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1 Introduction: chaos as relaxation and
fluctuations

The principal characteristics of statistical behavior are relazation
and fluctuations. The former means a monotonic, at average,
approach to some steady state (statistical equilibrium) while the
latter are associated with irregular oscillations during relaxation
as well as around the steady state. The most surprising result of
recent studies into the so-called quantum chaos is in that both
properties do take place even in case of discrete quantum spec-
trum. Unlike in classical dynamics discrete spectrum is always
the case for any quantum motion bounded in phase space. Sta-
tistical relaxation in discrete spectrum had been found already in
the first numerical experiments with quantum chaos [1], and was
well confirmed afterwards in many other papers (see, e.g., [2]).
Particularly, the very existence of quantum diffusion, observed in
Ref.[1], implies already a correlation decay and relaxation.

In the following we will focus on the other principal statis-
tical property - the fluctuations in quantum chaos with discrete
spectrum. As we shall see the quantum chaos exhibits a lot of var-
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ious fluctuations justifying, thus, the term chaos even in discrete
spectrum. The ultimate origin of these dynamical fluctuations
is related to decoherence, both in space and time, of a typical
quantum state associated with the classically chaotic system. In
a more formal language, the decoherence results frorn the large
number (in quasiclassical region) of incommensurate energies (fre-
quencies) which control the dynamics. Indeed, the particular en-
ergy eigenvalue is, in general, a typical irrational number, and
therefore has random digits thus producing a very irregular dy-
namics even though, in case of discrete spectrum, this dynamics
is different from the asymptotic, classical-like, chaos (see, e.g.,
Ref.[4] for informal discussion).

Below we shall mainly discuss the statistical properties in mo-
mentum space which is relevant to the applications in nuclear,
atomic and molecular physics. There exists a broad class of the
so—called dual problems related to the conjugated configurational
(coordinate) space which are most relevant to the solid-state
physics. The interrelation between the two had been discovered in
Refs.[6], and proved to be very fruitful for both fields of research
(for further discussion see, e.g., Ref.[4]).

2 An illustrative model

Our main goal is to describe fluctuations in dynamical systems. To
simplify the presentation we will use as an example a very ’simple’
model called ’kicked rotator’ [1] which is specified by a unitary
operator (2.3), or quantum map. Even though it looks rather
primitive many realistic physical models of both time-dependent
as well as conservative systems can be approximately reduced
to such, or to a similar, map (see, e.g., Ref.[3]). Remarkably,
this ’simple’ model still remains inexhausted, even in classical
mechanics (see, e.g., Ref.[7] and below).

In the classical limit the model is described by the standard
map

n=mn++kcoso, ¢d=0¢+nT (2.1)
where n, ¢ are action-angle variables, k stands for the perturba-

tion strength, and T is perturbation period.

Quantization of this map leads to the unitary operator over
period T [1]:
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where n = —10/0¢, and h = 1.

The standard map (2.1) is defined on a cylinder (—oo < n <
+00) where the motion can be unbounded. To describe bounded
motion of a conservative system it is more convenient to make
use of another version of the standard map [5], namely, one on a
torus with finite number of states L. In momentum representation

(¥(n, 7) where 7 is the number of map’s iterations) it is described
by a finite unitary matrix U,,,:

A T#2 A
Ur = exp(—:-—n—) - exp (—tk - cos @) (2.2)

Y(n, 7+ T) Z Upm ¥(m, 7)

where L = 2L, + 1 =~ 2L,, T/4nr = M/2L is rational, and

1
Unm = —exp (i%(ﬂz + mE)) X

L
Ly
E exp [—ik - cos (2mj /L) — 2mi(n — m)j/L] (2.3)

There are three quantum parameters in this model: perturba-
tion k, period T and the full number of states I, but only two
classical combinations remain: perturbation K = k- T and classi-
cal size M = T'L/2n which is the number of resonances over the
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torus. Notice that the quantum dynamics is generally more rich
than the classical one as the former depends on an extra parame-
ter. This is, of course, another representation of Planck’s constant
which we have set i = 1.

The quasiclassical region, where we expect quantum chaos,
corresponds to ' — 0, & — oo, L — oo while the classical
parameters K and M are usually assumed to remain constant.
The global classical chaos, particularly diffusion in n, occurs for
K > 1. Notice that in quantum mechanics the transient pseu-
dochaos requires an additional condition kR 1 (see Ref.[1,20]).

3 The quantum steady state

The structure (particularly, fluctuations) in the steady state cru-
cially depends on the so—called ergodicity parameter A which, in
our model, can be defined as

e Al i ot (3.1)

D{] (‘T‘R)‘l"’2 k2 K
L

where Dy stands for the classical diffusion rate, 7. ~ L?/ Dy is a
characteristic time of the classical relaxation to the ergodic steady
state, and 7 ~ Dy is the so—called relaxation time scale on which
the quantum diffusion remains close to the classical one [4].

If A > 1 the final steady state as well as all the eigenfunctions
are ergodic (after Shnirelman [8]; see also Refs.[9] and [10]) that
is the corresponding Wigner functions are close to the classical
microcanonical distribution in phase space §( H(n,¢) — E). We
call this region quasiclassical asymptotics. It can be reached, par-
ticularly, if the classical parameter K/M is kept fixed while the
quantum parameter k — oo.

However, if A <« 1 all the eigenstates and the steady state
are non-ergodic. It means that their structure remains essen-
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tially quantum, no matter how large is the quasiclassical param-
eter k — 0o. We call this region intermediate asymptotics or
mesoscopic domain. Particularly, it corresponds to K > 1 fixed,
k — oo and M — oo while A < 1 remains small. The mesoscopic
domain we are speaking about refers to the momentum space and
is a new conception [4] not commonly accepted as yet. For the
dual problems in configurational space the mesoscopic phenom-
ena are well known and currently under intensive studies (see,

e.g., Refs.[11], [12] and [13]).

3.1 Ergodic states

A characteristic statistical property of ergodic eigenstates is the
so—called level repulsion: the nearest level spacing distribution, or
level fluctuation, is described by the Wigner — Dyson law:

p(s) ~ As® exp(— Bs?) (3.2)

where the repulsion parameter 3 takes the values 8 =1, 2, 4 = £,
only, depending on system’s symmetry. Quite often this distribu-
tion is still called universal (see, e.g., Ref.[14]) in spite of the fact
that as we stressed several times [4] Eq.(3.2) is true in the case
of quantum ergodicity only. Instead, we call Eq.(3.2) the limit-
ing statistics because it corresponds to the ergodicity parameter
A — oo (see also Ref.[14]).

As was mentioned already above the ergodic steady state is
close to the classical one up to the quantum fluctuations. For
example, in the standard map we would expect the temporal rms
energy fluctuations to be of the order

AE, 1
e — 3.3
Es \/E ( )

However, to our knowledge, nobody has checked this as yet nume-
rically.?

?Recently, we have confirmed this in numerical experiments, indeed [31].
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The spatial fluctuations in chaotic eigenfunctions are known
to be close to Gaussian (Refs.[15] and [16]). Interestingly, a clear
deviation from the Gaussian distribution was found due to finite
dimensions of eigenfunctions in the Hilbert space [15].

3.2 Localized states

Statistical properties of localized states are much more rich and
interesting since localization, which is an essential quantum effect,
considerably modifies a classical-like ergodic structure. Instead
of ’universal’ fluctuations (3.2), the intermediate statistics was
discovered to hold (Refs.[5] and [17]), namely

ToAY, e i

| (3.4)
where now the value of the repulsion parameter 8 (cf. Eq.(3.2))
depends on the degree of localization. In particular, it can take
the value § = 0 (Poisson statistics) which corresponds to the
classically integrable case (or to extreme localization!). Moreover,
the repulsion parameter # was found to be simply related to the
localization parameter [3; [18] (see also Ref.[19]) which gives a
measure of the size of eigenfunctions. There are many different
quantities which characterize the size of a localized state. Below

we will consider three of them:

2
p(s) ~ As” exp(—%ﬁsz — sB +

— Asymptotic localization length [ (for eigenstates) or [, (for the
steady state) from the approximate representation of both
(at average) as ¢(n) ~ exp(—|n|/l), |n| = oo. For the
standard map [ &~ Dy/2 and [, =~ 2I[20].

— Entropy localization length[5]:
y =", H=-3 len(m) Inlen@) (3.5
n
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which characterizes the 'width” of the quantum state, and
which is approximately proportional to [.

— Participation ratio:

RS > hom(n)r‘)"l (3.6)

which is close but not identical to the previous length [j.

Now, let us define the localization parameter (3; as

l
B = j“" . (3.7)

where brackets < > indicate averaging over all eigenfunctions, and

where [, > [y~ is the maximal entropy localization length corre-

sponding to ergodic states. Then, it has been numerically found
[18,19] that '

43 ~ ﬁc § JBI' (3*8)
No explanation of this surprisingly simple relation has been given
as yet.
The dependence [i(A) on the ergodicity parameter A, or scal-
ing, can be approximated by a simple expression[5]

al
14+ ad’

Bi(A) =~ T~ AL 10 (3.9)
Deviations for larger A remain unclear, and may depend on the
boundary conditions and/or ¥ (n) symmetry [21]. This scaling is
not universal, and may be completely different depending on the
model [19]. :
The intermediate statistics (3.4) is due to the quantum local-
ization under the assumption of complete chaos in the classical
limit. This is why observation of such statistics (with g ~ 0.31)
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in a billiard with classically divided phase space, containing about
§ ~ 17% of regular (stable) component of the motion, was rather
puzzling[22]. The point is that the presence of a stable compo-
nent leads to a nonzero level spacing density p(s) = po > 0 as
s — 0 contrary to numerical results[22] which confirm Eq.(3.4)
down to s &~ 0.004. In our opinion, this demonstrates that the
effect of quantum localization can be dominant, in the mesoscopic
region, even for § > 0. To clarify this puzzle we suggest to change

the model[22] as follows. The boundary of Robnik’s 2D billiard
is given by the equation

|z + e2™| = 1 (3.10)

where z is the complex coordinate in billiard’s plane. For m = 2,
used in Ref.[22], the requirement for complete classical chaos
(large €) contradicts with that of the diffusive evolution of parti-
cle’s velocity direction (small €) which is necessary for quantum
localization (cf. Ref.[23]). To satisfy both conditions we need
another parameter, for example m > 1, so that billiard’s bound-
ary becomes slightly wiggly which leads to diffusion in velocity.
Another possibility is the everywhere slightly convex billiard.

Exponentially localized eigenfunctions ¢, (n) show wild fluc-
tuations which are not only very large in size[5] but, moreover,
diffusively increasing in both directions of n [20]:

< NMmn >
“Tm -]
(3.11)
where mn ~ In|pm(n)|. Particularly, such fluctuations result
in a surprising increase of the steady-state localization length
l, =~ 2l as compared to that of eigenfunctions (/). Nevertheless,
fluctuations of [ itself vanish asymptotically as |m — n| — oo.

1
< (mn— <fimn >)* >= DylAn|, D=7 =

10

Namely, the rms dispersion

Al l
T TAn] — 0, |An| — oo (3.12)
This is not the case for the ’global’ localization lengths [z (3.5)
or £ (3.6) which give a measure of the extension of the eigenfunc-
tions. It has been shown numerically that empirical fluctuations
of entropy H (and, hence, those of ly) are described surprisingly
well by a simple expression [24]:

1
p(H) = cosh[r (H— < H>)]’

This distribution, which has as yet no explanation, leads to the
rms dispersion:

[de 0 aA

~H 5 0.66 (3.14)
ly

According to recent preliminary numerical data [25] the fluc-
tuations of the steady-state localization length are qualitatively

different: A¢

: =~ 9% 50, k — oo (3.15)
but equally unexplained. Unlike Eq.(3.14) these fluctuations are
vanishing in the quasiclassical region. Another interesting feature
of fluctuations (3.15) is an ’abnormal’ (fractal?) exponent ~ 0.25
instead of 0.5 for the 'normal’ fluctuations. Possible fractal prop-

erties of the quantum steady state are confirmed by the temporal
fluctuations of the steady-state energy [26] (cf. Eq.(3.3)):

AE,
E,

Notice that both exponents, in Eqs.(3.15) and (3.16), are equal
within the accuracy of numerical experiments. A naive interpreta-
tion of these fluctuations would imply that ,(n) for the chaotic
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steady state represents a finite ensemble of v statistically inde-
pendent systems. In this case one expects AE,/E, ~ 1/,/v, and
comparison with (3.16) leads to

v o~ 10 (3.17)

Notice that formally the steady state is a pure quantum state,
and describes a single quantum system.

4 Quantum statistical relaxation

Wild fluctuations show up also in the process of statistical re-
laxation to the quantum (nonergodic) steady state [27, 28]. The
fluctuations still persist even after averaging over 10* runs [27].
No explanation of these fluctuations exists as yet. Using a spe-
cial time averaging we have managed to get rid of them [31] and,
thus, to compare our numerical results [28] with the theory based
upon a phenomenological diffusion equation with the backscatter-
ing term (Refs. [4] and [29]).

In terms of the scaled variables & and 7 the diffusion equation
for the Green function g reads

dg(i,5) 18 458
T~ g (44
Here g(#, 0) = §(7 — fio), and
n i

2D,
The additional drift term with
B(n) = sign(n — fip) = 1

describes the so—called quantum coherent backscattering which is
the main cause of localization.
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The solution of Eq.(4.1) can be expressed in terms of the Error
functions [4]. In particular, if we consider the scaled unperturbed

energy 7k
o n
B) = —op—

where E, = D?/4 is the energy of the quantum steady state, then
the relaxation rate is given by:

dE

dt

-3 ~ 1 ~ i.e_a 4 A+ -3/2
2e ‘:(a + §) - erfc(V/&) — > ] e 7 (In7)
(4.2)

the latter expression showing up the asymptotics as 7 — oo.
Numerical experiments agree with Eq.(4.2) only to logarithmic
accuracy in 7. More precisely, our numerical results [28] lead to

the asymptotic behaviour

kb i
ST

while in a different approach [27] the theoretical expression

(In7)~/? (4.3)

4 %

2l In7 (4.4)

R s

was obtained.

5 Transmission fluctuations

Recently a dynamical model for the conductance in disordered
solids was introduced and studied [30]. To the best of our knowl-
edge, this was the first dynamical model in this problem. The
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authors made use of the standard map for a dual problem to de-
scribe the electron motion in a quasi-1D lattice (the model for
a thin wire). In this case the variable n describes electron’s po-
sition on the lattice while conjugate ¢ is a quasimomentum (cf.
Ec.(2.1) above). Another important difference from the dual dy-
namical problem in the momentum space is in that the model is
now open with incoming (Q;») and outgoing (Q,y:) fluxes. The
quantity of principal interest is transmission  which was com-
puted via solution of the classical diffusion equation [30]

_ Qouwt _ C(K) D, C(K) D,
et Qin w*(2(;’(4!5{)“»1)191Jrf..-fL_,. 8. ALY
(5.1)
Here L is the length of the lattice, Dy = C(K)- D, is the classical
diffusion rate, C(K’) ~ 1 is the dynamical correlation factor, D; =
k?/2 the asymptotic diffusion rate (K — o), and v = 2k/n.
If we apply this classical solution to quantum diffusion on the
relaxation time scale (Section 4) v has a meaning of the number of
quantum scattering channels. Expression (5.1) for 7 was derived
from the classical map under the condition k¥ < L which allows
for classical diffusion.
In the quantum case, the diffusive regime is characterized by

the double inequality

k<€ L <K (5.2)

The right inequality means that localization length is larger than
the sample size, so that the effect of quantum localization is weak
and can be neglected in the first approximation. In this regime
the so—called ’universal’ mesoscopic fluctuations

< (AT(E))? >~ (5.3)
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have been found in the frames of a statistical theory of random
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matrices. Numerical results in Ref.[30] confirm this relation once
more but in a dynamical model. b

The question we are going to discuss here: what is the dynam-
ical origin of such fluctuations?

First of all we need to distinguish between the transmission
7(E) at a given energy E and the total transmission = (averaged
over energy) as derived from the classical diffusion equation [32].
While their averages are equal the fluctuations differ considerably.
According to Ref.[32] for the total transmission

2 o’
< (ﬁT) > = E (5.4)
with a® ~ 72/2. We conjecture that these fluctuations are related
to the fluctuations of the quantum diffusion rate D, which are
unknown as yet. Using the asymptotic relation (5.1) we obtain

<(AD)?*> _ [ 4e \' 1
N ey @ i

A possible physical interpretation of this result is in that the k x k
scattering channels are statistically independent in case of the
quantum chaos. At the first glance, it contradicts to the conclu-
sion in Ref.[33] on the strong correlation of the fluctuations in
different channels. However, the latter was found for the trans-
mission at a fixed energy while Eq.(5.5) corresponds to the total
transmission. It would be very interesting to directly check nu-
merically the fluctuations of the quantum diffusion rate.?
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