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Abstract

We make an attempt to discuss in detail the effects originating
from the final state interaction in the processes involving production
of unstable elementary particles and their subsequent decay. Two com-
plementary scenarios are considered: the single resonance production
and the production of two resonances. We argue that part of the cor-
rections due to the final state interaction can be connected with the
Coulomb phases of the involved charge particles; the presence of the
unstable particle in the problem makes the Coulomb phase “visible”.
Tt is shown how corrections due to the final state interaction disappear
when one proceeds to the total cross-sections. We derive one-loop non-
factorizable radiative corrections to the lowest order matrix element
of both single and double resonance production. We discuss how the
infrared limit of the theories with the unstable pariicles is modified.
In conclusion we briefly discuss our results in the context of the forth-
coming experiments on the W*+W~™ and the i production at LEP 2
and NLC.
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1 Introduction

Processes involving production of unstable fundamental particles such as top
quark, electroweak massive gauge bosons, Higgs boson are now at the fron-
tier of both theoretical and experimental high-energy physics. Investigation
of such processes can provide a valuable information about fundamental pa-
rameters (mass, width) of the heavy unstable particles. Therefore the the-
ory has to give reliable predictions to meet expected experimental precision.
However it must be recognized that the accuracy of the theoretical descrip-
tion of the processes involving unstable particles and the planning accuracy
of the measurements have been never previously combined. There exists a
number of recent theoretical inventions which all are connected with the ac-
curate description of the unstable particle in the vicinity of its pole: the
S-matrix approach to the Z-pole [1] and the extension of this scheme to a
more general cases [2], colour rearrangement phenomena [3], etc.

Currently, the main source of our experience in the field is the Z-boson
physics. However, as it has been mentioned in [2] and will be quite clear

from the forthcoming discussion, Z-pole description is distinguished due to
the following points:

1. Z-boson is neutral;

2. Main results have been obtained for the process ete~ — Z — ff, i.e.
for the production of the Z-boson in the s-channel.




These features greatly simplify precise description of the Z-boson production
cross-section.

The basics of the theoretical approach to the processes with the unstable
particles can be described as follows: when two unstable particles are pro-
duced all Feynman graphs can be divided in two classes: the first one includes
the graphs without interactions between decay products of different unstable
particles, while the second includes such graphs in which two decay processes
are not independent. Generally speaking the graphs of the second type give a
correction of the relative order al'/M;, where a is an appropriate (depending
on the process) coupling constant and M is the characteristic scale for the
momentum flow inside the loop. For example the graphs with the Z—boson
exchange between decay products of unstable particles provide M; &~ Mz.
Hence their contribution is negligible. On the other hand for the graphs with
photon or gluon exchange the scale M is of the order of the width of the
unstable particle I'. Consequently such graphs have no additional suppres-
sion in comparison with the factorizable ones 1 1t is not difficult to convince
oneself that the dominant contribution comes from the soft photon or gluon
region [4-6]. This contribution is a non-trivial function of the width of the
unstable particle. The reason is that the soft massless particles probe the
mass-shell limit of the theory and it is the width of the particle that changes
the mass-shell behaviour of the resonance in comparison with the stable par-
ticle. Hence in this problem (similar to the case of the threshold production
of the unstable particles [7]) one have to use resummed propagator of the
unstable particle.

The other connected physical problem which has attracted serious atten-
tion in the past years is the photon or gluon radiation of the unstable particles
[8]. It turns out that in the specific kinematical configuration the radiation
is completely insensitive to the decay. The reason for this can be found in
the conservation of the charged or colored currents.

As is well known the soft physics generally “suffers” from the cancellation
between real and virtual corrections. It is therefore quite desirable to clarify
how and when this cancellation occurs when unstable particles are involved
and to what extent one can study real and virtual corrections independently.

Recently some progress has been achieved in the understanding of these
problems. It has been argued [4-6] that non-factorizable corrections do not
contribute to inclusive quantities, e.g. to the total cross-sections, when both
virtual and real ones are taken into account. This can be viewed as the ex-

1 As for gluon exchange, this also verifies the use of the perturbative QCD for the
calculation of these contributions in the reactions with the top quark(s), since Mgop ~ [t
sets the scale on which o, must be evaluated for these non-factorizable contributions.
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tension of the Bloch-Nordsieck-Lee- Nauenberg-Kinoshita cancellation for the
processes involving unstable particles [5].2 However our analyses shows that
it is not only usual real-virtual cancellation but something more involved.
This fact becomes clear if one studies the influence of the non-factorizable
radiative corrections on differential distributions. These distributions (say in
the invariant mass of the decay products of a resonance) are a possible tool to
investigate fundamental parameters of the unstable particle (for recent dis-
cussion of the W-boson and the top physics see refs.[9], [10] and references
there in). It turns out that differential distributions are affected by this non-
factorizable interactions (to the best of our knowledge this fact has been first
noted in the ref. [11] for the specific case of the top threshold production).

In what follows we evaluate O(a, a;) non-factorizable resonance radiative
corrections to the differential distributions in the invariant mass of the un-
stable particle(s). If the integration over invariant masses is performed, these
radiative corrections disappear [5], [6]. Calculating radiative corrections to
the differential cross-section we are able to clarify the physical origin of this
“Inclusive zero”.

However, it turns out that the shape of the differential distributions and
the posilion of the marimum of the differential distribution in the invariant
mass of the resonance which could be naively identified with the pole mass
of the unstable particle 3 are affected in the energy region slightly above
threshold of two resonances. For the particular case of two W-bosons this
region is approximately 170 — 190 GeV being almost the same as the LEP2
energy region.

Absolutely deliberately we do not consider the real threshold region (i.e
V3 —2M ~ O(T")). In this region new physical phenomena appear (bound
state formation, etc.) and our analyses would be more complicated there.
Our idea is to get the most clean laboratory for the effects which are com-
pletely connected with the unstable nature of an appropriate particle. Thresh-
old region represents a special case and has to be discussed separately (for
the top threshold production see [11], [10]).

Let us note that through out the paper we use the Breit-Wigner with
a constant width as the propagator for the unstable particle. As we are
concerned with the corrections of the order O(c) to the lowest order result

2Note that in general this cancellation differs from the cancellation known from the
Z-pole physics. This fact clearly follows from the ref. [4]. Indeed, in describing Z—pole
we deal only with the initial-final non—factorizable interaction which is much more simple.
In general case there is also final-final state interaction which brings some new features to
the problem.

3We remind that the lowest order differential distribution is the common Breit-Wigner.
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we can safely use the lowest order propagators for the unstable particles since
all modifications show up only in higher orders.

Subsequent part of the paper is organised as follows: next section is de-
voted to the investigation of the single resonance production; more involved
scenario with the production of two resonances is discussed in the section 3
where all basic formulae are presented. In the section 4 we analyse our results
in a more informal way. Conclusion of the whole work is given in the section
9. A number of helpful formulae are presented in the Appendix.

2 Simple model

For simplicity we start with the model describing scalar particles which inter-
act with the “photon” field. Suppose one of this particles (we call it W) can
decay to two other (electron and neutrino for simplicity). QOur W particle is
produced by some neutral current (virtual photon) together with the other
stable particle (B- particle). In such a model W and B have opposite electric
charges.

In what follows we discuss reaction y* — W+B~ — etvB~ taking into
account O(a) non-factorizable radiative corrections?.

We consider this process in the center of mass frame of the virtual photon.
Then it carries the total energy /s and the zero three momentum. We are
interested in the distribution over the invariant mass of the W particle. In

order to describe this distribution we introduce a parameter:

2 M 2
Pw — My,
6 = T
. Mw (1)

where My is the pole mass of the W and p}, is the invariant mass of the
final ev system. The Born graph is shown in the fig.1. Above the production
threshold of the W particle the Born graph has the resonant propagator forc-
ing produced W to be almost on shell. Non-factorizable virtual corrections
are also shown in the fig.1. Let us first discuss the graph with the B e inter-
action. Since we are interested in the corrections of the order O(a) we have
to get the resonance denominator from this graph. Consequently the loop
momentum must be small in order not to shift the W-particle propagator
far from the pole. From this it is clear that the only loop momentum region
which can provide such ”resonance” correction is the soft region, where one

*In some sense this case corresponds to the process t — Wb,

can use soft-photon approximation (cf. ref. [4]). In the soft photon ap-
proximation the amplitude of this process reads (we use the Feynman gauge
through out the paper):

7 4o My dk 4dpp : pe
D(pw) J (27)° (k? +i€)(2ppk + i€)(2p.k — ic)

Here My is the Born amplitude and

M, =

Dipw — k). (2)

1

D =
(pw) pw? — My? + iMwT'w

(3)

1s the propagator of the W particle with the finite width included explicitly.

To perform the integration over k we first integrate over zero component
of this four vector. There are four poles in the complex plane of the ko
variable. Let us integrate over the lower half plane of the ky—complex plane.
Then two poles have to be taken into account: one from the B particle
propagator (“ the particle pole”) and the other one from the virtual photon

propagator (“ the photon pole”). It can be seen that in contrast to the

soft photon approximation in the QED with stable particles, in our case the
contribution due to the virtual photon pole does not cancel corresponding
soft photon emission immediately. However, their difference appears to be
pure imaginary and hence does not influence differential distributions (for
more detailed discussion see section 4.2). Keeping this in mind we take into
account the B-particle pole only.
The contribution due to the B particle pole reads:
My

4pp - pe
M, = —4na F : 4
3 4EEEB D(pw) ( }

o :
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Here the quantity v; is the three velocity of the i-th particle. Using momen-
tum conservation we get for the W propagator:

1
x 9
Mw(tsw + il'w H?\HS/M&;I{VB) ( )

In order to compute residual integral over k it is useful to exponentiate the
propagators, introducing two different “times”. The amplitude reads then:

—47adpp - p. My f : ! / d°k exp{ikr(t, 1)}
M. = drdt it(éw + il 2
* = 1E.E3Mw D(pw) Xpisr(om I (27)° (vek)? — k?
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where r(t, 7) stands for:

| 8
r(t,f):(ve“‘h’ﬂ)t—ﬂ MWL,YBT.

The integral over k is recognized to be retarded Coulomb potential of the
particle moving with the velocity vp and hence the result of k integration
can be found in the text-books on classical electrodynamics:

o) = ~4x | I T i )

(27")3 (vﬁk)2 o \/ (I'IIH)2 +(1-vp?)r,?

Here np is the unit vector parallel to the B-particle velocity and ¥, is the
component of the vector r transverse to the vector ng. The final expression
which can be obtained in this way is:

4195 Pe
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Let us note that the way we proceed is quite similar to the eikonal ap-
proximation for the high-energy scattering. It is well known in that case and
can be proved in ours that the leading contributions from the eikonal graphs
to the amplitude can be summed up . The result is the Coulomb phase [14] of
the wave function of the charged particle. Usually the Coulomb phase is not
important due to its pure imaginary nature. We shall see that in our exam-
ple this is not the case and that the residual contribution from the Coulomb
phase survives in the final resull.

Integrating the last equation over t and 7 we neglect the terms which are
pure imaginary and hence do not contribute to the differential cross-section
at the O(a) order. We get then:

1 e vevﬂ

\/(VB —v.)’ —vp2v?

In this equation v, is the component of the vector v, transverse to the vector
np. Note that the factor in front of the logarithm is nothing but the Lorentz
boosted Coulomb factor a/|vy — v2|. This factor has the following limits:
when velocities are small it turns to a/|vp — v.| hence reproducing usual
expansion parameter for the Coulomb problem [13] while in the limit |v.| — 1
or [vg| — 1 this factor equals to o and hence appears to be independent from
the kinematic of the process.

M; = -a

i log (%) : (8)

Let us now discuss the photon exchange between W and B (see fig.1). On
the first glance this graph does not seem to be non-factorizable correction we
are interested in. However gauge invariance arguments do not allow us to
exclude this graph from the consideration. We study this graph in the soft-
photon approximation neglecting the contribution of the photon pole (see
sect.3.2). Calculation is quite similar to the previous one and results in the
following contribution to the amplitude:

o l—vwvg tMw
Mb—ﬁt‘Mu IVW—VHl 1 lﬂg (—“—') (g)

There are no other corrections of the non-factorizable origin which influence
differential distributions. For example the interaction of the W with the
electron is of the initial-final state interaction type [4] and hence has rather
simple pole structure. The infrared contribution from this graph is completely
cancelled by the corresponding real emission ( see also discussion in the ref.
[14] for the stable particle case). Hence all radiative corrections which are of
the non-factorizable nature and are not cancelled by the emission of the soft
photons are given by the sum of two amplitudes presented above. The sum
of this amplitudes gives us the result for the non-factorizable corrections:

it Mw )(l—vaB l1—vwv.vg
w0 (o= val ~ Jva e —esrvt
e

_ (10)
Let us write corresponding contribution to the cross-section in the following
form:

Mptjace = a My i log (

de=dog K, K=-2n arctg(-ﬁi), (11)
W

n_a(l—vwv,g“ 1—vevp
lvw — vB| \/(_"B I J—

Here dog is the lowest order cross section. The important point to be noted
here is that in the relativistic limit for this equation the cancellation between
contributions from W B and Be interaction occurs. This result recovers the
“non—observability” of the Coulomb phase. We could expect this compensa-
tion because in the ultra-relativistic limit the spectator (“B”-particle) does
not distinguish transverse movement of the electron and hence does not no-
tice that the charge movement has been changed. As the result, the Coulomb
phases of the resonance and its decay products add coherently to a pure imag-
inary quantity reproducing the non-observability of the Coulomb phase.
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Following above discussion we can exponentiate our results given in the
eqs. (12)-(13) (cf. ref. [14]) to get:

MW )in

M gace = Mol'(1 + in)e*® (m

(12)

where i¢q is an imaginary phase which is not relevant. It is straightforward
to find the contribution of this amplitude to the differential cross-section:

) ow

- - tg(—=)}.
do = dao s exp{~2 n are g(rw)} (13)
To see how this correction disappears when we proceed to the total cross

section [4-6] we integrate previous equation over the range of the W masses
(of course with the usual approximations in mind) and get

o = o (1+O(n L—‘:’V)) (14)

On the one-loop level this cancellation is clearly visible since the arctg(éw /Tw )
is the odd function of the resonance off-shellness, while the usual Breit-
Wigner 1s the even one. Therefore their convolution is zero.

It is clear however that this correction influences differential distributions
in the invariant mass of the produced resonance. To get an idea of what one
gets in the realistic situation let us imagine that we deal with the produc-
tion of two equal mass resonances and the integration over invariant mass of
one of them has been already performed. We treat the resonance which is
“Integrated out” as a stable particle. The velocity of the "electron” is taken
equal to unity. Then as it has been noted above the factor n turns out to be
independent from the scattering angles of the final particles. In this case this

factor reads:
. 5k 5
= -—"a

33 (15)

2
ﬁ=\/1-4ﬁ“’

is the on-shell velocity of the produced resonance (as far as we are not too
close to the threshold we can use this on-shell value for the velocity). We
note here that the n—factor in the eq.(15) very quickly goes to zero if the total
energy increases. For example, taking the mass of the resonance equal to 80

where

10

GeV one sees that for /s = 170 GeV we have = 0.65 a and for /3 = 200
GeV this factor decreases up to 0.13 & suppressing this correction roughly to
one order in magnitude,

However, this correction influences differential distributions in the invari-
ant mass of the W-particle decay products moving the peak to the lower
values of the resonance masses. The result for the corrected distribution is
shown in the fig.2 for the usual values of the width and the mass of the W -
boson and for different energies of the process. The position of the maximum
of the distribution differs from the same quantity defined by the Breit-Wigner
propagator. The position of the new maximum is:

(w:ﬂﬁp ’ma_ —~ Mw = —ql. (16)

Though the pole position is not affected too much for the realistic values of
the particle width and the coupling constant it is still comparable with the
planned accuracy of the W mass determination in the intermediate energy
region /s ~ 170 — 190 GeV. For higher energies this corrections are strongly
suppressed hence having no importance from the experimental point of view.

Let us make some comments now.

There exists the S—matrix approach for the description of the gauge bo-
son pole which was originally proposed for the description of the s—channel
production of the Z—boson [1]. The basic idea of this method is to start from
the analytical properties of a given amplitude. Our analysis shows that in
order to apply this method to the charge boson production one must claim
that there is a branching point in the complex plane of the invariant mass of
the resonance but not a pole. Corresponding intercept of the branching point
appears to be non-trivial function of the kinematic of the process. From this
we conclude that a theoretical analysis of this situation will be more compli-
cated and there is no straightforward extension of the S-matrix pole scheme
to the processes involving charge unstable gauge boson(s) production®.

Our next remark concerns the top decay width. As it is clear from the
exact expression for the 5 factor the non-factorizable corrections to the dif-
ferential distributions over invariant mass of the W-boson decay produects
are negligible due to the small mass of the b-quark.

Let us also outline how the calculation of the radiative corrections to
the single resonance production must be performed. We stress once more
that the radiative correction which is presented in the eq.(13) is the only
one which is usually referred as non-factorizable. As we have also traced

®This fact and a possible modification of the pole scheme are discussed in the ref. [2]
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the cancellation of the real emission against virtual photon poles we can
formulate the practical recipe for the calculation of radiative corrections to
the differential cross-section of the reactions with one unstable particle:

1) The leading order differential distribution is given by the known for-
mula.:

do(pl,) oo(My) My dT(W — ev) (17)
dpfy — 7 (ply — M) +TH My

where op is the on-shell cross section for the production of the particles W
and B, and d['(W — ev) is the on-shell differential partial width of the
W-particle.

2) In order to compute O(a) corrections to this formula one needs:

¢ to substitute one-loop results for all quantities in the previous formula;

e to add our result for the “Coulomb phase” contribution (eq.13) to the
above formula, since this is the only contribution of the order O(a)
which comes from the non—factorizable interaction. This prescription
already takes into account partial cancellation of the non—factorizable
real corrections against corresponding real ones.

There is one subtle point in the preceeding discussion. One can get an idea
that we make a double counting, i.e. we include the soft region of the triangle
(bW interaction in the terms of the model) to the "narrow width approxi-
mation”, while this region is also accounted in the calculation of the non-
factorizable radiative corrections, which according to the recipe are added
later by hands. We note in this respect that the soft region for the “on-
shell” triangle is completely cancelled by the soft emission. In this case we
do not get any contribution from this region because the Coulomb phase for
the stable particles is pure imaginary and hence disappears from the observ-
ables. Consequently there is no double counting and our recipe is simple and
reasonable.,

3 Production of two resonances

Now we are in position to discuss similar problem for the case when two
unstable particles are produced in an appropriate reaction. We note that
non-factorizable radiative corrections to the processes involving production
of two resonances have been discussed in the literature. Namely total cross-
sections [4-6] and various distributions in the non-relativistic ( threshold)
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limit [11] have been analysed. As we have mentioned in the introduction, we
do not discuss threshold region in what follows,

Below we calculate double resonance O(a) non-factorizable radiative cor-
rections to the lowest order matrix element. Through out the paper we
consistently neglect single-resonance and background contributions.

Next important remark concerns logarithmic and polylogarithmic func-
tions which appear in the result of this calculation. Generally we need to
evaluate this functions in the complex plane. Hence it is important to fix
conventions for the cuts of this functions. All logarithmic and polylogarith-
mic functions which appear in our final formulae have the usual cuis i.e for
the logarithms it goes from 0 to —co along the real axis and for the polylog-
arithms from 1 to +oo along the real axis.

For concreteness we consider the process v* — tf — bW+bW = as the
basis for further discussion. However, for the energy region sufficiently far
from the threshold the results of our calculation appear to be general and are
not restricted to a concrete process.

It is worth to note from the very beginning that the results which one
obtains for two resonances appear to be more complicated and are not so
transparent from the physical point of view as compared to the case of a sin-
gle resonance production. If it is possible we try to appeal to the physical pic-
ture rather than huge formulae. The generic graphs for the non-factorizable
radiative corrections are presented in the fig.3.

3.1 Three-point function

We start our consideration with the usual three-point function. As it is
clear from the previous section the contribution of this graph is unavoidable
due to the gauge invariance arguments. Corresponding amplitude diverges
logarithmically in the soft-gluon approximation. To avoid this divergence we
introduce the cut-off A and restrict the integration region to the values of
the loop momenta k? < A2. This regularization is not Lorentz-invariant, so
we use the center of mass frame everywhere. The result of the calculation is
Lorentz invariant anyhow.

As we work in the soft gluon approximation, we are interested in the
contribution from the region & ~ I'. The natural requirement for the cut-off
A is then

I'<< A << /5, M.

When the momentum of the virtual or real gluon is much large than T’
we can neglect the width and the off-shellness in our formulae and work with

13




Starting from the expression for the amplitude presented in the eq.(18)
we introduce Schwinger-Fock proper time for each of the resonances. The
integration over loop momentum reduces to the evaluation of the Fourier
transform of the gluon propagator to the coordinate space. The result is
well-known: -

- 1

(27)4 k2 +ic = 4m? 22 — e’
In our case the four-coordinate of the gluon propagator is the difference in
Lorentz coordinates of the resonances: :

(24)

zf = pi¥r — pa¥m.

In the center of mass frame we rewrite the result in the following way:

Cr 9 exp i(Dy 11 + Dams)
1+ﬁ)/d1‘1d‘1‘2 = -
ﬂ' ( (n — -.n;;)2 - 2(n + *3!'2)2 - 1€

This expression exhibits poles on the integration path. The position of this
poles corresponds to the movement of one particle in the field produced by
the other when retardation effects are taken into account. The residues in
these poles provide us with ( we again drop all pure imaginary quantities):

Myote = Mo 222 02E) (irtog(e(-1) + inlog(e(1) +77).  (26)

Q,

M="'Mﬂ

(25)

This expression has all desirable symmetry properties and corresponds to
the Coulomb phases of two resonances which they acquire in the field of their
partners.

As the space-time picture shows that our understanding of the Coulomb
effects is still valid we proceed further and extract the residual Coulomb phase
contribution from the gluon pole. We will not use the proper time represen-
tation systematically and continue evaluation of the three point function in
the momentum space.

3.1.2 Gluon poles— So far we have studied the “particle” pole contri-
bution to the amplitude. Now we are in position to discuss the contribution
of the gluon pole. The separation of particle and gluon poles in our calcu-
lation is useful due to the fact that the contribution from the gluon pole of
the virtual graph is in very close analogy to the corresponding real emission.
Hence if we get the contribution of the virtual gluon pole it is a matter of
machinery substitutions to obtain the amplitude for the soft real emission.

Taking the residue of the gluon propagator, which is located in the lower
half-plane of the kg variable, we find that the integration over transverse
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component of the loop momentum is again logarithmic and hence strai ghtfor-
ward. We perform one integration by parts and arrive finally to the following
representation for the gluon pole contribution:

&JCF (1 C 132)

MzM[} 4ﬁ

(A1 + A2+ Az + A4) (27)

where

A
D, 4+ Dy, 20k,
A|=/dkzl::-g( + )x
E
2 my; my

x( 4 = g )
D\/E—A+Bk, Dy/E+A+ Bk, /)’
A

Ag:fdk;lﬂg(D1+D2 +2'Bk‘)x
i m; my
x( 1-p3 2 1+7 )
D,/E-(1-B)k; Di/E+(1+ Bk, /)’
A
o Dy+D; 2Bk,
Ag_fdk,ﬂ(k,)log( g )x
=-A
148 1+
x(D1/E+(1+ﬁ)k; o DE/E+(1+ﬁ)k,,)‘
A
Ag = /dk,,ﬂ(-kzjlog(Dl_l_Dz +23k”)x
- mi my

g—1 g—1
X(DME— (1 - B)k, x D, /E —(1 _ﬁ)kz).
Let us discuss the advantages of this representation: evaluation of the integral
Ay can be immediately reduced to the integration over the semi-circle of the
radius A, as a consequence it will not depend on the off-shellness and the
width of the resonances. Therefore it will be completely cancelled by the real
emission. The A; term is the extracted contribution of the particle pole (
hidden Coulomb phase, as it has been called above), the last two terms are
specific for the gluon pole. The calculation of this integrals is straightforward
due to the fact that all of them are of a polylogarithmic type. It is clear that
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we need to evaluate polylogarithms and logarithms as the functions of the
complex argument. We note in this respect that all important points for
performing logarithmic and polylogarithmic integrals in the complex plane
have been discussed long ago in the ref. [16].

As has already been mentioned, the contribution from the A; term is

completely canceled by the real emission hence we do not present it here.
The result for the A, reads:

Ay = —7* — 2mi log(£(1)). (28)

The most involved is the evaluation of both Az and A, contributions. The
result which one obtains after direct integration is:

_ A2\F2
dov e = togOtog (BB _ Liogaia)— oo io (121)
2
+ 2Li3(¢) — Liz(—(d12) — Liz ( o ‘&%) > %
+ 5061 =82)" = (2= )63 = $1) ~ 7(o1 + 1), (29)

Here the following notations are used:

z21=¢(1), z22=§(-1),

v; = arg(z), ¢ = arg(D;),
D 1—
diz=—, (= —ﬁ
Dy 14+ 3
In the presentation of this result we split the answer into the modulus and the
phase parts, and write each of them in a way which allows straightforward
investigation of the # — 1 limit.

The result for the three-point function is then:

Mtf = Mpﬂrl + A5 + A3 + Ag. (30)

Here Mgyt is defined in the eq.(22).

Now let us discuss how corresponding real emission can be obtained from
these quantities. In particular we mean the interference of the gluons emit-
ted by different resonances. It is straightforward to write the contribution
of this interference term to the differential cross-section in the soft-gluon ap-
proximation. Direct examination of the momentum integral shows that it is
sufficient to perform the following modifications in the result obtained for the
virtual gluon pole to get a contribution due to the real emission:
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e ) — —Dl*;
e change the sign of the result.

It is important to note here that this transformation does not influence ana-
lytical properties of the amplitude, hence we can perform it in the final result.
It is seen from the eqs.(30-31) that the virtual pole contribution is not in-
variant under this transformation, hence the real emission will not cancel the
contribution of the virtual gluon pole for the three-point function.

To demonstrate this point we study the limit 8 — 1. It is straightforward
to obtain the following from the egs. (24), (30-32):

e Particle pole: 27¢,;

o Gluon pole : 27¢; — n(¢1 + ¢2) — 2(¢1 — $2)? + const;
e Virtual correction = Particle pole 4+ Gluon pole.

Transition to the real emission discussed above reduces to the transformation
$1 — ™ — ¢1. As a result the sum of the real emission and the virtual
correction in the limit # — 1 equals to:

T(P1 + ¢2) + 2¢1 ¢ + const. (31)

The constant term is independent from widths and off-shellnesses of the res-
onances and we do not present it here. The first term is the Coulomb phase
of two resonances in the limit # — 1 and the second is a correlation between
the phases of two resonances.

3.2 Four point function

As a next step we consider the graphs with the gluon exchange between tb or
tb. Evidently there is a symmetry between these two and having the result
for one of them it is straightforward to reconstruct it for the other. For
concreteness we study the interaction between ¢ and b.

3.2.1 Particle poles— We start with the discussion of the particle poles.
In this case it is not so easy to apply direct integration discussed in respect
with the evaluation of the three point function and we use the following
trick to reduce the necessary amount of work: in the soft approximation
the product of two propagators of the unstable particles (cf. eq.(3)) can be
decomposed as:

D(py — k) D(pa + k) =

1 ( 1 + 1 ) (32)
(D1 + D2) +4pk \Dy —2p;k * Dy + 2pak/’
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Here p is the three momentum of the produced unstable particles tp=pi=
—P2). Examining the poles in the complex plane one finds that by appropri-
ate choice of the integration contour the second term in this decomposition
gives no particle pole contribution while for the first one it is sufficient to take
the pole corresponding to the b propagator. In fact this decomposition leads
to a mixture of the poles of the original expression. Hence strictly speaking
the particle poles which are discussed below are some combinations of the
original particle and gluon poles. However as we have seen during discussing
the triangle graph particle and gluon poles are hardly separated when we
deal with the amplitude involving two unstable particles. So the “names”
here are just a matter of taste.
Taking the residue of the b propagator we get:

— dra,Cpl—vivy

MGFZM ’
i X Ik i

1 _f &k 1
= (2?1’)3 ((V4l{)2 o kﬂ)((Dl + DQ)/E + 2?1k)(D1/E o (‘V.; = Vl)k) '

Here My is the Born amplitude with the extracted unstable propagators, v,
and v4 stand for the top and the b-quark three velocities respectively. As it is
clear from this equation, the integration can be performed in a way similar to
the case of the single resonance production. We introduce a proper time for
each of the resonance propagators and exponentiate them. The integration
over k is then the same as in the single resonance case (section 2). Finally
we get:

Mpart = My

a,Cpl—vivy drdr s {i(Dl + Dy o Dy Tl)}
Dy ¥ VriZ 4 ry? (3.'1)

E E
In what follows we denote the angle between velocity v; of the particle labelled
i and the top quark velocity v; by 6;. Then r, and r; are:

ry =28 cosbyT — (1 — Bcosby)m

and *
r2 = ?42 A% sin? 84(2r + 7)>.
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Next we make the change of the variables: r = Az and 7y = A(1 — z) with
0<z<1and0 <A< oco. Integrating further over A we obtain:

iﬂ:‘,CF

Mpart :ﬁﬂ (1 —\"'11'4))(

1
20

1

(1—Pz4)—2(1 +,8$4)}2 + p2(1 + 2)?

1

/ dx

X
D] - = D;J,;E \/
: {
We denote cos 4 as ¢4 and :
< S m42 ¥ 1 2

pt = _E?ﬂ (1—z3).

Examining previous equations we see that the leading term under the square
route can go through zero within the integration region if z4 > 0.In this
case this “would be” divergence is regularized by keeping the mass of the
light particle finite. This means that the divergence is collinear. Actually
this divergence can appear only if the ”mass” of the gluon is zero, i.e. when
the gluon pole in the original expression is taken. Hence the appearance of
this divergence in the particle pole means that decomposition of the unstable
propagators (see eq.(34)) which we use for the evaluation of this graph has
really mixed gluon and particle poles of the original expression in a nontrivial
way.

We insert the identity 1 = 0(z4) + 0(—24) inside the integral. After this
we get:

fCI,,CF(l b ‘I-"l‘l-"q}
Dy &(zq)m}

Mpart = My (6'(—.7:4) A+ 0(z4) B), (34)

Dy +

D
A= log(hnbl—z) + log(1 — Bz4) — log(—28z4),

2
B =log (m) — log ({f(z_;}lmi) + log(1 — Bz4) + log(208z,4)

—log [A*(1 = z4)} + log (E—f)

mf

As it has been mentioned before and is quite clear from the above equation
there are collinear logarithms associated with the massless 6-quark in the final
state. We discuss below (see section 3) how collinear logarithms cancel in the
final result.

2.2.2 Gluon pole— Using decomposition eq.(34) for the resonance prop-
agators and performing the integration over the contours discussed above we
are forced to take the lower pole of the gluon propagator for the first term
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in the decomposition and the upper one for the second. Performing the in-

tegration over the modulus of the three-momentum we obtain the following
representation for the amplitude:

a,Cr 1—viv,

M,=M
# ﬂ?rDlm? 2

(J1 4+ J2). (35)

Where J; and Js are:

43 ' gkt
e ./ wa(r)(lnj ningz) (lug (gfi_h;::i) i (Dlilﬂ‘z)

4 - |
=~ | st s (o8 (T2 ) o8 (53755 -#): 67

Here n; is the unit vector, by z we denote cosf; = nin; and n; is the unit
vector parallel to the velocity of the particle 1.

The integration over azimuthal angle is easily performed using the follow-
ing equation:

- iw) , (36)

2

/ dy 4 2T ; (38)

rd 1= mmy \/(cosﬂk — COS -!5';)2
This equation exhibits collinear singularities which appear when the mo-
mentum of the gluon is parallel to the momentum of the (anti)quark. We
regularize them keeping the mass of the light particle in the singular terms.
The exact formula reads:

|z—z,-|—r\/(;tr—r) +E: (14, ). (39)

Finally changing the sign of the integration variable in the eq.(39) cos 0 —
— cos B we get:

1
dz x
Ji4Jds = IE(I)m(log(%)—Hﬂ (§2)+m3(-x)-ma(x))
' (40)

It is rather straightforward to calculate the integral in the last equation.
We split the integration region into two parts to rewrite the square root
correctly and use a partial fractioning to obtain Spence-like integrals.
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It is quite useful here to examine a part of the previous expression which
contains @-functions. The evaluation is straightforward. The result is:

— a,Cr (1—-wvivy)
Moa=M
O T 2D (za)m?

A, (41)

f A= (iﬂ'@(—zq) e fi’l’ﬁ(ﬂ:q)) /"'11 -+ 2’5:-1‘9(1‘.4) Ag + 2i'ﬂ'l9(—l‘¢) Aa.
Where M,y is the piece of the gluon pole part proportional to the #-functions
) and
. 2

A1=log(£(( )))-H (E((;)))+1 ('f;),

Ayt g(Dl +D2)+lug(1+“),

§(-1) T4
Az = —log (%) — log (1:"-_—351).

If we sum the particle pole contribution elaborated above and the “@ ”-
part of the contribution due to the gluon pole the result appears to be simple
and all #-functions drop out.

— a,Cr (1 —Bzy4) inm

Mpart + Mgﬂ = Mg e 2 le(xq) I{, (42)
K =2log (‘5(‘"“)) % lng(ﬂ-) +Qlog( i o ) ;g
D, §(-1) B(l — z4)
In this equation L4 stands for
By’
L =log (5.

"‘ This notation will be used further.
To evaluate remaining contributions due to gluon pole it is convenient

1 to use additional functions introduced in the Appendix. Finally we get the
' following result for the four-point function:
— a,Cp 1—-02z
My = W22 Py (43)

2 Dy§(zq)m;

Arj = Al -+ AE + AB?

Ay = =F1(—Dyq, Blz4) + F1(=Do, =PBl24) + Fi(z4, B|z4)
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Ay = log( ) {Fz (24]24) — Fa(~ Dﬂk‘f'ﬂ]

Az = m{?lng (ﬂ 5)1 ) + log (EE(—?]) + 2log (El("l:_f:_:)) -+ L4}.

In this equation we denote:

Dy + Dy
B(Dy — Da)

It is also straightforward to consider gluon pole of the original matrix
element (without decomposing resonance propagators eq.(34)). We need it
_due to the study of the bremsstrahlung integral, namely the interference of
the gluon radiation from ¢ and & quarks. The calculation is similar to the one
described above. Finally we get:

Dy =

2r  Dié(zq)m

Ag = Al 3 AE#
Ay = —=Fi(=Dy, Blz4) + Fi(—Do, —Blzs) + Fi(z4,B|24) — Fi(z4, —B|24),

A, = (log (jD) ) + ﬂr) (Fﬂ(ﬂ,ql.’l?q) Fy(— Dn|;1:4))

Corresponding bremsstrahlung integral can be obtained from the previous
equation by the standard change ( cf. discussion after eq.(32)) in the relevant
piece of the differential cross-section.

Mgzy[}

A, (44)

3.3 Five-point function

We are finally left with the last non-factorizable graph which corresponds to
the interaction between b and . We again calculate a contribution due to
particle and gluon poles separately.

3.3.1. Particle poles— Evaluation of the particle pole proceeds in a
way similar to the one which has been used for the four-point function. We
use decomposition for the propagators (eq.(34)) and then choose appropriate
contour for the integration. The integral naturally splits into two pieces
which represent the movement of a system of particles in the Coulomb field
produced by a quark or an antiquark. These two pieces are symmetric and
complementary to each other.

Let us examine one of them. We exponentiate the propagators to obtain
the Coulomb-like three momentum integral. As we have one more propagator
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here in comparison with the four-point function we need to introduce three

“times” instead of two:

1 - V3V4)

Mpnrzjq: — Efmﬂ 4#5&,0;?( E2 I, (45)

J s /drdndtexp{( el

where r stands for the following vector:

g} b i)

(27)° (vak)? —

r= 2?T+(V—V4)T1 +(Y3—V4)t. (46)

Here the quantity v is the on-shell velocity of the top quark. Integrating this
equation over k we get:

Ey (1 - v3vy) drdrdi
Mpart.‘i = 10, CF 12 M{] \/ 1141‘ 2 3 I‘_L
A Dy + D- D
xexp{z( 1; r+ Elfl)}» (47)

Here n4 is the unit vector parallel to the velocity of the particle 4 and r; is
the component of the vector r perpendicular to the vector ny.

The second term (Mper¢ 3) can be obtained from the eq.(52) by the fol-
lowing set of substitutions:

V3—=V4, V4—-v3, Di— Dy D;— D, (48)

The evident intention then is to perform the integration over . The
integral appears to be logarithmically divergent on the upper limit. This
reflects the fact that infrared singularities of the five-point function can not
be completely regularized by the virtualities and widths of the unstable par-
ticles. However, we anticipate that the above divergence corresponds to the
Coulomb phase of the b quark in the field of the antiquark b. Hence we ex-
pect that this divergence is pure imaginary and drops from the observable
quantities (as it occurs in the infrared limit of the “stable” theory [12]). This
expectation is verified by direct calculation. Below we omit this infinite piece
from all expressions.

The integration in the eq.(49) is then straightforward. We do not present
its results because it is much more reasonable to present the sum of the
particle pole and the “6”-terms from the gluon pole.
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3.3.2 Gluon poles— Let us discuss the contribution due to gluon poles.
As we have chosen appropriate contour to evaluate particle poles we are
forced to take the lower and the upper poles in the gluon propagator for the
first and the second term in the eq.(32) respectively. As in the case of the
four-point function we perform the integration over the modulus of the three
momentum and get:

R T By d?n,
Mg = _Mn 2 (1 “Haﬂq}f {I oo Hkng)(l - 11_1;114]

¥(D;, Dq,cos ).
(49)
The function ¥ can be written in the following way:

¥(Dy, Dy, z) = Wo(Dy, Dy, z) + ¥1(D1, Dy, B,2) + V1 (Da, Dy, -8, z) + ¥y
(50)

where:

1 o L
¥o(Dy, D2, 7) = 55 (lng - m),

1- 3=z " ( Dy )
Dif(@)m? °\(1 = Bz)m?/’

& . 2irfBz(0(z) — 0(—2))
*T T miE(z) (D1 + Dy)

The parameter ¢ in this equation is the infrared cut-off. The first term in the
previous equation does not contribute to the observable quantities. Indeed,
the infrared log is canceled by the real emission while the ix term is pure
imaginary and hence does not interfere with the Born amplitude.

Next we evaluate the integral in the eq.(51). As the function ¥ does not
depend on the azimuthal angle, we calculate the following integral:

‘Fl(Dls-Di'rﬁ!'r) —

2x

s ] o (51)
0

27(1 — ngng)(1 —ngny)

Direct integration gives:

e A34
(1 o 113114)(1 + I34)(’.E e Ia)l:I e f-b)?

N;-] o xKg N4 e IK..;
lz—=23] |z — 24|

Azq =
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cos 3 + cos 4 & ¢ sin 03 sin f4 sin a4
. 1+ cos 934 :
N;} =1-—cos 1'934 — COS 33({:0893 — COS 94),

Ta(b) =

Ny =1~ cosf34 — cosBs(cosfs — cos f3),
Kg = COS8 94 — €08 33 Cos 934,
K.q = COS8 93 — CO8 94 COs 934.

Here we denote by z = cos @, by x; = cosf; and by z34 = cosf34. Here
the angle 634 is the angle between the vectors nz and ny.

As it is seen from this equation, the result of the azimuthal integration
1s a rational function of the cos(#). The remainder of the integrand consists
of logs and constants, hence it is quite clear that the integration can be
performed in terms of the Spence functions and logarithms.

The other point is that divergence which occurs for 2 = 23 4 is the collinear
one and hence its regularization is clear. Explicit formula reads:

o
|z — z;| — \/(.t - z;) + _E%(l — z;2).

We write eq.(54) in the following way:

2

= TTEM(IE(*) + 14(2z)) (53)

I34

where
Ng e .'Bf‘fg

(1 + 1:34)(.1‘: -_— .'L‘a)(.?: . Ig.)|x -— :L‘gl.

Let us study the §-terms of the ¥ function and show how they cancel
against corresponding parts of the particle pole. As both particle and gluon
poles are naturally splitted into two terms (3 and 4) we present them sepa-
rately. Further evaluation is straightforward. The sum of the particle pole
contribution and the -terms of the gluon pole reads:

1q =

(54)

P 1P
My, = Mpari,d =+ Mg,EA = —-Mp “1'2 - K, (55)
s 00 D ) D
gy 1 (Ir?:?) 81 ey (W)"’
%1 — fza) %1 + Bza) D
log (1 - . el 2
Di&(zq)m] og( ﬁxq) Dyé(z4)m? o8 (Dl)-l_
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B (e ovon (452 1 (202

E R; (log(l — ;) — log(—1 — z;) — 2log(—=z;) + 2log(z4 — 3i))+
i=4

R4(2 log(8) + 2log(1 — z4) — L.,)}.

and

e io:,C
M3y = Mparta+ Mgpa=—Mp F

K, (56)

ok DfD log (ﬁf) D> D1 (tmt)
ot (3,

_+.
2(1 + ,32?3) 2(1 ﬁta) D
Dy¢(z3)m?2 log (1 i ﬁ::a) le(ma)mt D;)

e (2108 (57%) + 108 (531)) -

Z R;(log(l — 2;) — log(—1 — z;) + 2log(—z;) — 2log(z3 — :E;))+
i=x

R (2log(B) + 2log(1 + z3) - Lg) }

We denote D) = D; + D; in the above expression . The exact expressions for
the quantities R; can be found in the Appendix.

Then we are left with the integration of the ¥; function. The result of
the integration is:

My, = —M, a;fp éif}:fj:gf (log (i4 ) log (Bi) — Fy(z4, —,3|:Ir4)) i

Z 24[;1;(5,2}:31; (ng (;2 )F2(1’1|1‘4) Fy (=, —,3|:r:4)).._

t

nifi;(lﬂg(ﬂl) 2(=Dolea) = Fi(=Do, ~Blea)| +

(D1 — D3, 8 — —=pB). (57)

Similar term (M32) which corresponds to the particle 3 can be then obtained
by the direct substitution 3 — 4 in the eq.(59). Our final result for the
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radiative correction due to the bb interaction can be constructed from the
above quantities:

My = May + My2 + Mz, + M. (58)

Finally we present the contribution of the “true” gluon pole (i.e. without
decomposition of the resonance propagators eq.(34)) of the virtual five point
function:

My = Mgz + M3z + My, (59)

_ _37.5a:Cr (1—Pz4) | 4E4’ Bz;)
Sus e L Dol ( =k EEDIE(::, ¥ Faladde)

+22 By(~Dolag)] + (41— 3).

This concludes our evaluation of the five-point function.

4 Analyses of the general formulae

So far we have derived general formulae for the double resonance radiative
corrections to the matrix element of the production of two resonances. Here
we discuss some general properties of the obtained formulae.

4.1 Collinear singularities

As it is clearly seen from the above formulae each of the separate contributions
to the non-factorizable radiative corrections exhibits collinear logarithms.
Normally these logarithms are cancelled against the real emission. Let us
note that T. D. Lee and M. Nauenberg [17] have used quite general approach
to prove the absence of the similar divergencies in any quantum mechanical
system. The basis for the proof is the existence of the unitary S-matrix.
As 1s well-known from the work by M. Veltman [18], it is indeed possible to
construct the unitary S-matrix in the field theory with the unstable particle.
Hence the arguments of the ref. [17] must apply also here. However it is
necessary to clarify the level of the inclusiveness which is necessary for this
cancellation to occur when unstable particles are considered.

For this aim we extract all the terms which are singular in the limit m; —
0, i = 3,4 from the above formulae and calculate their contribution to the
total cross-section. In spite the fact that these terms are quite complicated
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in the individual graphs the sum of all these contributions appear to be very
simple. We first write its contribution to the differential cross section:

d;;;‘ =2 “"CF Re { (—L4 + %Ls)} (60)
We remind that the quantities L3, L4 are defined by the eq.(42).

Let us discuss now the properties of this equation. First we note that
the source of this large logarithms are the virtual contribution due to the
five-point function. Of course there are collinear logarimths also in the real
interference but these are cancelled against similar pieces in the virtual cor-
rections,

We can also reexpress the terms in the eq. (60) to indicate exactly the
mass singularities which we find in this case:

d0mass _ ﬂ’s CF Re { (_ o —)}lc}g : (61)

dﬂ"ﬂ

All other terms which have been dropped in the transition from the eq.
(60) to the eq. (61) are smooth in the limit when the masses m;, i= 3,4 go
to zero.

We see therefore that if the masses of light particles in the final state are
equal then we do not get any mass singularities. This is the case for instance
for the reaction ee~ — tf — W+W~bb. However such rnass singularities
will appear in the reactions like e~e* — W*T*W= — e~ uty,. They drop
out if the sum of charge conjugate {:hannels 1s considered simultaneously — for
instance e"et — WHW~ — e~ p,uty, and e~et — WHW- — 4 “puety,.
In any case if the integration over invariant masses of the produced resonances
1s performed, these singularities drop out from the observable cross section.

4.2 Real emission and virtual gluon poles

We discuss here how the cancellation of the real emission and the virtual
corrections occurs when unstable particles are produced. We begin with the
single resonance production (cf. section 1).

First we examine Be interaction (in terms of the section 1 ). It is straight-
forward to write the cross-section for the real emission and the contribution of
the virtual photon pole to the cross-section in the soft photon approximation:

d-‘.‘f—rﬁrt i dﬂ_emiss - 4TﬂiMBorn|24p2p3x

43k (p1 + k) + D(py — k)
f 2732|k| RE{ (2::'3# )(2p2k) D(p1) }

It is seen {rom this expression that gluon momentum enters the propagator of
the unstable particle with different signs in virtual and real corrections. This
1s the illustration of the statement in the ref. [4] where the authors claim that
the cancellation is not local in the momentum space in contrast to the usual
situation. However the above expression is well-defined and we can evaluate
it explicitly. The result of this calculation appears to be pure imaginary
and hence does not contribute to the cross-section. The same situation also
occurs for the usual triangle graph with one unstable particle. However the
case with two resonances appears to be much more unusual.

As is well known the usunal thing in dealing with the soft limit of the
Feynman graphs is the cancellation between real and virtual corrections.
The essence of this cancellation is the fact that the particle movement is
not affected by emission and absorbtion of soft massless quanta. Therefore
the probability of a process remains the same. The piece of the virtual
corrections that cancels real emission is the residue of the massless gauge
boson propagator ( photon or gluon ).

This simple remark verifies similar cancellation in the case when the in-
tegration over invariant masses of the unstable particles has been performed.
In this case, as it is clear from our consideration, we effectively recover the
situation with the stable particles. However the differential distributions rep-
resent a different case.

Explicit investigation of the contribution due to the gluon pole from the
virtual correction and the real emission shows that they cancel each other in
a non-trivial way. Let us fix the off-shellness eq.(1) of one of the resonances
¢1. Then the virtual gluon pole contribution calculated for the off-shellness
of the other resonance 83 cancels the real emission for the off-shellness —§s.
The reason is that for negative values of § the particle is more likely to
absorb gluons (the particle prefers to make its invariant mass larger) while
for positive 8’s the situation is opposite; exactly on the mass shell § = 0 there
1s no difference. This shows that in the case of the unstable particle we have
one more degree of freedom — the invariant mass which is sensitive to the soft
(k ~ T') emission and absorbtion. Averaging over invariant masses we “lose”
this degree of freedom (technically non-local cancellation in the space of the
invariant masses occurs), but when the distribution in the invariant mass is
studied we meet some unusual properties.
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5 Conclusions

We have derived general formulae for the non-factorizable radiative correc-
tions to the invariant mass distributions for both single and double resonance
production. We find these corrections to be important for the accurate de-
scription of this distribution in the vicinity of the resonance peak.

Our approach is motivated by the observation that non-factorizable cor-
rections to the Born amplitude are governed by the soft limit in order to give
resonant contributions. This fact justifies the use of the soft photon (gluon)
approximation for this problem. As usual the soft photon approximation pro-
vides universal results in the sense that they are not restricted to a concrete
process.

The gauge-invariant current can only be constructed if one takes into
account both the current of the resonance and the current of its decay prod-
ucts. Gauge invariance is responsible for the cancellation of the whole effect
for high energies and the most probable kinematical configuration, i.e. when
the charge decay products follow the direction of motion of the resonance.

We hope that our study provides better understanding of the structure of
the infrared limit of the theories with the unstable particles. We note that the
usual cancellation between soft real and virtual corrections is not complete
even in the well known theories like QED: in fact the “photon” poles from the
virtual corrections cancel the real emission, while the “particle” poles (which
also give infrared divergencies) appear to be pure imaginary and physically
correspond to the Coulomb phase [12], [14].

In the case when we deal with the unstable particles the “particle” poles
provide non-vanishing corrections to the observable quantities. The origin
-of this correction is very simple: the decay of the resonance accidentally
changes the movement of the charge and hence destroys a coherence neces-
sary to acquire “proper” Coulomb phase. Dealing with the Born amplitudes
describing resonance production we can recognize that the integration over
invariant masses of the resonance restores the “stable particle scenario”. As
for the non-factorizable radiative corrections we know that they disappear
if the integration over invariant masses is performed [4-6]. As the integra-
tion over invariant masses restores the stable particle scenario, the absence of
the contribution due to non-factorizable corrections in the integrated quanti-
ties is in accordance with, the non-observability of the Coulomb phase in the
familiar theories with the stable particles.

As for the cancellation of the virtual photon poles against the real emission
we argue that this cancellation occurs only if the integration over invariant
mass of at least one of the resonances is performed.
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Let us give a summary of the formulae presented in the text:

e Non-factorizable radiative correction to the differential cross-section for
a single resonance production is given by eq.(11).

e Non-factorizable corrections for the matrix elements describing produc-
tion of two resonances are given by:

1. three-point function - eq.(30);
2. four-point function — eq.(43);
3. five-point function - eq.{58).

From the phenomenological side our study is motivated by a future inves-
tigation of heavy unstable particles. The vivid example is provided by the
study of the reaction e"e¥ — W~-WT at LEP 2. It seems that the plan-
ning accuracy of the measurement and the proposed technique of measuring
the line shape of the invariant mass distribution requires taking into account
QED non-factorizable corrections as well.

As the dominant contribution to e”et — W~W* comes from the -
channel neutrino exchange, on the first glance it seems that the six-point
function is actually needed for this case. However, simple estimates show
that practically for the whole phase-space of the final particles factorization
of the Born amplitude is still valid. Hence it is sufficient to use the five-point
function for the description of the production of two W bosons at LEP2.

We note that the energy region for the LEP 2 (/s = 170—-200 GeV) is the
intermediate but not really threshold energy region. Consequently one has to
consider the effects of the final state interaction between decay products of
the resonances as well: it is likely that the Coulomb correction alone (which
is definitely the leading one in the threshold region) is not sufficient for the
LEP2 energy region.

As it has been indicated above our results beeing obtained in the soft
approximation are universal. For the illustrative purposes we apply them to
the process ete™ — W¥W= — e*v,e” .. The values of different sources of
virtual contributions as well as corresponding pieces in real interference are
presented in the figs.5-6.

We stress however that these numerical consequences of our results for the
observable quantities seem to depend strongly on the experimental procedure
which will be used in the real life experiments. It must be clear from the above
discussion that the cancellation of the soft real emission against the virtual
corrections is quite delicate in the case of the production of the unstable
particles. Therefore a more realistic treatment of the soft (w ~ I')radiation
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is necessary. This is basically the main reason why we do not see much sense
in an exhaustive numerical analyses of our formulae.

Another phenomenological issue which we mention here is the possibility
to measure the invariant mass distribution of the top quark at ete~ and Y
colliders, Qur formulae can be also applied for the O(a,) non-factorizable
corrections in this case in the spirit of [6], [11]. Let us note however that in
this case the influence of the hadronization on the precise determination of
the top mass should be considered. The discussion of this important issue
can be found in the ref. [19].

To conclude, we want to emphasize once more that the non-factorizable
corrections change the shape of the invariant-mass distribution while pre-
serve the total probability [4-6]. As the study of the properties of the un-
stable fundamental particles requires the measurement of the invariant mass
distributions our results must be taken into account while preparing for the
analysis of the forthcoming high-precision experiments on the unstable par-
ticle production. Not only high statistics will be important but also our
possibilities to make the correct correspondence between the results of the
perturbative calculations of the masses and widths of the unstable particles
in the framework of the Standard Model with the experimentally measured
quantities.
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Appendix

Let us introduce the following integral:

1

Fi(a,Blz;) = f

..
-—a

dr

: log(1 + Bz)(0(z — z;) — O(z; — z)). (62)

34

Here a is a complex number with the non-zero imaginary part. Also z; is an
arbitrary number satisfying —1 < z; < 1. The result of the integration then

reads:
Fi(a, Blz;) = —2log (%) log(1 + Bz;)

+ log (——-—(1 +af

1+ Ba
(a —1)8 . {1+ Pz;
log (5o ’ )
i )105(1+ﬂ) 2L12( T
S o g 145
+L12(1+ﬂ‘8) +L12(1+ﬂﬂ).
In our formulas we also need this function in the case when a is real but in
some restricted cases, namely a = z;. In this special case the divergence is of
the collinear origin and we regularize it keeping the mass of the light particle
finite. Hence the result for this function with a = T; reads:

Fi(es, o) = log(1 + ;) log (225) - 1, ((1—13;3’?‘3) - Lip (=00

i

) log(1 - )+

Our next function is defined as following:
1

d
Fy(alz;) = / - _xu(ﬁ(m — 2;) — 0(z; — z)). (63)
-1
The result of the integration is:
Fy(alz;) = —2log(z; — a) + log(—1 — a) + log(1 — a). (64)
When a = z; this function equals:
o 4’451‘2
Fa(ailai) = log (5 ). (65)
Next we present the quantities necessary for the eqs.(57-59):
20x4 —Bz;
Ry = ———r—r0, =, - = ———, 66
B L Mttt .

Re.s = 2801+ Da)(Ka(Ds + D) + (D, — Dy)Ny)
- my (1 + 234)€(24)é(24 )E(2-)
where all notations are the same as in the main text of the paper. The

quantities for the index 3 can be obtained from the previous ones by direct
substitution 4 — 3.
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Figure 1: Born graph and graphs responsible for the non-factorizable correc-
tions for the simple model (see sect.2).
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A

Figure 2: The relative size of the non-factorizable radiative corrections in the
simple model (see eq.(11) with n from eq.(15)). Curves A, B, C correspond

to the total energies /s = 180, 190, 200 GeV respectively. We use my = 80
GeV and a = 1/137.

Figure 3: Non-factorizable graphs for the process v* — tf — bW+bW—
38
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Figure 4: Geometry of the discussed reactions.
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Figure 5: Relative non-factorizable corrections to completely differential cross
sectionon of the process ete™ — WtW~- — etv.e" b, as a function of _
invariant mass of the etv, system m, in GeV for the fixed invariant mass Figure 6: The same as in fig.4, but for m; = 82 GeV.
of e~ m; = T8 GeV. We use /5 = 180 GeV, my = 80 GeV, a = 1/137,

O —o- = 30° Ow-.+ = 150°, .4~ = 0. Curves A, B, C correspond to :

the conrtibutions due to three—, four—, and five—point functions respectively.

40 41




K. Melnikov, O.1. Yakovlev

Final State Interaction in the Production
of Heavy Unstable Particles

Budker INP 96-9

K. Meavnuxos, O.H. HAxosace
Bnuaaue piauMogecTBHE B KOHEYHOM COCTOSHMH

Ha PDOXOeHHE TAXKENBIX HecTabMJIBHEIX YacTHI

OTBercrBennniii 3a suinyck C.I'. Ilonos
Pabora nocrynuna 04.03.1996 r.

Cnano B uabop 06.03.1996 r.
Honnucano B mevyats 06.03.1996 r.
PopmaT Gymaru 60x90 1/16 Obbem 2.2 neu.n., 1.8 yu.-u3m.a.
Tupax 150 sx3. BecnmaTho. 3akas N° 9

O6pabaorano na IBM PC u orneyaraso na
poranpuuTe FHIl PP "HAP um. .M. Bynkepa CO PAH”,
Hosocubupck, 630090, np. axademuxa Jaspenmovesa, 11.




