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Abstract

The results of numerical experiments and the theoretical analysis
of the anomalous diffusion in the critical structure on the chaos—order
as well as chaos—chaos border are presented. In the former case the
critical exponent c¢p == 1/3, which determines the anomalous diffusion
rate D ~ P, as well as the correlation exponent ¢4 =~ 1/2 have
been found to a good accuracy and in agreement with the prediction
of the resonance theory of critical phenomena in dynamical systems.
The most important result is confirmation of the basic conception in
this theory on supercriticality of the local order parameter in a close
vicmity of chaos border in the chaotic motion component.
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1 Introduction

Microtron was the first cyclic accelerator for relativistic particles
(electrons) invented by Veksler [1]. The dynamics of energy gain in the
microtron can be approximately descibed by a simple map z, p— %, p
over a period of electron’s rotation in the magnetic field:

P=p+ K-sinz, T=z+5% (1)

Here z is the phase of accelerating voltage with amplitude V; and
frequency Q. Canonically conjugated action p and the only model
parameter I are related to electron energy E and maximal Larmor
frequency wp as follows (in units e = m = ¢ = 1):
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(2)

Dynamics of microtron model (1) was studied in [1,2] and in many
other papers (see, e.g., [3]). In all these studies the main attention
was always paid to the regular acceleration (|p| o t, where ¢ is the
number of iterations for map (1)) which corresponds to the (neutrally)
stable dynamics of  phase (undamping oscillation). That, microtron,
acceleration regime is only possible for special values of parameter
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K = K, = 2nn where n £ 0 is any integer. The stability domain size
on phase plane (z, p) is very small and rapidly decreases with n. Even
the main domain |n| = 1 occupies less than 1% of the phase plane.
What is going on for the rest of initial conditions?

How strange it may seem this question was addressed (and answered)
much later when Veksler’s model (1), due to its simplicity, became a
basic one in the studies of nonlinear dynamics and chaos (see, e.g.,
[4,5]). This model is also called the standard map since ‘many other
physical problems can be reduced to such a map.

It was found that a considerable part of the phase plane corresponds
to unbounded diffusion (|p| oc v/%) if K > 1, the latter apparently
occupying the whole plane as K grows. The microtron turns into a
"stochatron”, the term introduced in [6] where a diffusion accereration
has been proposed using some noise voltage. Instead, it was sufficient
to simply change the motion initial conditions (a little) and/or the
parameter K ( in a wide range) [7]. To my knowledge, neither of
these suggestions was ever realized or even experimentally attempted.
However, in a different version (without microtron regimes) the dyna-
mical chaos was used for an initial plasma heating in stellarator [8].

”Simple” model (1) proved to be very rich and was studied (and
still is studying) both theoretically and in numerical experiments. It
turned out that the motion statistical properties, particularly diffusion,
may happen to be rather unusual, or "anomalous” (see, e.g., [9]). As
was found this is related to the chaos border in the phase space where a
very intricate hierarchical structure of motion arises. Even though the
structure itself was studied in detail [10,9] its impact on the motion
statistical properties remains essentially unclear [11,9]. The present
paper is devoted just to this very problem.

2 Stability islets

The main domains of regular accelerations (”islets”) on the phase plane
of model (1) arise around fixed points (periodic solutions)

p=0 mod 27, ¢ = +2¢ where
K-sinzg=2rn, K? = s°+ (27n)?, s=K-coszg, -4 < s <0 (3)

and the latter inequalities determine the stability region around a fixed
point. In what follows s = —2 is asumed (the center of stability). For
each |n| there are two islets per phase space bin 27 x 27. All the islets
are similar in the dimensionless variables

r— Ty

P
L. = 3 I{ . H - —_ = X ﬁ -

In Fig.1 the borders of 5 islets are shown for n = 2,20, 200, 2000,
20000. Inside the border the motion is regular, and the relative area
A of this domain satisfies the relation

A-K? ~ 0.17 (5)

The maximal A4 - K? ~ 0.19 is reached for the stability parameter
s ~ —1.92. All scalings (3-5) are inferred from the theory [4,9,11].
However, the numerical factors are empirical. Islet’s stability border
determines the chaos-order transition, and it is robust (structurally
stable) that is it persists under a small change of the only parameter
K which is also the order parameter.

A peculiarity of the model under consideration is a very small size
of the border as well as of the regular domain. Nevertheless, such
a tiny border considerably modifies the statistical properties of the
whole chaotic component as a result of trajectory "sticking” inside
the complicated critical structure along the chaos border [11,9]. The
structure is completely determined by the rotation number on the
border

r =, = 0.23889...= [4,5,2,1,1,1,2,..] (6)

which is also n-independent. The continued—fraction representation of
r is given by the latter expression (6) (the integers in parentheses are
successive elements of a continued fraction). As the rotation number
r = w/2n is the ratio of oscillation frequency to that of perturbation
(27) such a representation does naturally single out the basic nonlinear

5



1.5 ;

15 - B — : :
A0S il 08 0D, 08 1D 18 an

X=(X-X0)/ Xy

Figure 1: Universal border of microtron domains in dimensionless vari-
ables (4): n =2 — 20000; motion time for each n is 3000 iterations of
map (1). The motion within the border is regular, and that outside is
chaotic. Near fixed point z, = p, = 0 the small oscillation frequency
wo = 7/2 (ro = 1/4) while at the border w, = 277}, (6).

resonances around the border which determine the critical structure.
These resonances are related to the covergents r,,, = ppn/¢m — 7, m —
00, each denominator g, being equal to the motion period in the
resonance.

A graphical picture of the critical structure and describing it renor-
malization group is given by the border motion spectrum presented
in Fig.2a. It is the spe::trum of radial oscillation p(t), p* = =2 +
p?, transverse to the chaos border. A characteristic feature of the
spectrum is irregularity of the main peaks marked by m values. The
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periods of the corresponding resonances are: ¢, = 4, 17,21, 38,59, 97,
350,447..., m = 1,2,3,4,5,6,7,8.... Such a picture is typical for the
critical structure, and it is described by a chaotic renormgroup [9,11].
It means that the variation of the motion structure from one scale
to the next is irregular being itself described by some statistical law
(dotted line in Fig.2a). Odd resonances (m = 1,3, 5,7...) are situated
within the stability domain (inside the chaos border) while even ones
encircle the border that is fall into the motion chaotic component.

For comparison, the special case of exact scaling (a fixed point of
the renormgroup) [10] is also shown in Fig.2b. Here the scale—to-scale
transitions are perfectly regular. Curiously, the exactly regular scaling
includes both regular as well as chaotic components (trajectories). In
both cases in Fig.2 the border motion is almost periodic (of discrete
spectrum), a finite peak width Av ~ 1/T relating to the total motion
time T.

3 Critical structure and anomalous diffusion

The main level of the critical structure is determined by the series
of basic nonlinear resonances, each being a chain of ¢, stable do-
mains around the period-g, trajectory surrounded by a relatively
thick chaotic layer (see, e.g., [9-11] for details). The chain goes along
the chaos border, and its transverse size p,, and area A,, are given by
the estimates: 2

= A(K)

G
Here A(K) is the full islet area (5), and S,, = S(v,,) stands for the
amplitude of transverse oscillation (bending) of the chaos border at

frequency vpm = gm|rs — rm| ~ 1/¢,,. Whence, the global shape of the
spectrum

Ap,

O Dy B S | (7)

Sm o u‘?ﬂ, (8)

shown by the dotted line in Fig.2. In case of the renormchaos this
simple relation represents, of course, an average behavior only, super-
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Figure 2: Two examples of motion spectrum on chaos border:
v (mod 1) is frequency, and S(v)/.5(0) stands for the relative Fourier
amplitude; the total motion time T = 65536 iterations; dotted line
is theory (8). (a) Statistical scaling (chaotic renormgroup) on ro-
bust chaos—order border:, n = 1; ry = 0.23713... (peak r;) which is
slightly different from asymptotic value (6); serial numbers m of basic
resonances are shown. (b) Regular scaling (fixed point of renorm-
group) on nonrobust chaos—chaos border for special r, = (3 -v/5)/2 =
e Ll K=K
8

imposed on strong fluctuations which are generally characteristic for
the critical phenomena.,

The diffusion rate is determined by the statistic of sticking times
tm in the corresponding scale m. In average over time or the initial
conditions (ergodicity), and assuming statistical independence of stick-
ings

. > R
<@pl>n Y (Aph ~ K2 Y 2 Nn + -%"cﬂ(ﬁ)z (9)

i

Here N,,(t) is the number of entries into scale m for the total motion
time ¢, and the latter term describes the normal diffusion (with addi-
tional coefficient Cy(K') ~ 1 which accounts for the short-time correla-
tions). The normal diffusion occupies the most of the time owing to a
small size of regular domains. In turn, the number of entries '

: A
Nn=8-FPpy . Pp~ = (10)

Cp
m
where P, = P(t,,) stands for the Poincare recurrence statistic that is
the distribution of the delays during the reflection (scattering) from
the chaos border which is characterized by the critical exponent ¢p.
From the motion ergodicity
Ea, A
m.m =t-mpm = Am Y
t ek

A :

Function A,, = A(t) plays a role of the sticking correlation, and from
the latter estimate (scaling) cp = c4 + 1. Whence, the asymptotic
average diffusion rate

Ap)2
D(t) = 4 f') 2 KR Y tmAm ~ AK? LA ~ AK? - (A)°D
T
(12)
where the critical diffusion exponent
1 - ¢y ~
- 13
i 1+ ¢y (1)
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and the maximal sticking time t,,,, is determined from the condition

At 2
Nin(tmaz) ~ 75— ~ 1, ( ”\ v Lo
mar

The sum in (12) approximately amounts to the biggest term with
tm = tmas because all the quantities of the critical structure depend
exponentially on scale number m (geometrical progression). Of course,
this holds true under condition ¢p < 1 only. Otherwise, the diffusion
rate does not depend on time that is the diffusion becomes normal.

The theory of critical exponents at the chaos border proved to
be rather nontrivial. It requires estimating the dependence t,,(g).
At the first glance, it seems natural to assume ¢, ~ gm that is the
sticking (exit) time is of the order of characteristic time for a given
scale [12]. However, it is immediately clear from Eq.(7) that in such
a case ¢4 = 2, and cp = 3 which is completely incompatible with
the well measured exponent cp & 1.5 [9,11,13,14]. Moreover, besides
this quantitative disagreement a qualitatively different result would
follow for the diffusion [11], namely, the latter were normal in spite of
sticking.

This qualitative effect is especially important for the evaluation of
farther development of the approach [12] in papers [15]. Such a theory
is essentially based on the analysis of internal chaos borders which
also have a hierarchical structure ("resonances around resonances”,
see also [16,17]). The value of the critical exponent, most close to the
empirical one, which has been achieved in this approach (cp & 2 [15])
was still too large to allow anomalous diffusion. On the other hand, it
was shown in [9] that for ¢p < 2 the contribution from internal chaos
borders does not influence the critical exponents at all. However, it
should be mentioned that time scale ¢,, ~ ¢,, has, nevertheless, some
physical meaning, and not only well known dynamical one (the period
of basic resonance) but also statistical, related to the rate of the local
diffusion transverse to the chaos border: D; ~ O e = 42118k
Such a diffusion has been observed recently, indeed [16]. Yet, it is
bounded, and only leads to the local statistical ethbrlum without
any transition into neighboring scales.
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For resolution of this apparent contradiction the following hypo-
thesis has been put forward in [11]: in the exact criticality all ¢, = oo
that is all the scales of the critical structure are dynamically isolated,
or separated by their own chaos borders, the invariant curves. Notice
that in a hierarchical critical structure the latter form an everywhere
dense set. According to this hypothesis the finite ¢,, are explained by
a deviation of the local order parameter, in vicinity of chaos border,
from the critical value on the proper border. In this way, the structure
becomes subcritical on the one side of the border, thus providing
regular motion for the host of initial conditions, and supercritical on
the other side, which results in a finite sticking time. Assuming linear
dependence of the local order parameter on the distance from the
border the following estimate was derived:

~ Ot = — 5

i G €A = e (]‘D)

Depending on the details of the critical structure ¢; = 7 [11] or ¢; = 4

(9], and hence cq4 = 2/7 or ¢4 = 1/2, respectively. The latter value
seems to me more accurate (see [9] for discussion).

In both cases c4 < 1 that is the diffusion is anomalous (enhanced,
¢p > 0) anyway. Already the first numerical experiments [11] did
confirm the existence of anomalous diffusion on the chaos border, and
hence did refute both the initial guess ¢, = 1 as well as its further
development [15]. Later, such a diffusion was studied in many papers
(see, e.g., [19,20,17]).

A distinctive feature of the model in the present paper is a very
small size of the stable domain and, hence, of the chaos border which,
nevertheless, does crucially change the statistical properties for a suffi-
ciently long time. This emphasizes the importance as well as universa-
lity of the robust critical structure.

It should be mentioned that the anomalous diffusion in a broad
sense, both enhanced one (cp > 0) as well as suppressed (cp < 0),
was studied even much earlier (see, e.g., [21]). Here, we are interested
in a particular diffusion caused by the specific critical structure at the
chaos border.

11
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4 Numerics

In the model under consideration the main difficulty of empirical studies
of anomalous diffusion comes from big fluctuations. These are related
to the diffusion peculiarity when the essential contribution comes from
a single (for a given time) sticking with ¢, = t;nqz. For the same reason
the fluctuations are growing with time (Fig.3). Suppression of those
was done by a double averaging: first, by standard averaging D(t) over

5 . ; vy S —
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Figure 3: Anomalous diffusion for model (1) in microtron regime (3):
broken lines show numerical data for n = 1, 2, 5 as indicated, and
for additional run with K = 27 (see text); horizontal straight lines
represent (constant) rate of the normal diffusion; oblique line is de-
pendence (19) with theoretical ¢p = 1/3 and empirical b = 11 (for
n=1 M =40).
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M = 40 independent trajectories, and then by taking the additional
average of ¢p(t) over four also independent groups of trajectories.

The main results of numerical experiments are presented in Fig.3
for n= 1 Ry = 65938...,, o= (Kl e Won = 3 K =
12.72..., Dg = 121 and n = 5, K5 = 31.47..., Dy = 644. An example
of normal diffusion with Ky = 2n is also shown. In the latter case
the stability domain gets complitely destroyed (3), and the diffusion
becomes normal over the whole run ¢ < 5 - 107 iterations in spite of
only a minor change in K (K;/Ko — 1= 0.05).

Thus, there is no more doubt as to the existence of anomalous
diffusion due to the chaos border. However, evaluation of the critical
exponent cp is a more difficult task because of big fluctuations discussed
above. "Levy’s flights” caused by trajectory sticking at border are
clearly seen in Fig.3. Remarkably, the flights are rather asymmetric
in the slope, the peculiarity whose mechanism is not yet completely
clear. The asymptotic regime of anomalous diffusion is reached in some
time, the longer the smaller is the islet size. Asymptotic dependence
D(t) (t > t,) was fitted in log-log scale to the linear expression (see

(12)):

InD(t) =cp-Int +InB | (16)
The results are as follows
n=1 ep =029-037, B=44-13, 1, =5-10° - 10°
n=2 c¢p=034-039, B=22-09, t, =5-10" - 5.10°
(17)

The minimal ¢, value corresponds to the beginning of asymptotic
regime while the maximal one is limited by big jumps in D(t) (see
Fig.3). Even though the anomalous diffusion with its characteristic
jumps is clearly evident up to n = 5 the allowed computer time was
insufficient, in the latter case, to reach the asymptotic regime, and
to measure cp with a reasonable accuracy. For n = 1, 2 evaluated
cp values (17) are in a good agreement with each other, and with
theoretical ¢cp = 1/3 which is shown in Fig.3. According to (12) the
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second fitting parameter B can be expressed in the form:

0.07 bM /3

e . '2 * c o~
By = b-AnK] - (M) v 02

A z2f MA, (18)
where A, now denotes the total area of the two islets for a given n, and
b, f are some factors. The dependence on the number of trajectories
M is again related to a peculiarity of the anomalous diffusion, namely,
the sticking of even a single trajectory is already sufficient if the latter
condition in (18) is fulfilled. Otherwise, ¢, ~ ¢, and ¢p & ¢4 =~ 1/2.
Notice that ¢, not M¢, enters the inequality since the trajectories are
independent. The latter expression for B, in (18) is obtained taking
account of (5), and of the accepted value ¢cp = 1/3. From data (17)
and for M =40 we arriveat: b 11(n=1, B~2.8)and b~ 10 (n =
2, B &~ 1.5). Finally, the anomalous diffusion in question is described
by approximate relation:

1/3
D.(t) ~ 0.76 (@)

= (19)

which is shown in Fig.3 for n = 1 by oblique straight line.

Now, let us compare the results obtained with previous data. First
of all, the theoretical value cp = 1/2, given in [22], is somewhat larger
which is explained by a simplified assumption ¢, ~ ¢ (cf. (14)) used
in [22] following [11,9]. Such an assumption is only true in case of
violation of inequality (18), particularly, for very big M and small ¢
(see below).

In numerical experiments the anomalous diffusion on the chaos
border was apparently first observed in [23] for the same model with
n = 1. However, the diffusion rate was given for the maximal run time
t = 10° only. Strangely, the authors [23] were unable to see anomalous
diffusion for n = 2, even though its rate is about the same at ¢ = 108,
and still considerably exceeds the normal rate: D/Dg & 7.3 (see (19),
M = 64, and Fig.3). Theratio D/Dg & 27 found in [23] for n = 1is in
a reasonable agreement with mean D/Dg ~ 36 (19) on the background
of big fluctuations, also mentioned in [23].
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Further studies of anomalous diffusion for the same model but with

~ somewhat different value of K = 6.9115, and on a very short time

interval { < 2000 were presented in [20]. The critical exponent value
cp = 1/3 was accepted but its accuracy remained unclear, essentially
because of a very short . At the maximal run time D =~ 160 while
theoretical value (19) is D &~ 60 (taking into account that the islet
area is 5 times smaller, see (18)). Apparently, the difference is not
so much due to fluctuations as because of a different form of the islet
and, hence, of another rotation number on the chaos border. In [20]
a huge number of trajectories M = 10° was used for calculation of
the diffusion distribution function. Interestingly, the results implicitly
confirm a strange, at first glance, dependence of the mean diffusion
rate on M (19). Without such a factor the rate would drop by almost
50 times! A more careful analysis of data in [20], checked by additional
numerical experiments, reveals a transition at t ~ 100 from cp ~ 0.5
to ep = 0.3, apparently related to violation of inequality (18). This
allows for estimating factor f ~ 0.05.

Similar results were obtained for another model (in continuous
time) [17] with M = 3600 and maximal ¢ ~ 10° (in comparable units).
Particularly, a close value of the critical exponent ¢p =~ 0.38 ~ 1/3
has been found in spite of completely different global structure of the
motion. It gives one more confirmation for universality of the critical
structure at the chaos border. Also, a decrease in ¢p with time around
t ~ 10% is even more clear here (see Fig.7 in [20]), and it gives roughly
the same value for f assuming A ~ 1.

Thus, the existence of anomalous diffusion due to the critical struc-
ture at chaos border can be taken as reliably proven. However, the
very existence of such a diffusion (¢cp > 0) as well as approximate
evaluation of the critical exponents is only possible, so far, in the reso-
nance theory of chaos critical structure with the additional hypothesis
on supercriticality of the whole structure but the border [11,9]. This
important hypothesis was further confirmed, at least qualitatively, on
a different model with the chaos-chaos border.
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5 Statistical properties of motion with chaos—
chaos border

Unlike the more known and robust chaos—order border, which persists
within a relatively broad range of the order parameter (K in the model
under consideration), the chaos—chaos border is not robust, i.e. it
gets destroyed by any deviation from the critical value K = Ko
0.9716... [10]. A phase portrait for model (1) with K = K, is shown
in Fig.4. Two critical invariant curves, marked by arrows, are absolute
barriers for the motion, yet chaotic trajectories come arbitrarily close
to each of them and, moreover, from both sides. Now, the local order

p/2m

x/2ar

Figure 4: Phase portrait for model (1) at critical K = K..: arrows
indicate two chaos—chaos borders separating chaotic components, the

motion in each of them being represented by a single trajectory on
t = 107 in steps At = 2000 and 5000.

16

- &

m

parameter is supercritical also on both sides. Hence, it is approaching
the critical value on the border at least quadratically, and the whole
supercriticality sharply drops, as compared to the case of chaos—order
border, while the sticking time considerably increases. In turn, this
results in a decrease of critical correlation exponent ¢4 — 0, and in
increase of the diffusion exponent up to its limiting value: ¢p — 1.
The first confirmation of such a structure has been obtained already
in [11] from the measurement of the Poincare recurrence statistic (10},
namely, the critical exponent cp = 1+ c4 = 0.975 £ 0.013 was found
to be very close to its limiting value, indeed.

The results on the anomalous diffusion in this case are presented
in Fig.5. The mean diffusion rate in 2 was defined as

< (Ax) >
t

Da(t) = ~Br?,  Az=Y(p0) -p)  (20)
t

where the resonant momentum value p, = p; = 0 for diffusion on the

integer resonance (under lower border in Fig.4), and p, = p, = 7 for

diffusion on the half-integer resonance (between the two borders).

In this case the map (1) models another physical system: particle
motion in a multi-wave field in Cartesian variables z, p. Particularly,
z-motion is now unbounded. Such a model was studied in [17] in
case of two waves only. This is the simplest limit from the physical
viewpoint but a much more complicated one for numerical experiments
and the theoretical analysis. .

Numerical data in Fig.5 show that diffusion exponent cp ~ 1
considerably increases in comparison to the model with chaos—order
border (I'ig.3), and it becomes close to the limiting value, indeed. If
the trajectory stuck at the chaos border for the whole motion time ¢
the factor in (20) would be B; ~ (27r;)% where ry = (3—+/5)/2 ~ 0.382
is the rotation number on the lower chaos border, and ry = 0.5 — ry.
Whence, B; = 5.8 and B; =~ 0.55. Actually, from the data in Fig.5,
B; =~ 0.35, B; =~ 0.023 that is approximately 20 times less. Appar-
ently, it is mainly explained by a relatively small size of the proper
critical structure (A ~ 0.1, cf. parameter f of same order in inequality
(18)). On the other hand, the latter area is still much larger than in
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Dy(t)

Figure 5: Anomalous diffusion on chaos—chaos border in model (1)
with critical K., averaging over M = 100 independent trajectories.
Thick curves correspond to the limiting-rate diffusion (D(t) o ¢, steep
straight lines) for integer (1) and half-integer (2) resonances. Diffusion
for subcritical X = 0.9 (thin line) is also shown for comparison. Dotted
line corresponds to cp = 1/3 for diffusion on chaos—order border.

the microtron model which apparently results in considerably lower
fluctuations (cf. Figs.3 and 5). In any case, small B values indicate
that z—motion is diffusive, not regular one, even though z o ¢ for both
mechanisms. This is also confirmed by the direct spying of trajecto-
ries. Particularly, such a ”quasiregular” motion goes in both directions
(#z — +oo)! If cp &~ 1 and ¢4 = 0 the inequality (18) is violated al-
ready for M21/f ~ 10, and the diffusion rate does not depend on M.
Notice that in both cases cp &~ (1 —cq)/(14+ca) ~1—-cq ~ 1.
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Thus, the limiting diffusion on chaos—chaos border does confirm
the supercriticality hypothesis which seems to be very important for
further development of the theory of critical phenomena in dynamical
systems. However, the nature of stable (independent on initial condi-
tions) anomaly in the anomalous diffusion for large ¢2106 remains as
yet completely unclear. The anomaly is especially evident for case 1 in
Fig.5. A trace of such anomaly was noticed already in [11] as a more
rapid decrease in Poincare recurrence distribution function P(t) for
t>10°. The latter anomaly turns out to be stable as well, and seems
unrelated to a poor statistic as was conjectured in [11].

The anomaly in Fig.5 looks as if the critical parameter value K.,
were still subcritical (cf. case K = 0.9) or the sticking switches, for
some reason, from the main chaos—chaos border to one of the internal
chaos—order borders. However, no anomaly is seen in the motion
spectrum on the chaos border (Fig.2b). Unfortunately, it cannot
be excluded at the moment that the anomaly is simply a result of
computation (rounding-off) errors whose impact happens to be very
surprising sometimes. In any case, the single—precision computation
(of course, all the computation was normally done in double precision)
does not increase the anomaly, as one might expect, but to the contrary
it apparently removes it! This doesn’t mean, of course, that the
single—precision results are more correct. The whole problem certainly
requires special investigation.

6 Conclusion

A large series of numerical experiments with simple dynamical system
(1) was carried out aiming to the study of the critical structure on the
chaos—order border (Fig.1) by observing a peculiar anomalous diffusion
caused by such a structure. Particularly, the value of critical exponent
¢p =~ 1/3 in anomalous diffusion law (12) has been measured to a
reasonably good accuracy, and found to be close to one predicted by
the theory of critical phenomena [11,9]. The studies were done in a
specific (microtron) regime (3) of model (1) when the chaos border is
of a very small size, yet it does completely determine the statistical
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properties of the whole motion chaotic component for a sufficiently
large time. This emphasizes importance of the critical phenomena in
dynamics, especially in view of robustness (structural stability) of the
chaos—order border.

One of the main goals of investigation was confirmation of the basic
hypothesis in the theory concerning supercriticality of the local order
parameter on the chaotic side of the border. Evaluated empirical cp
value and the related critical exponent of correlation on the chaos
border ¢4 &~ 1/2 (13) do well confirm this hypothesis. In view of
importance of the latter for the whole theory an additional verification
has been carried out with the different (critical) value of order parameter
K = K., for which the (nonrobust) chaos—chaos border arises with a
qualitatively different structure (Figs.1,4,2). Sharp increase in ¢p — 1
and drop in ¢4 — 0 has been confirmed (Fig.5). At the same time, a
stable anomaly was found (noticed already in [11]) which is currently
under study. Interestingly, in the case of chaos-chaos border the rate
of (homogeneous) diffusion reaches the upper bound: |Az| x t that is
the motion looks like a free one but goes on with a smaller speed and
in both directions!

This work is partially supported by the Russia Foundation for
Fundamental Research, grant 95-01-01047.
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