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Abstract

_ The new regime of Arnold diffusion with a power-law dependence
“of the diffusion rate on perturbation strength was studied both the-
oretically and in numerical experiments. The theory developed pre-
dicts this new regime to be universal in the perturbation intermediate
asymptotics, the latter being the wider the higher dimensionality of
the perturbation frequency space, particularly, in large systems with
‘many freedoms. The results of numerical éxperiments satisfactorily
‘agree with the theoretical evaluations.
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1. Introduction: universal nonlinear instability

One of the most interesting phenomena in Hamiltonian dynamics is the
so-called Arnold diffusion (AD), a peculiar universal instability of many-
dimensional nonlinear oscillations [1,2]. This global instability had been pre-
dicted by Arnold [3] while its chaotic nature was discovered in Refs.[4,5,1]
and further studied in detail in Refs.[6-11,14,15,17].

First, we briefly remind, following Ref.[17], the diffusion mechanism which
is related to the interaction of nonlinear resonances. Consider a general
Hamiltonian of many—dimensional oscillations:

H(I, 0,t) = Ho(I) + € Y _ Vam(I) exp(in - 0 + itm - 2) (1.1)

,1m

where I, # are N-dimensional vectors of the action-angle variables; ( is M-
dimensional vector of driving frequencies; n, m are integer vectors of N and
M dimensions, respectively, and € stands for a small perturbation parame-
ter. The dot in expressions like n - # denotes the scalar product. Below we
shall consider a simpler case of the completely integrable and nondegenerate
unperturbed system whose Hamiltonian Hg(I) depends on the full set of N
actions only.

Hamiltonian (nondissipative) dynamics is always determined by reso-.
nances (see, e.g., Refs.[1,2]) corresponding to particular terms in perturbation
(1.1). The condition for a primary resonance with unperturbed frequencies
(1.3) reads:

wom En-wl)+m-Q=x0 (1.2)
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In case of linear oscillations all the frequencies are fixed as parameters of the
system which is either in or off resonance independent of initial conditions.
However, for nonlinear oscillations with the action—dependent frequencies

n % (1.3)

condition (1.2) determines resonance surfaces (zones) in the phase space that
is the system is always in resonance for some initial conditions. On the other
hand, nonlinearity stabilizes the impact of a (sufficiently weak) perturbation
providing bounded oscillations even for resonant initial conditions. This is
precisely due to non-isochronous oscillations (1.3). In one freedom such a
nonlinearity 1s necessary and sufficient to destroy oscillation isochronism. A
many-freedom generalization of that is the necessary condition for determi-
nant 2H _

] ;

572 #0 (1.4)
to be nonzero everywhere. In this case the system is called nongenerated
which allows, particularly, the transformation from action to frequency space.
In the latter, the resonance structure is especially simple and transparent as
resonance surfaces (1.2) become planes.

Another condition for the nonlinear stabilization is the requirement for
quadratic form of matrix 82 Hy/81? to be sign—definite or, geometrically, for
surfaces Ho(I) =const to be convex [10]. The latter condition is a weaker
one as it may include higher polynomial forms. Both conditions are sufficient
only [10,11] but in physical applications it is unimportant restriction.

The above conditions ensure also the absence of the strong instability
(~ €), due to a quasilinear (isochronous) resonance [1], especially when sev-
eral (r) independent resonance conditions (1.2) are simultaneously satisfied.
The latter is called multiple (r—fold) nonlinear resonance. However, a weak
instability caused by nonresonant (w,n, # 0 for given initial conditions) terms
in perturbation series (1.1) is possible, and it is just AD we are going to dis-
cuss in detail. Moreover, this weak instability is a typical phenomenon of
nonlinear oscillations as it occurs under almost any, particularly arbitrarily
‘weak, perturbation of a completely integrable system. The only restriction
is the action space dimension d, which must be larger than that of invari-
ant torus (d, > d; = 1)*[3]. The torus is absolute barrier for the motion
trajectory which can only bypass it but never go through. For a driving
perturbation (M > 0 in Eq.(1.1)) the minimal number of freedoms is, thus,
Nmin = 2 but in conservative case (M = 0) N, = 3 as the trajectory is
bound to follow an energy surface.

Even these minimal restrictions are not absolute being related to the
strong nonlinearity only (1.4) when the effect of resonant perturbation is
small (AI/I ~ /e < 1). In case of linear Ho(I) (harmonic oscillator) Npin
is less by one [12].

At least 3 perturbation terms in series (1.1) are necessary for AD. We
shall call each of these terms a resonance (for the appropriate initial condi-
tions of the motion). A single resonance retains the complete integrability
of the unperturbed system. The interaction of 2 resonances already results
in the formation of narrow chaotic layers around the unperturbed separa-
trices of both resonances [13-15]. Yet, the chaotic motion remains confined
within a small domain of the layer. Only the combined effect of at least 2
driving resonances provides the diffusion along the layer of the first, guiding,
resonance if N > Ny, (see Ref.[1] for details).

In the first approximation (1.2) the driving perturbation terms are non-
resonant (wnm # 0). Yet, the final effect is due to the secondary resonances
between the driving perturbation and the slow phase oscillation on the guid-
ing resonance. This is a particular case of the general rule that all the long-
term effects in nonlinear oscillations are due to some resonances. For the
problem in question the principal parameter is the ratio

2 | wam |
X i (1.5)

where wy ~ (¢ | V, [)1/2 is the frequency of small phase oscillations at
the center of guiding resonance, and where V, is the Fourier amplitude of
the corresponding perturbation term. For a weak perturbation (¢ — 0)
parameter A 3> 1 is big, and thus the driving perturbation is a high-frequency
one. In effect, this is equivalent to a low-frequency (adiabatic) perturbation.
Hence the term inversed adiabaticily we use [14]. The symmetry between
the standard and inversed adiabaticity is especially clear in a conservative
system that is for the interaction of coupling resonances. Indeed, in this
case the resonance interaction results in the energy exchange between the
guiding and driving resonances. While for the former the perturbation is a
high—frequency one (inversed adiabaticity), for the latter it is low—frequency
(standard adiabaticity). '
For an analytic perturbation the effect in both cases is exponentially small

in adiabaticily parameter A (1.5), namely [1,14]:
D~ e ™ ~ wl (1.6)

3
where D is the local dimensionless diffusion rate in actions I within a chaotic

2



layer and where w, ~ |AHp|/eV, stands for the dimensionless layer width.
Notice that effect (1.6) is of a nonperturbative nature as A ~ ¢~1/2,

This is the simplest resonant mechanism of AD. In particular models
the accuracy of such a 3-resonance approximation was found to be within a
factor of 2 provided the perturbation was not too weak that is adiabaticity
parameter X is not very big [1] (see also Section 3 below).

As A — oo the higher-order resonances with | n |, | m |- oo come into
play. Even though their amplitudes Vo;m ~ exp[—o(| n | + | m |)] drop
exponentially the detunings | wy,., | also rapidly decrease. The operative res-
onances which control the diffusion has been roughly singled out in Refs.[1,15]
by minimizing the expression

~lD=E~k+ k)2 A/E (1.7)

with respect to k =| n | + | m |; where A\ = wo/w,, wo stands for a
characteristic oscillation frequency, and the following diophantine estimate

was used:
«wo

an o W (1.8)
The most important parameter here
L=N+M-r ' (1.9)

is the number of linearly independent (incommensurate) unperturbed fre-
quencies on an r-fold resonance. We shall call L the resonance dimension
(in frequency space). Actually, Eq.(1.9) gives the maximal dimension when
all L independent frequencies do contribute to the driving resonances which
may be termed the full resonances. There are also partial resonances which
depend on a smaller number of frequencies [ < L. Even though the latter
are just a few they are crucially important for the new AD regime which is
the main subject of this paper (Section 5).

Estimate (1.7), which represents another AD mechanism, seems to agree
with numerical data [7,14]. On the other hand, Nekhoroshev rigorously
proved the upper bound of type (1.7) but with a different exponent [10]
(M-=r=10):
3N -1)N
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Even for the minimal dimensions N = 3 this upper bound L.z = 6.5
considerably exceeds estimate (1.9): L = 2 (r = 1). The difference becomes
increasingly large as N — oo. Even though this discrepancy is not a direct

L<Ly= +2 (1.10)
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contradiction as Eq.(1.10) is the upper bound it constitutes a problem: what
would be the origin of the difference between the two estimates?

Recently, this problem has been resolved by Lochak [11] who rigorously
proved a more efficient Nekhoroshev-type estimate with exponent (1.9) (for
M = 0 but any r). The point is that Lochak assumed convexity of the un-
perturbed Hamiltonian Ho(I) explained above whereas Nekhoroshev’s proof
holds under a weaker condition of the so-called steepness of Hy. From the
physical point of view this difference appears to be insignificant. At least, we
are not aware of any example of a steep but non-convex Hj.

Both the diffusion rate as well as the measure of chaotic component (~
w,, see Eq.(1.6)) are exponentially small in perturbation ¢ — 0. Hence
the term KAM integrability [14] referring to the Kolmogorov—Arnold—Moser
theory which proves the complete integrability for most initial conditions as
€ — 0. Such a partial integrability, or better to say almost integrability, is
as good as the approximate adiabatic invariance. Notice, however, that the
complementary set of the initial conditions supporting AD - the so—called
Arnold web - is everywhere dense as is the set of all resonances (1.2) anyone
of which can be a guiding resonance. Also, the diffusion is exponentially slow
in actions I only while the change in oscillation phase # variation is much
faster, with a characteristic time of the inversed Lyapunov exponent, namely:
(68) ~ wyf/|Inw,| ~ T;' where T,, is the oscillation period in chaotic layer
(see Eq.(2.2) below).

Both rigorous estimates are valid asymptotically, for sufﬁclently small
only. For example, Lochak requires [11] (L > 1):

C'-"E 2L?
E<EL~ (?) (1.11)

This is very small perturbation, and the problem arises to estimate the dif-
fusion rate in the intermediale asimpiotics: ¢f € ¢ € 1l,0r 1 € Ao € Af .
This problem was first addressed in Refs.[14] where a new regime of diffusion,
called the fast Arnold diffusion (FAD), was conjectured from some prelim-
inary results of numerical experiments. Two peculiar characteristics of the
new regime as contrasted to the far-asymptotic AD (1.11) are as follows:

(i) the dependence of the diffusion rate on adiabaticity (perturbation) pa-
rameter Ag (1.7) is a power law rather than exponential, and

(i1) the diffusion rate does not depend on resonance dimension I, particu-
larly, on the number of freedoms N (cf. Eq.(1.7)).
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Precisely these regularities have been observed in numerical experiments
with another many-dimensional model [16]. However, the authors [16] have
given a different interpretation of their numerical results. Instead, we tryed
to agree the same results with our new diffusion mechanism [17]. Unfortu-
nately, both interpretations remained somewhat ambiguous because the per-
turbation in those numerical experiments was not sufficiently small to reach
any asymptotic behavior where the theoretical estimates were expected to
hold true. To resolve this ambiguity we continued numerical and theoretical
studies with the same model but at a much weaker perturbation. In this
paper we report on our first results and present their theoretical explanation.

2. Model and numerical experiments

Following Refs.[16,17] we make use here of the same model with Hamil-
tonian

Pl
Hiz, pl)= i K ; cos (x4 — ;) 8;(¢) (2.1)
and periodic boundary conditions (zy42 = 2;: PN42 = p1) where p, z

are action-angle variables, §,(¢) stands for the §~function of period 1, and
K — 0 is small perturbation parameter. Notice that the number of freedoms
in this model can be reduced to N due to the additional motion integral
2_pi = const. Unperturbed frequencies w; = p; equal to the action vari-
ables, and energy surfaces Ho(p) = |p|?/2 =const are spheres, hence, strictly
convex with unity determinant (1.4). The driving perturbation in the form
of periodic "kicks” is not important for the diffusion but greatly simplifies
numerical experiments as it allows to make use of a (many-dimensional) map
rather than of differential motion equations.

Even though this model does not immediately represent by itself a physi-
cal system it is very convenient for the studies into subtle nonlinear phenom-
ena like AD. The emerging theory can, then, be applied to some real physical
problems, such as the stability of the Solar system (18] or of charged particles
in magnetic fields of plasma devices, accelerators and colliding beams [15,19].

In previous works the diffusion in many-dimensional models like (2.1)
was studied down to K ~.0.1 only [16,9]. At such perturbation and large N
a considerable part of phase space becomes globally chaotic which shadows
the AD effect. Even though a combined action of AD and global diffusion is
an interesting problem important for applications [1,15], here we wanted to
understand, first of all, the mechanism of the proper AD. To this end we went
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down as far as to ' ~ 10~° with number of freedoms up to N = 15. Real-
ization of this program has required essentional modification of the problem
itself. The point is that the direct computation of the diffusion rate quickly
becomes prohibitively long as K — 0, especially as a multiple computation
precision is required for such a small K . To overcome this technical diffi-
culty we have taken a different approach [14], namely, com puting the chaotic

~layer width w, and recalculating the diffusion rate from the relation like

(1.6). Of course, this make any sence for the number of model’s freedoms
N > Nmin (Section 1) . In this way we have managed to reach (for another
model) the adiabaticity parameter value up to Ag & 50 with a routine com-
puter as compared to Ay &~ 10 only for the direct diffusion calculation on
CRAY supercomputer [7]. In model (2.1) this would roughly correspond to
K~A2~4x10"%and 10~2, respectively, and N = 2 only. :

In the present work we go further, and give up the calculation of diffusion
rate altogether. Instead, we are studying numerically and developing the
theory of the chaotic layer only. This proved to be sufficient to understand the
mechanism of AD as well since both are essentially determined by the same
higher—order adiabaticity parameter (1.5), and exponent in Eq.(1.7). Then,
all we need in numerical experiments is computing the oscillation period
T'(w,) inside the chaotic layer of a guiding resonance, and recalculating layer
width w, using simple relations [1]:

s iing 2 lnE ; Wilae = In -:E + 1 (2.2)
Wy Wy

where Tinin, Tay are the shortest and average periods, respectively. Both
values are in a reasonable agreement: < In(wmin/Way) >= 0.31 within the
rms fluctuations A In(wmin/wae) = £0.39, and both underestimate the full
layer width. This is because the diffusion at the layer edge is very slow, so
that 100 oscillation periods used in numerical experiments were insufficient to
reveal the whole layer. A crude estimate [14] leads to the expected correction
factor of the order of 2. No such correction was introduced into numerical

data but it will be discussed below in Section 3.
A primary coupling resonance w; & w4 with phase oscillation frequency
Wy = V2K has been chosen as the guiding resonance. Correspondingly, p; &~
P2 % p,y while other p; (i = 3,..., N + 1) were taken at random (mod 2w). For
the trajectory to be inside the layer the initial value of the guiding resonance
phase was taken approximately ¢; = z; — 2o ~ 7. However, for small K
the exact position of the layer had to be located numerically prior to w,
computation by a special searching part of the code. The computation was
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performed for 7 values of N = 2, 3, 4, 5, 7, 9, 15 at the same initial
conditions of a single trajectory.

The summary of results is presented in Figs.1 and 2. The lower bound
of w, ~ 107*? was determined by computation accuracy (about 30 dec-
imal places). The values of the principal model parameter — the num-
ber of independent unperturbed frequencies, or the resonance dimension
L = N+ M —r = N are also indicated. Notice that under particular
conditions of numerical experiments the resonance dimension is equal to the
number of model’s freedoms because the driving perturbation is periodic
(M = 1), and guiding resonance is simple (r = 1).

The most striking feature of the empirical data is a qualitatively different
behavior in case of L = 2 which was observed already in Refs.[16]. The rest
of data show no systematical dependence on L but rather big fluctuations

which rapidly increase with A.
O ipragag——s

-10

-20 |

&
S

In A

Fig. 1. Summary of numerical data for model (2.1). Broken solid lines
connecting various symbols show computed values of w, as a function of
adiabaticity parameter A '= 1/+/K and of resonance dimension L = N indi-
cated by numbers. Dotted lines represent the theory: (a) small-) limit, 1
fitting parameter, Eq.(3.5); (b3) large-A limit for L = 2, 2 fitting parameters,
Eq.(4.9); (c) intermediate asymptotics, 3 fitting parameters, Eq.(5.8).
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Fig. 2. The same data as in Fig.1 with respect to theoretical dependence
win(A), Eq.(5.8) (curve ¢ in Fig.1). Thin solid curves b; represent first 3

members of the family w,(, L), Eq.(4.9) (cf. Fig.3). Two dashed lines show
rms w, fluctuations (5.11).

3. Small-A limit: a simple dynamical theory

In the first approximation with respect to a small perturbation parameter
K we can consider the primary driving resonances only which are explicitly
present in the original Hamiltonian (2.1). Then, the problem is very similar
to one studied in Ref.[1] apart from a different expression for the kinetic
energy. First, we change variables for the two freedoms which determine the
guiding resonance: z1, s, p1,ps — Y1, P9, I1, Is where

Vi=zi=23, Ya=a1+2, pi=h+h, pp=05L -5, (3.1)

In this approximation the momentum I, & %, and all pi &~ x; for i >
3 are constant and determine the frequencies of driving resonances. The
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unpérturbed motion on the separatrix of the guiding resonance is given by
¥1(t) = 4 arctan (e“s') — « (3.2)

where the frequency of phase oscillation w, = v/2K. As the interaction in the
original Hamiltonian (2.1) is local, only 2 freedoms directly coupled to the
guiding resonance contribute to the driving perturbation in the chaotic layer.
Still, the full set of driving resonances remains formally infinite because of
the external perturbation é;(t) of frequency = 27 but the effect from most
of them is exponentially small due to large detuning wn, (see Egs. (1.5)
and (1.6)). So, one can retain a single driving resonance only with minimal
detuning:

Wwgqg = min |P_¢ — pa + qQ} . (3.3)

where pg = ps ,pn+1 and ¢ = 0,+1. In this 2-resonance approximation the
Hamiltonian takes the form: H = Hy(Iy, ¥1) + V(¢1,1) where

Ho = I¥ — K cosyy, V = —K cos (%l - wqt + q’:) (3.4)
and ¢ 1s some constant phase.
Now, we can apply the standard method for deriving separatrix map and

the layer width (see Refs.[1,13] for details):

i, = ﬁf?u ~ 4rfA2e~"ro/2 (3.5)

where AHp is the layer width in energy, Ay = wg/wy = Mwg/v/?2, and
) = 1/v/K. Besides usual approximations for such evaluations an additional
factor f ~ 1 shows up for model (2.1) because the relative perturbation
{V/Hp| ~ 1 is not small. In a particular case N = 1, which reduces to the
well studied standard map, this factor f &~ 2.15 was found in numerical ex-
periments [1], and later confirmed with a much better accuracy in Ref.[20]:
f = 2.255... The best theoretical value recently derived is f ~ 2.14 [21].
Uncertainty in this factor limits the theoretical accuracy of relation (3.5).
Partly, it is balanced by an underestimated layer width, also by a factor of 2
[14] as discussed above. So, factor f = fi5/fa in Eq.(3.5) is actually the ratio
of theoretical fis to the correction f, = we/w, of empirical w, value (for
100 oscillation periods in our case) to obtain the true value we, for infinitely
many periods.

In this small-A region the width w, does not depend on N (Fig.1) because
the original interaction is local. However, the size of this region is rather
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narrow. Comparison of numerical data for L = 2 with theory (3.5) (dotted
line a) is presented in Fig.1. The value of f = 0.64 was obtained from 3
leftmost points in Fig.1 (InA = 1.5 — 2.5) with rms deviation from theory
(3.5) Alnw, = £0.53. Assuming empirical correction fa = 2 [14] gives
=13 which is rather different from that in the standard map.

4. Large—)\ limit: statistical estimates

For large A the layer width, as well as AD rate, progressively exceeds a
simple 2-resonance estimate (3.5) (Fig.1). This was noticed already in first
numerical experiments on AD [1]. Apparently, it is some strange, on the first
glance, effect of higher-harmonic driving resonances even though they are
much weaker. Generally, such resonances are present in the original Hamilto-
nian (1.1), and their amplitudes V;,,,, are explicitly given. However, in model
(2.1) under consideration here it is not the case, and the higher perturbation
harmonics show up only in higher orders of the perturbation expansion with
respect to small perturbation parameter K < 1. The mechanism of gen-
erating higher-harmonic terms is related to modulation of any unperturbed
frequency p; by any other freedom. Particularly, this general mechanism
transforms the original local interfreedom interaction in the system into a
global one. Roughly, the higher-order amplitudes V,, ~ K™ = exp (nln K),
and their decay rate o (per freedom) can be assumed in the form [17]:

A

o= IHE (4.1)

with some constant A depending on a particular shape of the perturbation,
In our model (2.1) the leading higher terms approximately correspond to
A & 2 which we shall use below. Notice that the amplitudes do not depend
on the external perturbation harmonic m as it is a §—function.

A counterbalance to weaker higher perturbation terms is smaller ) (1.5)
due to smaller detuning wym (1.2). Generally, dependence Wam(n, m,w) is
very complicated, with wild fluctuations, and exact evaluation of a higher-
order perturbation is practically impossible and even useless beyond a few

first terms [21]. However, the leading dependence can be singled out as follows
(see, e.g., Refs.[22,23]):

Q
Wnm = E“_‘Tan{W) (42)

where new function F,, describes now the fluctuations only. The latter
are quite big which is the main obstacle for reliable estimates. In some
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special cases function F,,, = Fy is simply a constant For example, in case
of L = 2 and frequency ratio R = w/Q = (v/5 — 1)/2 (”the most irrational”
real number): 1/Fy = R+ 1/R = /5. Generally, only a sort of statistical
estimates is possible by setting Fy,,(w) & F; & const to some average or
”most like” value to be fitted from numerical data.

Now, a particular term of the higher-order perturbation takes a form
similar to Eq.(3.4):

Here n 1s modulus of a single component of the integer vector, hence factor
(L — 1) which is less by one than the full number of frequencies because of
6—function in Hamiltonian (2.1) as discussed above. Assuming again that
term (4.3) provides the main contribution to the formation of chaotic layer,
which seems to be plausible owing to big detuning fluctuations, we arrive,
similar to Eq.(3.5), at the following estimate for the layer width:

T

wr ~ (222)" exp (- (4.4)

Here the principal exponent (cf. Eq.(1.7))

An F
Biabs ool £ =2 A, = Upnfi® Ayt (4.5)
2 nf-1
where X = w—fi = AQ//2, and A = 1/VK (Fig.1).
The minimum of E(n) equals to
E EfATh . =T : (4.6)
min — O ) s ’ - e .
L L
and is reached at n &~ ng where
A A 20
g R —, = = (4.7)

The latter relation shows that the factor in Eq.(4.4) approximately reduces
to a constant which renormalizes the amplitude decay rate: ¢ — o7 where

(L—l)crLm(LLI)J-—an—]ng——I}G (4.8)
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The latter inequality is a necessary condition for validity of these approximate
relations. This condition is satisfied for sufficiently large original ¢, or small
K (see Eq.(4.1)).

Finally, the approximate relation for the layer width in this limit reads:

Inw, ~ Ay — b(L)o LAME (4.9)

This theoretical dependence is also shown in Fig.l (curve b3) for L = 2
and fitted values Ay = 5.42, and F; = 0.34 for the detuning parameter in
Eq.(4.6). The rms deviation for 5 points (InA =2 — 4) is Alnw, = +0.71.
While average detuning F; has a reasonable value, the factor Ay seems too big
(see next Section). Apparently, this discrepancy characterizes the accuracy
of our statistical estimates, The additional parameter b(L) = 1 was set to
unity for L = 2, and will be discussed in detail in Section 5 below.

For bigger L the behavior is completely different, and this is our most
interesting result to be described in the next Section.

5. Intermediate asymptotics: Fast Arnold diffusion

The origin of a crucial change in dependence w,()) is related to factor
L — 1 in expression for exponent E(n) (4.5). The effect of this factor was
previously missed in Refs.[1,15] (c¢f. Eq.(1.7)). Indeed, it leads to a non-
monotonic dependence w,(L) according to Eq.(4.9). The latter was derived
from optimization with respect to harmonic number n among the driving
resonances with the maximal dimension I = N only. Meanwhile, there are
also resonances of lower dimension with L < L. So, we need the second
optimization, now with respect to L, as was first done in Ref.[14] (see also
Ref.[17]). First, we explain the idea of optimization for a simple example (cf.
Eq.(4.9))
wy, = exp (— LAYE) _ (5.1)

The new factor L decreases the layer width as L grows, and thus counteracts
the increase in w, due to dependence A/X. For any pair L; < L, there is a
certain value of A = A* at which both w, values coincide. Namely:

Ly fz-zﬁl
s (5.2)
Ly

If A < A* the value w,(L,) > w,(L2) and vice versa. Thus, for a given A
the particular L(A) should be found which provides maximal w,. In this
way we would obtain a broken line which is the envelope of the family of
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curves w,(A, L). Interestingly, the existence of such a family of intersecting
curves could be inferred already (but was missed) from the validity of the
2-resonance approximation [1,2,6,7] which corresponds to L = 1.

For L > 1 a smooth approximation to the envelope is found from the
local condition

EEU,.—‘- = —y, N/ (1 - ll—l-i) =10 (5.3)
dL : L
Whence optimal
Lo(2) = In) (5.4)
and :
Wmaz(A) = w,(Lo) = 2~° (5.5)

where e = exp (1). Thus, the dependence of the layer width on adiabaticity
parameter becomes a power law provided Ly < L, or

AL AL =e” (5.6)

that is for a not-too-weak perturbation. This border is, of course, much higher
(in €) than that in the rigorous theory (cf. Eq.(1.11)). We term region (5.6)
the iniermediate asympiotics as contrasted to the far asymplotics for the
reversed inequality. The former is always bounded from above but rapidly
grows with L, and may be arbitrarily large as L — oo.

We call this regime the fast Arnold diffusion (FAD). Within domain (5.6)
the layer width (and diffusion rate) does not depend on L but asymptoti-
cally, for any fixed L and A — oo, the Nekhoroshev-like dependence (4.9) is
recovered.

In Fig.3 the power-law mechanism is illustrated, for a simple example
(5.1), by plotting a family of curves In (w, (A, f,}/wmgi.) which are touching
the line of maximal wpq;(A) (5.5) up to the largest L = L = 5.

For a more realistic asymptotic relation (4.9) the optimization is more
complicated because of the additional dependence on L via o . Partly, that
can be removed by approximate renormalization: Ay — Agfo. For L > 1
the remaining dependence (4.8) is weak and can be neglected, at least in
evaluating optimal Lg, which now becomes (cf. Eq.(5.4)):

ek (5) (5.7)

78

However, we retain a more accurate oy (4.8) in the final expression:
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Fig. 3. A scheme of the family w, (A, L), Eq.(5.1),for L =1 — 5 as indi-
cated, with maximal L = L = 5 which form a smooth power-law dependence
(5.5) shown by dotted straight line.

: A 4o
Inw, % Ay — bye [crln (;) — In (-ﬂ_—) - l] (5.8)

which is the main result of our studies. It is compared with numerical data in
Fig.1 (curve ¢, see also Fig.2). Besides two fitting parameters previously used
in Eq.(4.9) (curve b2 in Fig.1), which now take somewhat different values:
Ay = —1.05, and F; = 0.4, we have to introduce the third one: &; = 0.29.
The fitting of empirical data has been performed for N = 5, 7, 9, 15 only. We
excluded data for N = 3, 4 as they seem to violate condition (cf. Eq.(5.6))
11.2

V2

for In A2 5 (see Figs.1 and 2). Using the above fitted value for F; = 0.4, and
Eq.(4.1) for ¢ = In(2/K) = In(2)?) we obtain from Eq.(5.9): In)3 ~ 4.2,
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and In Ay &~ 5.5. While the first value is close to empirical one, the second
1s too large. The origin of this discrepancy is not completely' clear but it
might be caused by fluctuations. Apparently, the latter are mainly related to
detuning function F,,,(w) which fluctuates with both the harmonic numbers
and the set of frequencies for different I. Interestingly, while the optimal
harmonic number ng increases with A > Ar (4.7) it remains approximately
constant

Mg ~ e &~ 3 (510)

in the whole FAD region (5.9). This follows directly from Eqs.(4.7) and
(5.7). Surprisingly, the above asymptotic relations remain reasonably good
in spite of a relatively small ny value (Figs.1 and 2). Notice, however, that
the number of resonances ~ n{® = A /o still increases with A.

Detuning fluctuations in F; were calculated from the numerical data using
the relation (see Eq.(5.8)):

dInw,
dlIlF_r

= —bjear = —bje(0.T+21n ) (5.11)

which gives for the rms dispersion:
<AlnF; >4= 0.18, and <AlnFy>¢=0.25 (5.12)

The first value is the average over 4 cases with N = 9, 7, 9, 15 as in the main
fitting; for the second N = 3, 4 are also included. The latter value is used in
Fig.2 for rms fluctuations A In w, according to Eq.(5.11).

The accuracy of our theory does not allow for a reasonable estimate of
factor Ay & —1 in the main relation (5.8) whose value is considerably smaller

- as compared to A; ~ 5 in Eq.(4.9). However, the value of a new fitting

parameter b; = 0.29, which we had to introduce in Eq.(5.8) instead of b(2) =
1 in Eq.(4.9), is a problem for the theory. It is impossible to fit the data
for large L with the latter value nor vice versa that is with b(2) = 0.3, as
in Eq.(5.8) but for L = 2, unless one assumes in Eq.(4.9) the value F; = 3
instead of 0.3 which seems too big. In any event, something happens upon
transition from L = 2 to L > 3 which is obvious from the data in Fig.1. To
reconcile these data with the above theory one needs to assume a jump either
in parameter b from 1 to 0.3 (with approximately the same F; =~ 0.4) or in
parameter Fy from 3 to 0.4 (with approximately the same b 2 0.3 still to be
explained anyway). Actually, the value Fy = 3 for L = 2 would contradict

the rigorous upper bound Fy < 1 [22]. So, we have to understand the first
possibility above,
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In Ref.[17], using a somewhat different approach, the following expression
has been derived for parameter b in the relation (2.11) similar to Eq.(5.8)
above: b &~ 1/m/e = 0.19 . This value is close to the present empirical one:
by = 0.29 . However, the former does not fit the far asymptotics (4.9) for
L = 2 as discussed above.

A qualitative explanation of the decrease in b(L) with L could be related
to some underestimation of perturbation Fourier amplitudes in Eq.(4.3). In-
deed, we assumed the independent decay of amplitudes for each freedom
(factor L —1). However, the higher harmonics may arise in the perturbation
series not separately from each other but in some groups, thus decreasing an
effective parameter L or ¢. The former possibility is excluded by the assumed
expression for detuning (4.2). Hence, we guess the effective amplitude decay
rate in the form: ¢ — bo with empirical b~ b; ~ 0.3.

A different value of b = 1 for L = 2 is also explained in this way because in
that case there remains a single oscillation frequency only. However, another
important question arises: is the new factor b(L) a constant for L > 3 or does
it change still further with L? In other words, is FAD really independent of
N? Our empirical data seem to confirm such independence. Even though
there are quite big fluctuations for large A they do not reveal any system-
atic variation of w, with L. This is especially clear from Fig.2 where the
difference between numerical data and the theory is shown. Moreover, the
theory explains even a small dip in the dependence w,()) around In A = 3.
This results from a deviation of the approximate smoothed envelope (5.8)
from the family of curves w,(A, L), three of which are shown in Fig.2 (for
L =23, 4, cf. Fig.3) as calculated from Eq.(4.9) with factor b(2) = 1, and
b(3) = 0.29.

If the above hypothesis is true a new fitting is required as renormalization
o — bo would result in more complicated expressions than just a single
factor in Egs.(5.8) and (4.9). By doing so we have found that the change in
dependence w,(A) according to Eq.(5.8) was negligible at the expense of some
changes in the fitting parameters: Ay = —0.88, by = 0.28, F; = 0.21 which
appear to be reasonable also. A larger change §4; =~ 1 occurs in the family
of curves, Eq.(4.9), for L > 2, and their agreement with smooth envelope
(5.8) becomes more poor owing to approximate relation (5.7). To keep the
above estimates more self-consistent we neglect all these minor changes, and
retain the above relations with a single parameter b; = 0.29 for L > 2. In
any event, the relations, being approximate any way, are much simpler in
this form.

Interestingly, a half of the data in Fig.1 (InA < 4, L > 2) fits also a simple
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power law with exponent 6.3 which is very close to the value 6.6 obtained in
Refs.[16,17] aror 1d In X 2 2. However, for larger In A > 4 the deviation from
such a simple dependence (it would be a straight line in Fig.1) progressively
increases in accordance with theory (5.8).

6. Discussion

We have performed detailed studies into a new regime of AD - the fast
Arnold diffusion - when the diffusion rate depends on the perturbation strength
€ = K, for model (1.1) and (2.1) respectively, or on the adiabaticity param-
eter A ~ 1//e ~1/V/K as a power law (5.8) rather than an exponential like
Eq.(4.9). '

We made use of a specific model (2.1) which is relatively simple and very
convenient for numerical experiments with arbitrary number of freedoms N
but, at the same time, is rather difficult for theoretical analysis. This is
because the model represents the limiting case of the local interfreedom in-
teraction. And not only 2-freedom one, which would model a pair interaction
in a broad class of physical systems, but is even further restricted to the cou-
pling with two nearest neighbor freedoms in a chain only. Moreover, the
coupling is harmonic, so that only 3-frequency primary resonances (those for
the two freedoms and for the driving perturbation) with harmonic numbers
n = 1 show up in the original Hamiltonian (2.1) independent of N. As
a result, the higher-harmonic multifrequency resonances, which make the
principal contribution to AD, arise in higher—order perturbation terms only
which makes the theory very difficult from the beginning. We cirqumvented
this difficulty by a plausible and simple conjecture (4.1) for the decay rate
- of the high—order perturbation amplitudes. However, to agree the empirical
data with the theory we had, later on, to father modify this conjecture by
introducing additional factor (L) in our main relations (4.9) and (5.8). Even
though we suggest in Section 5 a qualitative explanation for b(L) # 1, the
origin of this additional dependence remains as yet not completely clear, and
it constitutes an open question in our theory. Apparently, this is related to
a specific Hamiltonian (2.1) as discussed above.

Factor b = 0.29, assumed to be constant for L = N > 2, is one of the
three fitting parameters in our main theoretical relation (5.8) for the FAD.
As explained in Section 2 we actually computed and calculated the chaotic
layer width w, related to the diffusion rate via estimate (1.6). The second
fitting parameter F; = 0.4, which describes detuning fluctuations wy,,,, {3,
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also cannot be evaluated in the present state of the theory but was found
numerically to be of a plausible value. Finally, the third fitting parameter Ay
remains completely out of the theoretical reach, and it simply characterizes
a global accuracy of the theory developed. We remind that all our estimates
but the simplest one (3.5) are of a statistical nature owing to large detuning
fluctuations. Within this accuracy and fluctuations the agreement between
empirical data and the theory as presented in Figs.1 and 2 can be considered
as satisfactory, especially taking into account a big range of w, variation
which comprises almost 22 orders of magnitude!

Surprisingly, all this huge range correspond to the intermediate asympto-
tics (1 <€ X « A, see Eq.(5.9)) with FAD, starting already from a relatively
small L = N > 5. Even for L = 3 and 4 the FAD range is apparently of
a comparable size, and only for the minimal L = 2 the far (exponential)
asymptotics (A 3> Ar) clearly shows up. As already discussed in Section 5
a sharp change in dependence w,(A) from L = 2 to L = 3 is precisely due
to "misterious” factor b which drops by a factor of 3. Unfortunately, this
does not allow to reach the far asymptotics, and to confirm the exponential
dependence on N (4.9) for A > AL beyond minimal L = 2. Meanwhile, this
would be important to decide on a different interpretation of N —independent
diffusion for large N in Ref.[16]. The latter authors conjectured that such
an independence is a result of the local interaction in model (2.1). This is
contrary to our theory but not as yet to the direct empirical evidence. At the
moment we can only remark that their reference to Wayne’s theory [24] for
the same model is irrelevant. Indeed, Wayne proved a long N-independent
stability for very special, nonresonant, initial conditions (theorem 1.1) while
AD occurs within chaotic layers only, that is also for highly specific but res-
onant initial conditions. Thus, the former theory is related to a global chaos
rather than to KAM integrability with its peculiar Arnold web of chaotic
layers.

In case of a global interaction (1.1) with strong nonlinearitry (1.4) and
uniform amplitude decay rate our theory remains valid, and even becomes
simpler as o = const. However, the numerical experiments would be much
more difficult for large N. On the other hand, both the FAD range (5.9) as
well as the diffusion rate there depends generally on the number of incom-
mensurate unperturbed frequencies L = N + M —r (1.9) which may be large
at the expense of large M, the number of driving perturbation frequencies.

Fast Arnold diffusion should not be confused with even much faster diffu-
sion in degenerate systems or those with nonconvex energy surfaces (Section
1). In the latter case the diffusion mechanism is of a completely different
nature. Apparently, this sort of diffusion was recently observed in numerical
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experiments with the classical model of the Hydrogen atom in crossed electric
and magnetic fields [25].

In the present study we have chosen one of the strongest primary reso-
nance as guiding, with amplitude V; = V; ~ K (Section 2). In case of a
high-harmonic guiding resonance (V; = V/,, n >» 1) the main effect would
be tremendous drop in the diffusion rate due to exponential rise of the adia-
baticity parameter with n (see Eq.(4.5)):

A(n) ~ exp (%Ln) ~ exp (%Lp”f’) (6.1)
where p(n) ~ nl is the density of the guiding resonances in the Arnold web
with harmonic numbers up to n (cf. Eq.(4.2)). Hence, the diffusion rate in
the intermediate asymptotics drops exponentially with n or p, Eq.(5.8), and
even as a double exponential in the far asymptotics!

Similar to Eq.(5.8) the resonance density p(A) calculated from Eq.(6.1)
can be optimized with respect to intermediate I < L to obtain the estimate:

,\Z_fea A < N
p(A) ~ 51 N S (6.2)
{ L e

The discussion of transport properties of the Arnold web can be found in
Ref.[1].

In conclusion, our present studies confirm the previous conjecture and
preliminary empirical data [14,17] concerning a new regime of fast Arnold
diffusion. Moreover, we have found that in many—frequency (L > 1), partic-
ularly, large (N >> 1) systems the FAD range in perturbation (5.9) is fairly
big, so that this regime appears to be a typical one, in a sense, and might be
important in various applications.

Acknowledgments. We are very grateful to our colleagues in the Univer-
sity of Milano at Como for the hospitality during the essential part of this
study. This work was partially supported also by the Russia Foundation for
Fundamental Research, grant 95-01-01047.

*

22

References

[1] B.V. Chirikov, Phys. Reports 52, 263 (1979).

[2] A. Lichtenberg and M. Lieberman, Regular and Chaotic Dynamics,
Springer (1992).

[3] V.I. Arnold, Dokl. Akad. Nauk SSSR 156, 9 (1964).

[4] B.V. Chirikov, Studies in the Theory of Nonlinear Resonance and
Stochasticity, preprint INP-267, Novosibirsk, 1969 (Engl. trans., CERN
Trans, 71-40, 1971).

[5] G.V. Gadiyak, F.M. Izrailev and B.V. Chirikov, Proc. 7th Intern. Conf.
on Nonlinear Oscillations (Akademie-Verlag, Berlin, 1977), Vol. 11,1, p.
315.

[6] J. Tennyson, M. Lieberman and A. Lichtenberg, AIP Conf. Proc. 57,
272 (1979); M. Lieberman, Ann. N.Y. Acad. Sci. 357, 119 (1980).

[7] B.V. Chirikov, J. Ford and F. Vivaldi, AIP Conf. Proc. 57, 323 (1979).

[8] T. Petrosky, Phys. Rev. A 29, 2078 (1984).

[9] B. Wood, A. Lichtenberg and M. Lieberman, Physica D 71, 132 (1994).
[10] N.N. Nekhoroshev, Usp. mat. nauk 32, #6, 5 (1977).

[11] P. Lochak, Phys. Lett. A 143, 39 (1990); Usp. mat. nauk 47, #6, 59
(1992); P. Lochak and A. Neishtadt, CHAOS 2, 495 (1992).

[12] A.A. Chernikov, R.Z. Sagdeev and G.M. Zaslavsky, Physica D 33, 65
(1988); A. Lichtenberg and B. Wood, Phys.Rev. A 39, 2153 (1989); B.V.
Chirikov and V.V. Vecheslavov, The Structure of a Weakly Nonlinear
Resonance, in: From Phase Transilions to Chaos, Eds. G. Gyorgyi et
al, World Scientific, 1992, p. 273.

[13] N.N. Filonenko, R.Z. Sagdeev and G.M. Zaslavsky, Nuclear Fusion 7, 253
(1967); G.M. Zaslavsky and N.N. Filonenko, Zh.Eksp.Teor.Fiz. 54, 1590
(1968); G.M. Zaslavsky, B.V. Chirikov, Usp.Fiz.Nauk 105, 3 (1971);
A. Rechester and T. Stix, Phys.Rev.Lett. 36, 587 (1976); D. Escande,
Phys.Reports 121, 163 (1985); V.F. Lazutkin, Dokl.Akad.Nauk SSSR
313, 268 (1990); V.V. AfanasieV et al, Phys.Lett. A 144, 229 (1990).

23



[14] B.V. Chirikov and V.V. Vecheslavov, How Fast is the Arnold Diffusion?
Preprint INP 89-72, Novosibirsk, 1989; B.V. Chirikov and V.V. Vech-
eslavov, KAM Integrability, in: Analysis etc, Eds. P, Rabinowitz and E.
Zehnder (Academic Press, 1990), p. 219.

[15] B.V. Chirikov, Fiz. Plasmy 4, 521 (1978); Proc.Roy.Soc.Lond. A 413,
145 (1987).

[16] K. Kaneko and T. Konishi, Phys. Rev. A 40, 6130 (1989); T. Konishi,
Suppl. Prog. Theor. Phys. 98, 19 (1989); T. Konishi and K. Kaneko, J.
Phys. A 23, L715 (1990).

[17] B.V. Chirikov and V.V. Vecheslavov, J.Stat.Phys. 71, 243 (1993).

[18] Resonances in the Motion of Planets, Satellites and Asteroids, Eds. S.
Ferraz—Mello and W. Sessin, Univ. de Sao Paulo, Brazil, 1985; J. Wis-
dom, Icarus 72, 241 (1987); J. Laskar, Nature 338, 237 (1989); Icarus
88, 266 (1990); Astron.Astrophys. 287, L9 (1994).

[19] B.V. Chirikov, Priroda, 1982, #7, p.15; Nolinear Dynamics Aspecis of
Particle Accelerators, Lecture Notes in Physics Vol. 247, Springer, 1986;
A. Lichtenberg, Phys.Fluids B 4, 3132 (1992).

[20] V.F. Lazutkin et al, Physica D 40, 235 (1989).
[21] V.V. Vecheslavov, Zh.Eksper.Teor.Fiz. 109 #5 (1996).

[22] A.Ya. Khinchin, Continued fractions, Fizmatgiz, Moskva, 1961 (in Rus-
sian); J. Cassels, An Introduction to Diophantine Approzimation, Cam-
bridge University Press, 1957; W. Schmidt, Diophantine Approrima-
tions, Lecture Notes in Mathematics 785, Springer, 1980.

(23] B.V. Chirikov, Chaos, Solitons and Fractals 1, 79 (1991).
[24] E. Wayne, Comm.Math.Phys. 104, 21 (1986).

[25] J. von Milczewski, G. Diercksen and T. Uzer, Phys.Rev.Lett. 76, 2890
(1996).

24

B.V. Chirikov and V.V. Vecheslavov

Arnold Diffusion in Large Systems
Budker INP 96-44

B.B. Beuecaasos, b.B. Qupuxos

Hudpdysns ApHonbaa B GonbLIINX cucTeMax

Budker INP 96-44

OrBercrBennsiii 3a Buinyck A.M. Kynpssues
Pabora nocrynuna 26.06.1996 r.

Cnano B Habop 4.07.1996 r.
Hoanucano B neuats 4.07.1996 r.
Popmat 6ymaru 60x90 1/16 O6vem 2.1 neu.a1., 1.7 yu.-usg.a.
Tupax 200 sk3. BecnnaTHo. 3akas N° 44

O6paborano Ha IBM PC u oTneyarano Ha
poranpuntTe FHI[ PP "UAP um. I'. M. Bynkepa CO PAH”,
Hoeocubupcx, 630090, np. axedemuxa Jaspenmvesa, 11,



