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Abstract

The injection of atomic beams into relatively cold dense target plasma may
under certain circumstances affect the plasma equilibrium configuration. The
source of this effect is non-potential part of the force acting on the plasma
by atoms trapped in it. The equation for the shape of magnetic surfaces in
open confinement systems is obtained. It is shown that appreciable distortion
occurs even if the force is small as compared to the plasma pressure gradient.

Symmetrization of the atomic injection on azimuthal angle as the number
of injectors increases efficiently promotes reduction of the magnetic surfaces
distortions in axisymmetric open confinement systems. The dependence of
the distortion upon the number of injectors is found and the role of fluctu-
ations of injectors’ parameters and their misplacement are elucidated. It is
stressed that the infringement of axial symmetry of magnetic surfaces results
in the occurrence of neoclassical transverse transport processes in the plasma.

© Budker Institute of Nuclear Physics

1. Introduction

Energetic neutral injection into a dense target plasma is the principal ap-
proach being pursued for sustaining a hot plasma in magnetic fusion devices.
When the neutrals are trapped by atomic processes their mechanical momen-
tum is transferred to the plasma. The additional force f arising due to the
absorption of the neutral atoms is very small in comparison with the pressure
gradient; that is why it is usually neglected in the problem of plasma equi-
librium though can play significant role in the problem of plasma stability as
was first noted by D.D. Ryutov in 1983 [1].

If the force be really negligible, the effect of neutral injection on the
plasma equilibrium is reduced to slow, in due course of plasma lifetime 7, re-
construction of the magnetic surfaces in accordance with the balance between
trapping of the atoms into the plasma and losses of the plasma itself. It is of
common knowledge [3, 4] that for such time scales a stationary solution may
not exist since the plasma tends to spread out in radial direction. However
on a shorter time interval the equilibrium still exists. In mirror confinement
systems transition from almost arbitrary initial state of the plasma to equilib-
rium configuration takes the time of order ! « r with T the growth rate of
flute perturbations. We show below that the additional force f considerably
affects the shape of equilibrium magnetic surfaces on the time scale t < 7 if
non-potential part f! of the force is as small as p/ R where p is the plasma
pressure and R is the curvature radius of magnetic field line. Notice that
similar condition f > p/R with the total additional force f instead of F* as-
sures that the effect of injection on flute stability prevails over the curvature
effect [2].

If the magnetic field and injection system were axisymmetric by 100%
(and, hence, the target plasma too) then the effect of the injection on the




plasma equilibrium would be negligible since f* = 0. However in real situ-

ation the injection can only approximately be considered as strictly axisym--

metric since total symmetry formally requires infinite number of injectors to
be used. Thus, accounting for real geometry of neutral injection results in
violation of initial axial symmetry of the target plasma equilibrium which
gives rise to neoclassical transport (see [5]).

2. Plasma equilibrium
in mirror confinement systems

To find the plasma equilibrium we start with the pressure tensor

Pap = Prdap + (P — PL)TaTp (1)

where 7 = B/B is the unit vector along a field line, and p, and p) are the
perpendicular and longitudinal pressure. Assuming zero plasma velocity we
obtain

apaﬁ ol ] . '

Projecting (2) onto the direction of magnetic field gives

dpy _ py—pL OB
s B Js

with s being the co-ordinate along the field line. The perpendicular projection
yields perpendicular component of the plasma current

+ fi (3)

C

= 3% [B, VpL—F+(p — I-U_]h‘s] (4)

i

where k is the magnetic field curvature. Together with

a7,
curl B = —CT-J (5)
it gives the equation of transverse equilibrium
BE el
—| = - — | K ; 6
i [r-u_+8w] [m P||+4ﬁ]h+fL (6)
Longitudinal current j is to be found from the continuity equation
divj, +divy =0. (7)
4

Figure 1: Sketch of mirror confinement system

Applying a routine algebra to the equations (7) and (4) as described in Ref. [5]
we obtain the equation

f%[’i‘:ﬁ]-‘?’(ﬁlﬂw=f${2[1‘>’*]*f”[?=f]"’} (8)

where the integration goes along field line between some points 1 and 2 (out-
side central cell) near which plasma density drops to a value small enough
to consider that the plasma is detached from any conducting surfaces, see
Fig. 1. Normally, plasma radius a is very small as compared to the radius
of curvature 1/k while f « py + p; always. Hence, the first term in the
right-hand-side of (8) can be neglected as well as the very last term in (3).
Thus, we have

fd;n ;%(m +py) = -f%;[?f]f- (9)

The symbols n, b, and 7 denote vector’s components along the normal n,
binormal b, and T with kK = k,n and b = [T, n].

We introduce the polar coordinates rg, (g in a plane perpendicular to the
device axis z. This plane can usually be thought of as an equatorial plane
of mirror confinement system as shown on Fig. 1. Since the longitudinal
force can be neglected in the equation (3) the usual isorrhopicity hypothesis
takes place [7, 5]. It means that p; can be expressed as a function of p) (or
vice versa) and both are functions of the magnetic field strength B and of a

5




magnetic flux. Hence, py +p) = ?"(Tm(_ﬁﬂn), B}, T}}c dependence 1 Dfl- -‘[PD 15}
comprehensively describes any magnetic surface since the latter consists .01
the magnetic field lines that match the curve ro = ro(po) at the equatoria
plane. | ' S

Let the magnetic system of the device be ams:ymmetuc. Ii!mwevm &2{1.’.:\.
symmetry of magnetic field breaks if neutral injectjmn breaks a}flal Bymmetlly
of the plasma configuration. Nevertheless magnetic ﬁelfl can .ELIH be approxi-
mately considered as axisymmetric provided i;hat the distortions u_f magnetic
surfaces are small or if they are not small but plasma pressure 18 s:mf*:tll as
compared to the magnetic field pressure, i.e. if f§ < 1. Assuming this is the

case we get from (9)

drg ds : ds Kk, QE (10)
W & uf—B?[cu1l fly // rB2 drg’
here and henceforth o = . Since rp is periodic function of ¢ we should
require that . 3
/ dyp / j,;[cur] fla=10 (11)
0 B=

for the equation (10) to have a single-valued solution. It can be seen fr@n
what follows that this requirement determines the Vchf_.Z]t-}i' of. plasma rotation
but the latter is zero for natural symmetry of neutral injection system (14).

3. Force, acting on the plasma

Before to calculate the force f we first try to explain why it can have
solenoidal part such that curl f # 0. |

Imagine that narrow beam of atoms moves along the axis y and enters the
plasma by the distance z of the axis z directed along the pIF..Lsma. core. .Th-en
the force f has mainly the y component and suffers most rapid changes. in the
direction of the z axis, therefore (curl f). = dfy/dx # 0. If there exist one
more beam, moving in the opposite direction along the same line, thev force
from the first beam is compensated but only partially due to attenuation of
the beams inside the plasma core. +

Another “philosophic question” is whether t.llus force acts on plasma or
on magnetic field. Some grounds for this question to be askef} comes from
the fact that impetus of particles gyrating in external magnetic field is not
conserved. Speaking philosophically, we should agree that neu‘tral ato.ms
bring their momentum not only to the plasma but to the magnetic field (i.e.
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to magnetic coils) too. However this effect has been in fact included into
the equation (2) since the first term in the right-hand-side of the equation is
nothing else as the divergency of Maxwell stress tensor 045 = (B2?/47) 74 T8 —
(B*/8)dap. When being moved to the left-hand-side, this term together
with Opqp/0z s forms divergency of total stress tensor of the system “plasma
plus magnetic” field which is thus equal to the external force.

To calculate this force we adopt simple model of Ref. [2] for the motion of
atom beams. We take into account only local trapping of atoms from original
stream due to ionization and charge exchange and neglect a possibility of
migration of the secondary atoms, which appear due to charge exchange to
other points in the plasma or their departure from the plasma. Such a model
is valid, in particular, when the velocity of secondary atoms is relatively low
so that they are ionized not very far from the point where they originate in
the plasma. It is also true under the conditions when the injection energy
is so large that the trapping through tle ionization goes much faster than
the trapping through charge exchange but, on the other hand the injection
energy is so small that the finite Larmor radius effects are negligible.

We shall assume the injected atoms to be monoenergetic and we shall
denote their velocity by vg. For the spatial attenuation coefficient of the fast
atoms we can then write down the following formula:

= (nfvg)({Geve) + {oilvo — vi]) + (Ocx|vo — v; ) (12)

where o, and o; are the cross sections for the ionization by electrons or by
lons and ., is the cross section for charge exchange by ions. The averaging
1s over the distribution functions of the plasma particles.

To describe injected beams we distinguish in the stream of atoms those
which move in the direction given by the azimuthal angle y (counted from
the z axis in the xy plane) and by the polar angle 0 (counted from the axis
z) as shown on Fig. 2. This stream will be referred henceforth as partial
stream. It can be thought of as produced by an injector with very narrow
angular spread. |

We introduce the Cartesian coordinates (£,17, () connected with this par-
tial stream. Let the axis { be directed along the “axis” of this beam, the axis
n be perpendicular to the axis  of the beam as well as to the axis z of the
plasma body, the axis £ be perpendicular to » and .

Imagine for a moment that the reference points of the two coordinate
system coincide, i.e. the axis ( of the beam intersects the axis of the plasma
at the point z = 0. Then the two coordinate systems are related by the




Figure 2: Space distribution of plane-parallel stream, moving along the
axis ( is characterized by the function g(¢,7). The axis z of plasma
lies in the plane £(; the axis % lies in the plane zy; the angles x and ¢
are counted from the axis z in the zy plane. The reference point of the
Cartesian systems of coordinates (¢, n,¢) connected with the nth beam
has the coordinates (0,0, #,) in the Cartesian system of coordinates
(2,9, z) connected with the plasma.

equations

£ = =xcosOcosy+ ycoslsiny — zsind,
n = —zsiny+ycosy,
¢ = xsinfcosy+ysinlsiny + zcosl.

For given angles y and 0, spatial distribution of the injected atoms across a
partial stream is comprehensively described by the function g(€, 7). To write
down the distribution function F(», v) of all injected atoms we first note that
angular distribution of a neutral beam produced by a single injector is usually
very narrow and can be approximated by delta functions d(0 —6,) d(x — xn)
with 0, and y, indicating angle position of the nth injector. Our second
point is that spatial distribution ¢(&,n) across any of the beams is one and
the same for all injectors; we normalize it to unity:

f]dfdw(é,n) =1.

Significant variations can only be observed in currents of beams Z,; produced
by different injectors [6]. Third point is that the injectors might be directed
to different points z, on the axis of the plasma. This possibility can be taken
into account if we write down spatial distribution as g(€ + z, sinf, 17) instead
of g(€,n). Thus we have

N-1
F(r,v) = Z Tog(€ + 2nsin0,7)8(8 — 0,) 6(x — xn) 6(v — vn) /0P sin @ (13)

n=>0

where the summation goes over all of N injectors. In agreement with the
conditions normally encountered we shall assume any of the partial beams to
have special symmetry so that the function ¢ is even on its second argument:

g(€,—n) = g(&,n) . (14)

With this symmetry being taken into account, the requirement (11) is sat-
isfied if velocity of plasma rotation is zero. As a rule, the function ¢ is also
even on its first argument but it is not so important for what follows.

To calculate the density ny of primary atoms at a point (z,y, z) the at-
tenuation factor

0
exp [__/ d¢! se(x + ¢ sin By, cos xn, ¥y + ¢ sinfy, sin x,, z + ¢’ cosd,,)

-0




for every partial stream has to be included. Then

0
n(r) = fdav F(v,r)exp [—/ d¢’ x]
N-=-1
2 z (Zn/vn)glrcos O, cosan — (2 — zp) sinb,, rsinay)]
n=0

0
X exp [-—/ d¢’ x] ; (15)
—00

where a, = ¢ — Xn, ¢ 1s the azimuthal angle in the cylindrical system of
coordinates (r,p, z), see Fig. 2.
Single neutral beam acts on unit plasma volume with the force

. 0
Jn = Mv,T,5eg[rcosl, cos ap, — (z — zn) sin0,, 7 sinay] exp [—/ d¢’ ;-:]
—00

directed along the velocity v,. The radial, azimuthal and the longitudinal
components of the total force produced by all beams are, respectively, equal

to
N-1

(ks z (sin @, cos a,,, —sin0, sinay,cos 0, ) f, . (16)

n=>0

4. Magnetic surfaces

To get an 1dea of how large can the distortion of the magnetic surfaces be
under the action of the neutral injection we consider the model of a mirror
device shown on Fig. 1 and estimate the force exerted on the plasma by single
neutral beam.

Typically, mirror system consists of a section of a uniform magnetic field of
length L {where the injection is placed) and two mirror sections of length Ly;
the radius of the system is small as compared to Ly,. For evaluation purpose
we assume that attenuation length of the beam is optimal, i.e., comparable
with the plasma radius, s ~ a~!. For a larger attenuation length the plasma
would become transparent to the beam and the efficiency of the injection
would drop. TFor a smaller attenuation length the plasma would become
hollow.

We denote the width of the beam in the direction of plasma axis by Liy;;
we shall see that it does not enter final estimation. As to the beam width
D in direction across the plasma it is usually of order plasma radius, D ~ a.
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Injection usually goes at not very slope angle to the system axis so that ¢ ~ 1.
With these assumptions adopted, the total number of hot ions produced in
the plasma per unit of time can be estimated just as 7,,.

Lifetime of fast ions is determined by electron drag (here and henceforth
only ions with energy above a substantial part, say one third, of initial energy
of neutral atoms are referred as fast ions). It is slowing down on relatively
cold target plasma electrons but not the losses along magnetic field that
restricts pressure of hot plasma component. Since fast ions occupy almost
total volume ma?L of the mirror device their density nj is to be estimated
from the following material balance relation

2
I ~ a® Ly [Tarag

where Tdrag 18 the electron drag time. Using this relation we can express
the force f, ~ s>mv,T,/DLi,; acting on the plasma from the side of single
neutral beam through the plasma pressure p;, ~ Mv2ny:

fn e (L/Linj)(ph/vnﬂ:lrag) :

Bearing in mind that the curvature of a field line is of order a/ L2, , we evaluate

from (10) the magnitude of radial distortion of the magnetic surface with
mean radius (in the equatorial plane) a:

f}* r LLm Ph

L

a Un Tdrag® Pec + Ph

where p. is the pressure of cold target plasma. TFor the following set of
parameters @ = 10cm, L = 2L, = 10%cm, v, = ll]gcm/s, Tdrag = 1 + 10msec,
Ph 3> Pe, relevant to Gas-Dynamic Trap [8], it yields Arfa ~1=0.1.

Radial distortions of magnetic surfaces can be significantly reduced by
careful design of the injector system. To confirm this obvious prediction we
consider a set of N equal injectors equidistantly placed on azimuthal angle,
and equally inclined to the device axis z. In particular, we adopt that

Th=dgy XN Qﬁﬂ-/N y =100, wva=1g. (17)
Since inhomogeneity of plasma and magnetic field in the region of injection
is usually small we adopt that neutral beams enter the target plasma at
the section of uniform field; it allows us from the very beginning to discard
the exact coordinate z, of the point where nth beam intersects the plasma

axis since z, does not enter final result of our calculations. Substituting
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summation over n in (16) by integration over y by means of

with I{x) defined by the relation
N-1
I(x) = Z Tod(x — 2mn/N), (18)
n=0 )
we get

2w
(curl ), = —Muvgysin b dx I(x)

0
X }-irmn( ) + L2 cos( )
r ar 59 X ap :P )L

x 3(r, ) g(rcos(e — x) cos Oy — zsin Oy, 7 sin(p — x)) .
X exp [ f d¢’ » ( 2 + 2¢' sin Oy cos(@ — x) + (" sin® ﬂﬂ)] (19)

Here both @/8r and 8/d8¢ act on all of multiples to the right of them; the
same agreement is true for the integration sign. Taking into account intrinsic
symmetry of the neutral beams (14) it is easy to show that (curl _f] tends to
zero as N — oo providing the target plasma to be axisymmetric, 1.e. > does
not depend on the azimuthal angle . We adopt below that 3 = (s ) which
is true if the distortion of magnetic su1face'i due to atomic injection is small
enough.

Note also that the first term rcos(¢ — x)cos@ in the first argument of
the function g in (19) may be omitted right now since keeping it does not
change the result of integration over magnetic field length (i.e. over z) in the
equations (9), (10), or (11).

To find asymptotic behavior of (curl f), as N — oo we introduce new
integration variable a = @ — x instead of x and we note that d/0¢ = —3/da.
Next step is to expand I(x) into Fourier series. Inserting

I(x) = Y I.exp(iky), (20)

hk==o00

into (19) and integrating by parts the term with /3y we get

k=—oa

+ O I,
(Cl_l['I f)z = 2rxMugsinly Z [,_,. k IE;TH-I]

12

XH(T‘) [JrkJ;.-_+1 E“”'p _I—k-}—k—l E_ikw /2’3 [21)

where
' d‘i —ik
I, = 1 X 22
b= [ R (22)
2m
Jg = [J ;i:: g(—zsin 0, rsin o) e~k
rc-:.:sar dcf T g
X exp [[m = * (\/r sin“a + ¢ : (23)

It is easy to see from (18) and (22) that

N2z ifk=mN
hy =2 { 0 if k£ mN 24)
where m is integer. This means that summation in (21) goes over integer
multiples m of N. The m = 0 term turns out to be zero due to (14) so
that the most significant terms come from m = #£1. Other terms diminish
rapidly as m grows provided that N 3> 1. Thus, we can restrict ourselves to
asymptotic calculation of the integral (23) with & — co. The asymptote to
be calculated works well at moderate number of injectors, N = 4 + 6, which
18 the case for major fusion devices.

Assuming diffuse profiles for both beam spatial distribution,

5 NN RY

|1'u

and the coefficient of neutral beam attenuation in plasma,
»x = xgexp(—r?/a?),

for the case N > 1 and sqa/sinfy > (a/D)? exp (—|k|a®/2D*) we get

ds i HDJ"II'UDIQN sin f?[j mN+1_ . —mN-1 d ,?”-P"'-F‘|'1
]Eﬂv‘ﬂf‘ ey e o dr'

min m#0

2
P

ImN + 1|71mN/2=1eyp (—“) sinmNe (25)

&R ImN+1|/2
DQ

x[i]fﬁ
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where By, 1s the magnetic field in the uniform section. Details of calculations
can be found in Appendix A.

Putting 3¢9 ~ a~! we find for the amplitude Ar of the distortion of mag-
netic surface with the mean radius « the following estimate:

Ar zs LLy Ph N"NJFE .

a Vo Tdrag@ Pc =+ Ph

Indeed, it decreases rapidly as N increases.

5. The effect of injectors nonidentity

In previous section all injectors are assumed to be identical. They had equal
currents Iy, were placed equidistantly on azimuthal angle and had one and
the same spatial distribution g(&, n).

It is easy to discard first and second of these assumptions. The case where
spatial distribution function varies from injector to injector will be considered
in companion paper [9]. In this section we take into account that in real
experiments the injectors produce neutral beams with different currents 7,
and may be misplaced on azimuthal angle from equidistant positions. Just
to elucidate the effect of such variations on plasma equilibrium we assume
them to be occasional though statistical approach may not be as good if the

number of injectors is moderate.
Let

Ly =galyg = {1 -+ 5{}‘”]:!':[] y Xn = QW??-/N + J}fn "

with statistical average of do,, and dx, being zero:
o i=10," ) =0.

‘We assume statistical properties of a,, and dy, to be equal for all injectors:
therefore the index n will be omitted below in averaged quantities.

To find ((curl f),), the Fourier amplitude I; in the formula (21) of pre-
vious section should be substituted by its averaged value

i Ni2ae Hk=mN
(Ir) = Zo (o0 e7*X) { 0 . ;f k #mN (26)

instead of (24) calculated for the set (17) of equidistantly spaced identical
injectors. Since (I;.) = 0 for & # mN, cancellation of lower azimuthal distor-
tions of magnetic surfaces still takes place, however it is not as complete as
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in previous section because (I?) # 0. If variations of injectors’ parameters
are not correlated we obtain

(I0I2) = NT3 {{o®) — [{oe ™)} /(27)? (27)

where 81, denotes I, — (Ii). _
If, in particular, there is no azimuthal misplacement, §y = 0, then

(|616|%) = NIZ(da*)/(27)° .

Fluctuations of the injectors’ currents are negligible provided tha?t, additional
distortions induced by them are much smaller than the amplitude of the

" . - 2
largest distortion with k = N, i.e. \/(60?) K N (N+1)/2,
If, on the contrary, the currents are equal, i.e. do = 0, and uncontrolled

azimuthal misplacement of injectors prevail, then
(|61:)*) = NZg (1 — (cos kdx)?) /(27)* .

The condition for this effect to be neglected is \/(dx?) < N-(N+3)[2

A. Calculation of J;

To calculate the integral

Eﬂd
j;;?—:fdzh: = / L gt (A1)
0

VD 27
where
S = —ika—{(#*/D? sin” a
NRANS it 1 r?sin® o + C'Ejl (A2)
T f_m sin Oy Elp{ a®

we transform the contour of integration in the complex plane a = p + w
so that it should pass through the stationary points to be found from the

equation is U

da ~

For the sake of simplicity we first neglect the last term in (A2) which is

proportional to s it describes attenuation of neutral beam in the plasma.
The coordinates of stationary points are then equal to

pu=7l/2, k=—(=1)(r/D)*sinh®v (A3)

15




" a) 2 ot 4 2 b)
* TV x4 % | X FPig: | ki ]
1 I | | I i | b i I . |
: gt UESURRIE'
| A FA S B IR A SRR PR
| F——f—tn e
I 0 I 17T I | 27T S 0 A ELEE ) 27
I I | i I i Sy I T I
1 I I I i £k T I I T
I I | I | P ERLOF O OL A
I ! | I I : | | : I
Axn K I —> B X 1o P r u
4 ;A B

Figure 3: To calculation of Jk. Stationary points are marked by
crosses. ‘Transformed contour of integration goes from the point A
to the point B: a)—soa/sinfo < (a/D)*exp(—|kla®/2D?); b)—
»0a/ sin 8o > (a/D)? exp(—|k|a®/2D?). Dotted lines show the bound-
aries argcosa =. £7/4 between the regions of different asymptotic
behavior of the function G as given by (A6). The numbers 1-4 corre-
sponds to the line number in the equation (A8).

with [ being an integer. Complex a-plane is shown on Fig. 3a for the case
k > 0 (to get the opposite case k < 0 it is sufficient to inverse the sign of
v). Odd values of I correspond to stationary points in upper half of complex
a-plane while points with even [ are in lower half.

Transformed contour of integration should have such a shape that local
maxima of real part of S would be placed at the stationary points the contour
mastches. One of the possible countours which conforms to this requirement
is shown on Fig. 3a. It is parallel to the axis p (initial and final ends of the
contour can be moved from the axis p by equal distances since § is periodic
function of p).

Second derivative of S:

42
N N

1s negative at the stationary points [ = ( and [ = 2 situated at the transformed
contour in the lower half-plane of complex &. Hence, the function S at the
contour of integration near these points can be expanded as

2

S = —iwkl/2+ kv — ﬁ sinh? v

dES
dee?

(n — 7kl/2)*
2
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Performing integration with this expansion inserted into (A1) we find

T e ! Lk (1 AIDA 4 k2
= hD\ﬁﬁﬁﬁﬂ L exp [ATDT¥ B2 - (r/D)/2]

2/ D2 lkl/2
[f4/D4+k2+jL|] : (A4)

Note that Ji = 0 if k is odd. This means that for small trapping coefficient
»p the first nonzero terms k = &N in the series (21) are as small as Jfg if the
number of injectors is even.
Let now proceed to the case s # 0 and take into account the last term in
(A2):
—(#0a/ sin fg) exp (?‘E/az) G[(r/a) cosa] (A5)

where

i
G(t}:e*-“f a’ e=t"

Asymptotic behavior of the function G(t) as |{|] = oo depends on the quad-

rants which its argument belongs to:

[ Jmel =L if —B <argt< I,
Fol ir<amt<d
Gy~ { 2 e 211 1 {Eug 5 3 (A6)
™ o \F 2 el & o
k %eﬁh—ﬁl}- 1f—{cu t'{%’r—,

The boundaries argt = +a/4 of the quadrants after being projected onto a-
plane is given by the equation tanh v = £ cot yr. They are shown on Fig. 3b
by dotted lines; the numbers from  to / consecutively mark the regions from
—m/4 < argt < w/4 to bw/4 < argt < Tw/4.

Using asymptotic formula (A6) one can show that the stationary points
[=1,2,3 (i.e. p=m/2,m, 37/2) stay almost unmoved as s Increases since
they are placed in the regions 4, 2, 2 respectively where the last term in (A2)
is small. The v-coordinate of these points can approximately be determined
from the equation (A3).

The point { = 0 moves along the vertical line g = 0 upwards (remember
that k > 0). Its v-coordinate is to be determined from the equation

2 nr A 2
P Taprs e m
k= —pz sinh 2v + i-_———-—— sinh 2v exp (--— sinh u) ;

a a?
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If

g 2
I IR . Lig e (AT
0 7 Dt XP SNoF sinflg )

this point passecs into the upper half-plane and the only stationary point left
on the transformed contour of integration is [ = 2. Hence, omittling the
term in (A4) which comes from other point | = 0, i.e. the unity in the sum
(14 (=1)%] we find Jp. for the case when the inequality (A7) is satisfied with
a certain margin. Expanding (A4) on small parameter r2/kD? finally yields

ki/2
L

2D%k |

(-1*

£ T 2aDVIH|

(A8)
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