Fourier transform of the
Born amplitude (see, e.g., [6], §83). In this way we obtain from (13) the
following contact interaction between a nucleus of charge Z and electron:

2w Z
U =5 370 - DI+, (14)
The corresponding energy correction is
2 m? (Za)*
A, = STE (g—-1)I(1+C) 3 doz. (15)
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For the hydrogen atom (I = 1/2) this correction was obtained long ago in
Ref. [7].

Let us consider now the quadrupole part of (12). Using again the complete
symmetry of &, one can easily calculate the corresponding quadrupole
interaction:

1 e
Ualf) = —g VaV5 2 0G; - (16)
Here i
37 -1 2
ﬁQij==—-1 EE}_E;E )A{fgfj+fjfim§§ijf(f+l)}; (1?)

i 1/(2I - 1), integer spin,
g 1/(2I),  half-integer spin.

Expression (17) is a correction to the nuclear quadrupole moment. Its
existence for I = 1 was pointed out in Ref. [1]. _
This correction to the quadrupole moment can be estimated as

Q~ —022(9—-1) % e mbarn.

For the deuteron (Z = 1, A = 2, g = 2p4 = 1.714, Q = 2.86 embarn) it
equals —0.04 e mbarn. '

4. Let us come back now to the discussion of the contact term. There is
some ambiguity in its definition related to the nuclear charge radius. The
contribution of the latter produces a contact interaction also and enters
physical observables in a sum with the expression (g—1)¢* I(14¢)/(6M?). In
particular, the elastic cross-section of the electon-nucleus scattering at small
g? is, up to the terms ¢2/M? included,

do _ a? cos?(8/2) 1
dQ ~ 4e? sin®(8/2) 1+ 2 sin?(0/2) ¢/M
1= § 69 a = (g - 1 10+ OF (18)

* % G.?“ I(I + 1)[2 tan®*(8/2) + 1]} .

where (r?)p is defined through the expansion of the formfactor F:

: 1 a
F() m 1- 5 (e ™. (19)
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Let us note here that the expression in square brackets in formula (18) reduces
for the proton (I = 1/2) to

L= 2 (P~ (= 1) B > (20)
6 8M?’
and for the deuteron (I = 1) to
1,2y =2 q
it By i | 25 iy 1

However, the proton charge radius is commonly defined otherwise than in
formula (20), namely, through the expansion of the so-called Sachs formfactor

ﬁ*!
Gg - Fg - W Gm .
Obviously, the charge radius defined through the formfactor G, is
R B S g a1

Correspondingly, expression (20) is rewritten usually as
{_E'E

1- "
1— E{rz)sq2+

and the Darwin correction for the proton is defined as

8M2’
but not
B et
sM2
We could redefine the electric formfactor for the deuteron from F, to G,
in such a way that here

Yoa o 90 it g
g TFE s AT ae
so that the Darwin correction for the deuteron becomes
§?
6M2’
9



instead of e
_(g-1)g
6M?2
However, for a deuteron the common definition of the charge radius is neither

F., nor G, but : ; :
T e o e | S
ﬁ(r )D a2 6 (T‘ }F GM‘E >

Of course, under this definition the whole Darwin term 1s swallowed up by
(r?)p . No wonder therefore that the authors of Ref. [1], using (r’)p instead
of (r?)g or (r?)g, make the conclusion that for the deuteron, as distinct
from proton, the Darwin correction is absent.

Clearly, this contradistinction of the deuteron to proton is based only
on a rather arbitrary definition of the charge radius of the former; this
contradistinction has no physical meaning, it has nothing to do with the
nature of the Darwin term.

5. Thus, the Darwin interaction exists for any nonvanishing spin and is
of the same nature as the spin-orbit interaction. In particular, as well as
the spin-orbit interaction, the Darwin term is not directly related to the so-
called Zitterbewegung. Of course, there is a certain difference between the
spin-orbit and contact energy corrections. The former one has a classical
limit together with (1/r®), while the latter, being proportional to [%(0)/,
does not. However, this fact has nothing to do with relativity and negative
energies, and therefore is certainly unrelated to the Zitterbewegung.
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