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Abstract

The many body contributions to the nuclear anapole moment of
133 g 2057 207:209PR, and *°°Bi are calculated in the random-phase
approximation with the effective residual interaction. Strong reduction
of a valence nucleon contribution was found provided by the core po-
larization effects. The new type of contribution to the anapole moment
from the core particles provided by the induced weak interaction was
calculated in the leading approximation. This contribution compen-
sates the reduction to large extent keeping the magnitude of nuclear
anapole moment close to its initial single particle value.
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1 Introduction

The atomic parity non-conservation (PNC) effects dependent on nuclear spin
are expected to be dominated by contact electromagnetic interaction of elec-
trons with the nuclear anapole moment (AM) [1, 2]. The anapole moment
is a new electromagnetic moment arising in a system without a center of
inversion [3]. It exists even in such a common object as a chiral molecule
in a state with nonvanishing angular momentum [4]. The nuclear anapole
moment is induced by PNC nuclear forces.

In all calculations of the anapole moment [2, 5, 6, 7, 8] an independent
particle model has been used for the nucleus. In this approach, the AM is
determined by the contribution of a single valence nucleon, proton or neutron.
The only attempt to account for configuration mixing has been made in [7, 8}.
However, as we shall show below, this is only the part of the many-body
corrections, and is not the dominant one. The contribution arising from the
induced PNC interaction in the nuclear core is considerably larger. It was
not yet discussed at all. We present here the first treatment of these kind of
effects.

The major coherent effect induced by the residual interaction is the po-
larization of the nuclear core by a valence nucleon. This is the main effect
causing the deviation of nuclear magnetic moments from the Schmidt values.
The magnitude of polarization effects depends on the number of transitions
from the core states over the Fermi surface. This number is determined by
the selection rules, i.e. by the tensor rank of the operator. In the case of the

3




AM, the number of transitions contributing to the core polarization is greater
compared to the magnetic moment, and therefore, larger renormalization of
the AM is expected. Just to illustrate the above statement, we refer to renor-
malization of the M3-octupole moment compared to M1. In the case of an
octupole moment, the number of transitions over the Fermi surface is much
greater, and the core polarization reduces the valence nucleon contribution
to M3 by a factor = 4 [9]

A convenient way to describe the core polarization is to use the effective
renormalized operators, or effective fields, in the terminology of the theory
of finite Fermi systems [10]. In the random phase approximation (RPA), the
effective fields are the solutions of a system of integral equations describing
particle-hole renormalization of the bare vertex. The weak nucleon-nucleon
forces modify these equations. The modifications effectively produce an ad-
ditional contribution to the AM compensating for the strong reduction of the
single particle contribution.

This paper is organized as follows. In the next two sections, we remind the
set, of operators contributing to the AM, and discuss the accuracy of the lead-
ing approximation. Later on, we formulate the basic equations, and introduce
the modifications of the equations by the weak nucleon-nucleon interaction
in the leading approximation. Next, we calculate the renormalization of the
single particle contribution, both analytically and numerically. Finally, we
calculate all contributions to the AM both analytically and numerically, and
discuss the stability of the results under variation of the constants of the
strong residual nucleon-nucleon interaction.

2 The anapole moment operator

The anapole moment operator is defined by .2 1y

a= - [ &r (o) (1)

where j(r) is the electromagnetic current density operator.

The main contribution to the AM comes from the spin part of the current
density. Nevertheless, the other contributions are noticeable and, apart from
magnetization current, we shall discuss below the contributions from the
convection, spin-orbit, and contact currents. Let us define the corresponding
parts of the AM in the following way [5]:
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Here { , } is an anticommutator, po is the central nuclear density, f(r) =
p(r)/po is the nuclear density profile, and UP* = UPP = 134 MeV - fm’® is
the proton-neutron constant of the effective spin-orbit residual interaction
[5]. The contact current contribution arises from velocity dependence of the
effective nucleon-nucleon weak forces, taken in the form [5, 11]

G
Fy = ﬁj{l; ; ({(9abTa — 95a0s) - (Pa — Pb), 8(ra — 13)}

1
+g;5[ﬂﬂ X ﬂ'b] ' Vﬁ(ra o I'ﬁ)) = E gﬁ‘w(ﬂb). (3)
Interaction (3) generates a mean field weak potential
=, G Japo
We = 75' o {o-p(r)}, (4)

where g, = gﬂPfT + g.-m%.

The effective interaction constants gap, gba, 95, should be, strictly speak-
ing, found from experiment. On the other hand, they can be estimated from
the initial finite range PNC-interaction [12] taking zero range limit with the
account for short range particle particle repulsion [2, 13]. These ”best values”
estimates leads to g, < 1, while the constant gy is approximately 4.9. The
recent discussion of these constants [14] give, however, different set for g, and

gn, With g, ~ gn. Therefore, we shall keep below the constants explicitly as
free parameters.




3 Single-particle contribution and leading
approximation

The leading approximation for the corrections to the single particle wave
functions will be used in calculations of the core polarization effects. There-
fore, it is worth to discuss the accuracy of this approximation. Neglecting
the spin-orbit potential, and assuming constant nuclear density, we obtain
for the correction to the single particle wave function [15]

5¢po(r) = —1a(0 - T)¥a(r), (5)
where
sl
€a = “ﬁgupﬁ-
Using (5), we obtain for the spin part of the AM
_ Ggpo 2mep KI
as — \/i m (erle) I(I X 1)‘ (6)

where K = (I — I)(2I + 1); R, | and I being the radial wave function, the
orbital angular momentum of an outer nucleon and the nuclear spin. It is
convenient to discuss AM in terms of a dimensionless constant & defined as

(see Ref.[2])

< ea>= BT K (7)
T VRI(I+1)
For the dimensionless constant k, we have
9 ap 9
s e e A /3
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where we put (R|r?|R) = %r%flwa.

The naive expression (8) is in rather good agreement with exact numerical
calculations of the spin part of AM [2]. Therefore, the approximation is
reasonable for averaging the volume type quantities like 2. For surface type
quantities the situation is quite different. An instructive example is the
convection current contribution to the AM. Numerical calculation gives for
209 Bi Kkeonw = —0.019 while in the leading approximation (5) we obtain the

value that differs by factor ~ 5. The explanation consists in the surface

nature of the convection current contribution [5]

o d K+2
s = —rg 2261 (& + K22 ), 9)
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The integrand in the matrix element (9) for the outer nucleon with large an-
gular momentum 1s peaked at the nuclear surface and the difference between
exact §R(r) and its approximate expression in leading approximation rR(r)
provides considerable changes in the convection current contribution.

4 RPA renormalization of the AM

The AM is a T-odd operator. Therefore, the effective two particle interaction
involved in the AM renormalization must change sign under T-reversal of one
of the two particles

T, F(ab)T; ! = TyF(ab)T; ' = —F(ab)

The simplest interaction satisfying this condition is the same spin-spin inter-
action that changes nuclear magnetic moments:

Fy(ab) = C (g0 + 9oTa " T5) Ta " ayb(ra — ). (10)

Here C is the normalization constant that we choose according to [10] C =
300MeV - fm® and the constants ¢’ = 1.01 and g = 0.63.

The effective interaction between the valence and the core particles changes
the response of the valence nucleon on the external field, producing additional
core field. In the RPA this effect 1s accounted for by introducing a dressed
effective vertex V satisfying the equation [10]

V=Wlal])+FA % (11)

Here Vo([a:]) is one of the bare AM operators Eq.(2); A is the static polar-
ization loop of a particle-hole pair.

de
Avlu;;ugu; =‘/E;GV1F3(E)GF;H;_(E}? (12)

Gy,v,(€) being a single particle nucleon propagator. In Eq.(11) F is the sum of
spin-spin interaction Eq.(10) and the weak effective interaction Eq.(3). The
propagator Gy,u,(€) should be calculated in the total mean field potential
including the weak potential (4)

It is, however, more convenient to single out the weak interaction effects,
treating them explicitly in first order perturbation theory. Let §V be a cor-
rection to the vertex from the weak forces. For the unperturbed vertex V
and the correction 8V we have the equations

Vv = Vo([ai]) + Fs AV, (13)
|




§V = F, AV + F, AV + F, ASV. (14)

Here F,, is the weak nucleon-nucleon interaction (3). The AM value is given
by

o = (69IVI9) + (@IVI66) + ($I8V[¥). (15)
In the leading approximation, we have
a = %(Y|[o -, V][¥) + ($I8V]¥). (16)

The first term represents the single particle contribution renormalized by
the spin-spin interaction, while the second term is an additional contribution
from the core particles. Note that the single-particle contribution is now the
expectation value of a transformed renormalized anapole operator Y. Ihe
AM is a T-odd operator of E1 type. The commutator of the AM with 1o -
transforms it, as well as 6V, into a T-odd M1 type operator that evidently has
nonzero expectation value in a state with spin I. The renormalization effects
from the core polarization are different for these two types of operators. In
the next two sections we shall discuss the renormalization of the electric type
single particle AM operators and the magnetic type operators induced by
PNC effects in the core.

Note, that the contact term contribution produces the magnetic type

operator from the very beginning. Therefore, its renormalization is similar
to that of 6V.

5 Renormalization of the electric type single
particle operator

To solve Eq.(13), it is convenient to separate the angular dependence, intro-
ducing a set of tensor operators of rank J

Tiy = {0 ®@Yim}lim: (17)

The spin part (2) of the AM 1s proportional to T1y- This is the only T-odd
operator of the rank 1 with negative parity. Therefore, the dressed vertex V
will have the same angular dependence as the bare vertex

Vs = ﬂ&(r) TllM .

The core polarization effects the radial dependence only, which for bare spin
vertex is just

vgo(r) = Ni'r,
8

where N7 is

Nfzn,‘ﬁiwu“".
3 m

The dressed vertexes v,(r) satisfy the following equations:

w2 (r) = v2%(r) + Z 93 fm P2dr’ A¥(r, ¥Vl (7). (18)
0

b=p,n

Here, the constants g’ and g®® refer to the proton-proton and proton-
neutron spin-spin interaction (10) gi? = go + gy and gb" = go — gp- The
normalization interaction constant C is included in the radial polarization
loop which in our case is

/ 2 : :
Ar, ) = 2 Y ki |GUITHI )P Rsta (") Rytn() G (s 00). (1)

jing'l!

Here, kjin are the occupation numbers of filled nuclear states, (jI||T7 |15
is the reduced matrix element of the tensor operator, and Gju(r, r':€in)
is the Green function of the radial Schrodinger equation with the angular
momentum j', I’ taken at the energy of the occupied level €;1n.

Before going over to discussion of the numerical results, let us start from
a simple model estimates of the core polarization in a harmonic oscillator
potential without spin-orbit interaction. In order to understand orders of
magnitude, we shall calculate a polarization loop with the bare spin anapole
vertex. Expanding symbolic Eq.(13), we find for the first-order correction
term

a(x) = Ogao? S W@ () N e x o)) (20)

Here, 1, (r) are the single-particle wave functions. In the absence of a spin-
orbit potential one can sum over spin variables

e ky — kys ;
af')(r) = -Cg,—-0 X 5_; ﬂ(l‘)%f(r)ﬁ(u'lﬂv}-
In a harmonic oscillator we have a relation
1
e 2[H1p1$ (21)

i
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where the oscillator frequency w = 41 /A3 MeV for nuclei. Using it, we
obtain

1Cg, e
ad(r) = — 2 T8 a x 3~ ) ())(ky = k) IP)
= _ng, e _ Cyg, mep
e e g x [p(r),p] = e x Vp(r). (22)

Taking the expectation value of the correction in the state with total angular
momentum I, we find for the ratio of this correction to the zero-order term

<sv)aPlp> < ¢l(o-r)as’ly >
<oYla,lv > < Y|(o-r)as|y >

_ Cg,spo (RIrf'(r)IR)  _
= SR 2. (23)

Since f'(r) is negative, the correction is negative and large. The sign of the
correction is defined by the sign of the spin-spin interaction. The repulsive
‘nteraction decreases the single-particle contribution. For more realistic po-
tentials, accounting for the spin-orbit potential, we can expect some changes
in this ratio, since the correction is maximal on the nuclear surface, where
the spin-orbit potential is important. Nevertheless, it remains large.

The results of calculations of the renormalized single particle contribution
are listed in Table I and Table II for proton and neutron levels. Note the
reduction of the single particle contribution approximately by a factor of 2,
in accordance with the above estimates.

The spin-orbit and contact current contributions differ from the previous
case only by the radial dependence of their bare vertex. Therefore, their
renormalization can be done using the same Eq.(18).

6 Renormalization of the magnetic type
operators

Let us now come back to Eq.(14) describing the additional contribution to the
AM coming from parity violation effects in the intermediate states of the core
particles. Eq.(14) is of the same kind as (13) describing the renormalization
of the valence nucleon contribution. The difference is in the driving force or
the bare vertex, which is no longer connected to the bare AM operators (2).

10
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In calculation of the driving force, we shall use the leading approximation
(5).
Expanding the symbolic notation, we obtain
k, — ky
Fy(ab)sAV; = 52fffsﬂ'ﬁ’l(l‘b)ﬂ(ﬂb)'ﬁw(rb)E—-—*{"’thlv)
vi! . :

=k

= b Zfdﬁ“'b {9l (rs)los - 13, Fy(ab)]y: (xs) (' |V )

+ b (xs) Fo(ab) o (xs) (Il - 7, VIv)} f:,_-_—%

= 1, {[os - Tb, Fa(ab)] AyVs + Fs(ab)As[os - 1o, Vil} - (24)

As we see, the driving force in Eq.(24) consists of two different parts. The first
term can be ccmbined with the weak interaction contribution Fy(ab)ApVs.
This combination can be presented as a contribution of the effective weak
interaction which is the sum of the direct and the induced weak interactions

Fu(ab) = Fy(ab) + 1 [op - 13, Fy(ab)]. (25)
The induced weak interaction was first introduced in [16]. It has the form
F:;,""(ab) = 1[ls04 -Ta + Eb0b - Ty, F,(ub}], (26)

and eventually appears in calculations using the residual iteraction in first
order. In our case, however, half of interaction (26) enters equation (24). The
use of the full interaction (26) will produce double counting, because the part
related to the valence nucleon is already accounted for in the §y correction
to the valence nucleon wave function. In the first order in the residual inter-
action only both parts are summed together giving full interaction (26). The
matrix elements of the induced weak interaction are proportional to the nu-
clear radius. Therefore, they are enhanced compared to the matrix elements
of the direct weak interaction by the factor A1/3_ For heavy nuclei, this is a
considerable factor and, for this reason, we shall omit below the contribution
of the direct term.

The second term in (24) produces contributions of a different type to the
AM. The commutator [o - r, V] produces the M1 type of operator, and we
can expect its renormalization to be close to that of the magnetic moment.
This very contribution has been previously discussed in [7, 8].
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According to (24), the correction 8§V can be presented as a sum of two
terms satisfying (24), but with different driving forces

§V = sV 4 6V,

6‘,»"4(1} = 1&,[0'5 * Thsy F,(ab]]ﬂbﬁ -+ Fa(ﬂb)ﬂbﬁvh(”
§V D = £, Fy(ab)As[os - vo, Vi) + Fy(ab) by (27)

It is convenient to use, instead of §V(2) another variable related to it via
Xa = #a[0a - Ta, Va] + VD). (28)
This variable satisfies the equation
Ya = aloa - Ta, Va] + Fs(ab)AsXp- (29)

With this definition, we obtain from Eq.(16) the following value for the
anapole moment

a = (P|x + VD). (30)

Thus, the contributions to the AM can be presented as the expectation value
of the sum of two magnetic type operators induced by different driving forces.
The first term represents the contribution of the renormalized magnetic op-
erator obtained via Michel transformation [15], while the second is the con-
tribution of the induced weak interaction, similar to that of [16].

Let us now make an analytical estimate of this correction in the model
used above for the estimates of the renormalization of the single particle AM
operator. We shall calculate the driving term in Eq.(27) for éi:‘:-,-m, using
instead of renormalized vertex V' the bare spin vertex defined by Eq.(2).
The correction to a proton contribution to the AM can be presented in the
following form

_ : ke — K,
5af e ﬁpgfpppa; Zﬂ’l(r)[ﬂp 'rrﬂ;]w‘*’(r)(yri(r i q:r:)lv) ; :

Egyr = €yt

z ] kﬂ_ .ﬂ.r
b in g ot S UL ()n -, bl W N x o) ) B

€ €yt

In Eq.(31), we have omitted factors common for protons and neutrons. Cal-
culating the spin commutators we obtain

§ak ~ £,g7P pip0h ALK (r) + £ngs” a0y Ay (r), (32)
12

where
i i ! ky — ky: 5
At) = T x o) b1 x o) == (33)
v e ¥
Summing over the spin variables, we obtain for A*(r)
Ak (x) = 5B (x) — B (x),
where gl
ihioy o t (e\abals. s BB ATE P
B(e) = S W (O (34)
Using again relation (21), we obtain
i . i
Bt () = —— 3 W @r yu )| W) (ks — k)
vy
1 - 1
= — 3 WO Pk = — 25 8ae(E), (35)

where p(r) is the proton or neutron density. Restoring the omitted factors,
we have for the correction to the AM of a valence proton

2xel

ba,(r) = — =y T (gfpﬂp'spﬁp(r) + @5 pnénpn(r)) @ (36)
Its pxpectat.iun value in a state with nuclear spin I is
2meC K-z
= PP PRy € pn) ——2<1, 7
Eaa mﬂwz (ga HPEPpP +ys .hu £ p )I(I+ 1) (3 )

where K was defined in Eq.(6). For the “best values” of the weak interaction
constants [12], én < &, for heavy nuclei. Neglecting £,, we obtain for the
ratio of éa, /a, for a valence proton

sa,  2Cg%p0 2 (1_ 1 )
a, mw?(R|F2|R) A oK

where we use the total nuclear density po instead of the proton density. Using
for w the standard value w = 41/AY3MeV, we find

da, Z

— 46 —. 39
= = (39)
This result is quite instructive. The contribution to the AM from the induced
weak interaction is greater than that coming from the single particle weak
potential. However, one should keep in mind that the above estimation has
been performed for the bare anapole vertex.
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7 TResults and discussion

The complete results of calculations are summarized in Table I and Table II
for the nuclei with odd number of protons and neutrons. In the first column,
we list the results of previous AM calculations in the independent particle
model. In fact, this is a contribution of the last, unpaired nucleon. In the
second column, we present the contribution of the valence nucleon renormal-
ized by the core polarization, which is in duced by the residual strong spin-spin
interaction. The core polarization reduces the single particle coatribution by
a factor & 2. In the third column, the AM induced by the core nucleons is
written. This contribution comes mainly from the induced weak interaction
and it was not discussed in previous calculations. This part restores signif-
icantly the reduction of the single particle contribution, leaving the overall
renormalization of the anapol moment within &~ 10%.

The magnitude of the renormalization effects depends on the residual
interaction. It is worth to understand how sensitive are the results to the
parameters of the interaction. The spin-spin residual interaction depends on
the two constants go and gg corresponding to the interaction in isoscalar and
isovector channels. The major part of the anapole moment is proportional
to the nucleon magnetic moments; therefore, the isovector part of the AM
dominates. For this reason, we can expect small sensitivity of the AM to the
isoscalar constant go. For 20°Tl changing go in the interval 0.2 < go £ 0.8
we get for the AM 0.313 < Kot < 0.380. The sensitivity to the isovector
constant g} is larger, but still within reasonable limits. Changing gg in the
interval 0.5 < gh < 1.5 we find for *®T1 0.450 2 Kot 2 0.327. However, since
the constant g§ is fixed much better from the fit of magnetic moment, the
above interval for k¢ is in fact too large.

Finally, we would like to remind that these results were obtained in the
leading approximation for the induced weak interaction. This interaction
is a volume type quantity, therefore we expect the leading approximation
to be whithin 20%, as discussed above. This is good enough for the first
calculations. Nevertheless, more accurate treatment would be desireable.

To summarize, we have calculated the many body contributions to the
nuclear anapole moment in the random phase approximation with effective
nuclear forces. We found that the contribution to the AM from the valence
nucleon is significantly‘reduced by the core polarization effects. However,
PNC effects in the core states produce a new, additional contribution to the
AM that partially compensates the reduction of the single particle AM. The
resulting value of the AM appears to be close to its initial single-particle
value calculated in the independent particle model.
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