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Abstract

A simple integral representation is derived for the quasiclassical
Green function of the Dirac equation in an arbitrary spherically-sym-
metric decreasing external field. The consideration is based on the use
of the quasiclassical radial wave functions with the main contribution
of large angular momenta taken into account. The Green function
obtained is applied to the calculation of the Delbruck scattering am-
plitudes in a screened Coulomb field.

1 Introduction

The most convenient way to take into account the external electromagnetic
field in qua.ntum electrodynamic processes is the use of the Furry represen-
tation. So, it is necessary to know the Green function G(7, 7’|¢) of the Dirac
equation in this field. Unfortunately, the explicit forms of the Green func-
tions are known only for the few potentials and numerical calculations should
be exploited. For many high-energy QED processes the main contribution to
the amplitudes is provided by large angular momenta. Therefore, one can use
the quasiclassical approximation. In the present paper, the explicit expres-
sion of the quasiclassical Green function of the Dirac equation in an arbitrary
spherically-symmetric decreasing external field is found. Previously the qua-
siclassical Green function of the Dirac equation has been obtained in [1, 2] for
the case of the Coulomb field by summing the integral representation of the
exact Green function [3] over large angular momenta. As it will be shown,
to obtain the quasiclassical Green function, it is not necessary to know the
exact one. If is sufficient to use the quasiclassical radial wave functions at
large angular momenta. This method has been applied earlier in [4] to de-
rive Sommerfeld-Maue type wave functions [5] used at the consideration of
high-energy bremsstrahlung and pair production in a screened Coulomb field.
The integral representation of the Green function obtained in our paper is
convenient in analytic calculations of the amplitudes of different high-energy

QED processes in the external field. To confirm this statement we calculate

the Delbruck scattering amplitude [6] (the elastic scattering of a photon in
the external field via virtual electron-pomtmn pairs} in a screened Coulomb
field.

Delbruck scattering 1s one of the few nonlinear QED processes which can
be tested by experiment with high accuracy (see recent review [7]). At the
present time Delbriick amplitudes are studied in detail in the Coulomb field
exactly in the parameter Za at high photon energy w > m only; m is the
electron mass, Z|e| is the charge of the nucleus, a = e? = 1/137 is the fine-
structure constant, e is the electron charge, h = ¢ = 1. The approaches
used essentially depended on the momentum transfer & ks — k1| ( By and
ks being the momenta of the incoming and outgoing photons, respectwely)
At A € w the amplitudes have been found in [8, 9, 10] by summing in a
definite approximation the Feynman diagrams with an arbitrary number of
photons exchanged with a Coulomb centre, and also in [1, 2] with the help
of the quasiclassical Green function in a Coulomb field. At m € A ~ w
the amplitudes of the process have been obtained in [11, 12, 13] using the
exact electron Green function in a Coulomb field [3] in the limit m = 0. Many
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authors have performed the calculations for an arbitrary photon energy w but
only in the lowest-order Born approximation with respect to the parameter
Z o (the results obtained in this approximation are surveyed in [14]). It turned
out that Coulomb corrections at Za ~ 1 and w > m drastically change the
result as compared to the Born approximation.

The effect of screening is important only in the case of small momentum
transfer A ~ 1/r. €« m, where r, is the screening radius of the atom. It is
this range of momentum transfer that we consider in our paper.

2 Green function

Let us consider the Green function of the Dirac equation in the external
spherically-symmetric field V() :

1

G(F,7|e) = — - 57— ), (1)

3G = V() — 77 - m+i0

where 4* are Dirac matrices, p = —iV . We are interested in the calculation
of the Green function at |€| 3> m. Let us represent the function G in the form

G, #|e) = [1°(e = V(r)) — 7 + m| D(F'le), . (2)
where the function D(7, 7’| ¢) is -

i) i ey
PETO = e=vmp =~V - mra ) O

Here & = v°¥ . As known (see [5]), at high energies ¢ > m one can neglect
V2(r) in (3) and take into account only the first term of the expansion with
respect to the commutator [@p, V(r)]. Making the cited expansion and using
the representation ;

(@5, V(r)] = [ap, H) , H=p?+2V(r), (4)

we get the following representation for the function D :

D(7,7']e) = |1 - Q—E(&*ﬁﬁ’)l DO, #'|e), (5)
where 1 '
I:] ety e — =§
DO, 7| ) = S sl (6)

k2 = £2 —m? . Thus, the problem reduces to the calculation of the quasiclas-

sical Green function D(® of the Schrédinger equation with the hamiltonian
H.

Let us introduce the impact parameter p = |r x #'|/|F — 7"|. In high-
energy processes the characteristic distances are |¥ — 7’| ~ k/m? > 1/m
and p > 1/m . So, the corresponding angular momentum [ ~ £p > 1, and
one can use the quasiclassical approximation. Besides, we consider the case

p <{:’: |#— 7’| . Hence, the angle either between # and —7" or between # and
! is small.

Consider the set of eigenfunctions of the hamiltonian H and use in (6) its
completeness, replacing é-function by the sum of products of eigenfunctions.
Obviously, the main contribution to D(®) is provided by the functions of the
continuous spectrum with large angular momentum values. The eigenfunc-
tion tz(7), containing the plane wave with the momentum ¢ and the outgoing
spherical wave in its asymptotic form, can be represented as follows:

e (F) = Z it (21 4 1)uy(r) Pi(cos ) . (7)

Here Pi(x) are the Legendre polynomials, ¥ is the angle between vectors ¢
and 7. The set of eigenfunctions with the ingoing spherical waves in asymp-
totics leads to the same result for the Green function. In the quasiclassical
approximation the functions u;(r) and & = é(1/q) are equal to (see [4]) :

wi(r) = sin (qr — In/2 + 1*/2gr + A6(1/q) + A®(r)) ,  (B)

o0 oo

2= [V . 80 =- [ V(VEFA)d , A=c/u
r e

Taking into account the completeness relation, we get:

Yi(PWE(F)  d7 )
k2 — ¢ +10 (27)3

DO 7] e) =
Substituting (7) into (9) and taking the integral over the angles of vector ¢
with the help of well-known relation for the Legendre polynomials

- = - - 4“ — =+
]PI(HWE)PP (Ry7i3) d2y = T IPE(HEHB)"SH‘:




where 7i; are unit vectors, we obtain:

DOVF, 7| €) = %:w, f = +3UZ(2I+1)u;(r)u;(r )Py(7i7"), (m)
0

i = Ffr, &' = 7'/r' . Using (8), we represent the product wi(r)u(r') as
follows :

= %cos [a(r — ') + (' = r)/2gr¢" + A(@(r) — @(r"))] (11)

o %(—1)‘ cos [g(r + ') + P(r + ') [2qrr’ + 226(1/q) + A (2(r) + ©(r"))] .

If the angle # between the vectors 7i and —7i’ is small, then one can replace
Pi(7iR") by (=1)!Jo(16), where J,(z) is the Bessel function. After this sub-
stitution it is clear that in sum over ! the main contribution comes from the
second term in (11). For this term the summation with respect to [ can be

replaced by an integration. Let us make in (10) the exponential parametriza-
" tion of the energy denominator :

o0

1 : ;

s = =i [ explis(s® — 4°)}ds
0

Then the integrals over g and s can be taken by means of the stationary phase

method. After simple calculations for the case under consideration 6 < 1,

one obtains:

:I‘G{r-l-r )
DO 7']¢) =

drkrr’
X f dllJo(16) exp{ [%l + 2X8(1/ k) + AM(®(r) + *I*(r'))] } :aa(2)

In this formula A = ¢/k. In the relativistic case A= +1 at € >0 and A = —-1
at €<0. '

If the angle §; = 7 — 0 between vectors i and i’ is small then one can
replace Pj(7in”) by Jo(I61). In this case the main contribution to the sum
over | comes from the first term in (11). Since it doesn’t contain (1), it is
possible to take the integral over ! after the transformations similar to those
performed at the derivation of (12). At 7 — 6 < 1 one has:

% 1
Ar |7 — 7'
x exp {ik|F — 7’| +idsign(r — r')(2(r) — ("))} . (13)

DONF, 7| €) = X

Substituting (12) into (13) and (5), we find for the function D at § < 1 :

D(f", f‘”iE) aeiﬁ:(r+r ) / dll [Jn(w) & z(a nn + ﬂ.!) 3’([/5)‘}1“3)] .

“dmkrr o)

X exp{z' [F(r + )/ 26rr" + 2X6(1/ k) + A(®(r) + @(r’))] } (14)

Here 6'(p) = 86(p)/0p.
At 7 — 0 < 1 the function D is of the following form:

D@, 7| ) = - [1 — sign(r — P')(V(r) — V()@ 7+ 7')/4K]
X exp {ig|F — 7| + idsign(r — #")(B(r) — ®(+'))} [4=|7 - 7| . (15)

Substituting (14) and (15) into (2), we get the final result for the quasiclassical
Green function of the Dirac equation in spherlcally-symmetrlc external field.
One has at 8 € 1

; ieiﬂ(r-l—r‘} ;
G("F,T‘Fls) - W x

o [ at cxp{ [+ 32w+ 235000+ 3309 + 360)]
{ [T E+m— —(']r,ﬂ — 2" Yk + P [2krr ]Ju(m) +
il ) 2 18?1 - GG )

+{~r,n+n')m/n)]mm)/(fm}, g (16)

and at T— 0 < 1

G, 7'le) = —-plt’e + m— (k +i/R)F R’)/R] -
x exp {ikR + iAsign(r — r')(®(r) — ®(r"))} R=F-7. (7))
In the Coulomb field V(r) = —Za/r, we have
26(p) + ®(r)+ d(r') = Zaln(drr'[p?) , &(p)=—Za/p. (18)

Using (18) and (16), we find that our result for the Green function in the
Coulomb field is in agreement with that obtained in [1, 2].




3 Delbruck scattering

Let us apply the formulae obtained to the calculation of the Delbriick ampli-
tudes in a screened Coulomb field. In the Thomas-Fermi model the screening
radius 7. ~ (ma)~1Z~1/3 | The characteristic impact parameter p ~ 1/A.
If R< 1/A < r. (R is the radius of the nucleus), then the screening can be
neglected and the amplitude under consideration coincides with that in the
Coulomb field. If 1/A ~ r. > 1/m, then it is necessary to take screening into
account. For this momentum transfer the main contribution to the ampl-
tude is provided by impact parameters p from 1/m to r.. The corresponding
angular momenta ! ~ wp 3> 1 and the quasiclassical approximation is valid.

Let an initial photon with momentum k; produce at the point ¥} a pair
of virtual partlcles which is transformed at the point r> into a photon mth
momentum k». Then the uncertainty relation gives 7 ~ |7 — 71| ~ w/(m? +
A?) for the lifetime of the virtual pair. Therefore, at w/m? > r. the angles
between ki, ko, 7 and —7; are small. It is this energy range we consider
further. According to the Feynman rules, in the Furry representation the
Delbriick scattering amplitude reads '

Mo 070 / &, diy expli(kar, — Fafa)]] x
. / deTresG(r, 7w —€)e1G(F Tl — ), (19)

where ef and e} are the polarization vectors of initial and final photons,
respectively, é = e,y*. It is necessary to subtract, from the integrand for M
in (19), the value of this integrand at zero potential. In the following such a
subtraction is assumed to be made and we perform it explicitly in the final
result. The main contribution to the amplitude M arises at the integration
over ¢ from m to w — m. Thus, A = +1 in the first Green function in (19)
and X = —1 in the second one. Using the representation (2) , it is convenient
to rewrite eq. (19) in the form

M = iu:/drldrg expli(F1 7 — ko)) X

X f deTr I:(Qé‘g*ﬁg — E2ko) D(7y, 71 |w — E)] X
X [(2&'1;??1 + élﬁl)D(Fl A le — E)] - (20)

+2ié5" €} deexp[z'(El — k)7 ]dETrD(F, Tle).

Here p) 5, = —iﬁ;rg. The last term in (20) doesn’t contribute to the amplitude
at high energy because it is independent of w and depends only on momentum
transfer A. However, the amplitude at w > A is proportional to w (see, i.g.,
[7]). Our further transformations are as follows. We substitute (14) into
(20), perform the differentiation and take the trace over y-matrices. It is
convenient to direct the axis of the spherical coordinate system along fc] —H:g
In the s,ma,ll-a,ngle approximation one has: dQ; 3 & 0; 2d0; 2d¢; 2 = — df, 9

with (ﬂl 2, ki 4+ kg) = 0 . The Bessel functions in the Green function depend
on the vectors 6?‘1 2 via the combination ¢ = ]91 + 92| only. Let us change over
to the variables § = 6; + 6, !;“ = r10; — ro0,. After that it is easy to take
the integral over df. Further, to demonstrate the method of calculations, we

consider the case of zero momentum transfer (kz — Ll = k} and present then
the results of similar calculations for A ~ 1/7..

3.1 Zero momentum transfer

We set El = Eg, &1 = &> and take the integral with respect to df with the
help of the relation ([15], p. 732)

p o . iTv ]2 D3 39

/dﬂ:ﬂ: etT I (az)T(bz) = - Jy(ab/2c) exp tai F 0] ,
2c _ dc

0

and also those obtained by differentiating this expression with respect to the
parameters. Let us make the substitution of the variables in the integral

. representation of the Green function: I} = k1p1, ls = k2ps Where k1 = (€% —

m2)/2 | gy = ((w—e)*—m?)*/? . After that it is convenient to pass from the
variables r; and rp to s and 2 : 71 = Ky ko/[mPwsz], r2 = K1k /[MPws(1—z)].
As the result, the integral over £ becomes trivial and we get the following
expression:

nallieal (0]
2icwm? ds
M= TN 1 dpid v
fa:(l-—.":)[ +m(1+m)]f/’01p2 % pg.ﬂ/s
0

x exp{z[ a(p1+p2)5_1,[5m(1j 21|} » (21)

gsinﬂ(ﬁ(ﬂz) — 8(p1)) Jo(m*sp1p2),

Here we have subtracted from the integrand its value at the field equal to zero.
Let us make the substitution of the variables p; = pe~™/2, ps = pe™/? and




deform the contour of the integration with respect to s so that the integral is

extended from zero to ico. Then the integral over s can be taken using the
relation ([15], p. 739 )

/exp'[—z(a2+ bg)./Z - i/?m]fy(abm)i—z =20 (oflK.(B) ., a<h,

where I,(z) and K, (z) are the modified Bessel functions of the first and t.hird.
.kind respectively. As the result, we obtain

LR S L
X afd’f sin? (5(;06”3] = 5(@*”'2)) Io(y1)Ko(y2) , (22)

where y1 2 = mpe¥/2 [z(1 — z)]71/2 .

We divide the integral over 7 into two parts: from 0 to 7y and from 75
to oo , where 1 > m > 1/(mr.) . Let us begin our calculations from the
second domain. In this domain the main contribution is given by the impact
parameters p < r., and the field can be considered as the Coulomb one.
Integrating over z , p, and , finally, over 7, we get

oo
28aw chrsin?(Zar)
= dn =

My =1
: sh®r
i 28“‘;”(3 )8 [Reyp(1 — iZa) + C +1n2m — 3/2]. (23)
m?
Here ¥(z) = dInT'(z)/dz , C = 0.577... is the Euler constant.

In the first domain the difference 6(pe™/?) — §(pe="/2) is small, and it is
possible to expand the integrand with respect to this quantity. Therefore, this
domain gives the contribution to the amplitude in the Born approximation
only. It is convenient to divide the integral over p into two parts: from zero
to po and from po to oo, where Rpg > po > 1/(mmn) .
zero to pg the field can be considered again as the Coulomb one, and the
integrals left can be easily taken. The corresponding contribution reads:

28aw(Za)?

Mg 9m2

[In(mmopo) + C — 11/21] . (24)
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In the integral from

.

In the integral from pg to oo one can use the asymptotics of the Bessel
functions Ip(z) and Ky(z) at large = and extend the integration over 7 up to
infinity. The corresponding result is

(o 0]

: Eﬁaw 186\ :
My =  or fﬂ(a) dp. (25)
Fo

The sum of (23), (24) and (25) is equal to

28@(3&)2
9m?2

x [ln(mpn/2}+(30)_2 f : (g_i) dp~Rey(1 - iZa) + 41] . (26)

Fo

M=

At po <€ r. the integral in (25) is equal to In(r./po) + A, where A is some
constant. Therefore, the amplitude M in (26) is independent of py , and one
can put, for instance, pg = 2/m. So, we have obtained the final result for the
forward Delbriick scattering amplitude for an arbitrary screened potential.
The explicit value of the constant depends on the form of the potential.

Let us consider the case of the Moliére potential [16], which appm:nmates
the potential in the Thomas-Fermi model:

aze Pir (27)

where ay = 0.1 , ap = 0.55 , a3 = 0.35, B; = mZ'/3b; /121, by =6 by =12
, b3 = 0.3 . The corresponding scattering phase is equal to

% .
8(p) = Za Z a; Ko(Bip) - (28)

Substituting this expression into (26), we get the final result for the forward
Delbriick scattering amplitude in the Moliére potential:

AL 28““(3“) [ n(1832-Y3) — C — Rep(l —iZa) — ~| . (29)

42

As known, the imaginary part of the forward scattering amplitude of the
photon is connected with the total cross section o of electron-positron pair
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production by the relation ¢ = Im M/w. Due to this relation, our formula
(29) is in agreement with the result of [17] for the total cross section of pair
production in a screened potential. Note that the real part of the amplitude
(29) in the screened Coulomb potential is equal to zero in contrast to the
case of pure Coulomb potential [9, 2].

3.2 Non-zero momentum transfer

- At non-zero momentum transfer it is convenient to carry out the calculation
in terms of helicity amplitudes. One can choose the polarization vectors in
the form

= (X x 1,9] £ iX)/V2,

where v/ 5 = Eljg/w . There exist two independent amplitudes: M+t = M—-
and M+~ = M~*. In terms of linear polarization, by virtue of parity con-
servation, the amplitude differs from zero only when the polarization vectors
of the initial and final photon both lie in the scattering plane (M) or are
perpendicular to it (M*). These types of amplitudes are related via

X = [ x o) /[ x B, (30)

Ml = ptt 4 M- Mt = Mt Mt

At A = 0 the amplitude M*~ vanishes by virtue of the conservation of the
angular momentum projection along the direction of motion of the initial
photon, and the amplitude M*+ coincides with (29) . Similar to the case of
zero momentum transfer, we divide the integral over r into two parts: from 0
to rg_*a.nd from 79 to co , where 1> 19 > 1/(mr.). The angle 0y between El
and ks is 6y = AJw <€ mfw . In the domain from 7y to co the field concides
with the Coulomb one and the angle fy can be neglected. The contribution
of this domain to the amplitude M** coincides with M> (29) , and the
contribution to the amplitude Mt~ is equal to zero. In the domain from
zero to 19 we split the integral over p into two parts again: from zero to pg
and from pg to co, where r. 3> po > 1/(m). In the integral from zero to pg
- the field can be treated as a Coulomb one and the angle , can be neglected
again. The corresponding contribution to M+ coincides with M7; (24) , and
the contribution to M*~ is equal to zero. The effect of screening is essential
~ in the last domain from pg to co only. In this domain the main contribution
to the integral over angles is given by 8 ~ p/r ~ pm?/w > m/w > 6. The
argument of the Bessel functions in the expression for the Green function is
1 ~ wph ~ (mp)* > 1, and one can use the asymptotic expansion of the
Bessel functions. It is necessary to keep two terms of the expansion due to

12
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the compensation. After that the integrals over 6 and the other variables can

be easily taken, and we get the contribution of the domain under discussion
to the amplitude Mt+ :

28w T (06

Ml';‘l' =i o3 P (8_p) Jﬂ(p&) | (31)
£o
The sum of (31), (23) and (24) is:
2
M i?Baw(Zﬂr) 3

9m?

X (Z&)"E f p (g—f}-) Jo(pA)dp — Reyp(1 —iZa) + jé patetdo)

2fm

Substitute (28) into (32) and take the integral over p by means of formula
(6.578(10)) [15]. Then, the final result for the amphtude Mt in the case of

Moliére potential reads:

Mt = g

28-:1&}(2&-)2{ 41

o2 Reyp(l —iZa)—-C+ — o (33)

_% IZJ: ;e [ln(ﬁiﬁj /m?) + \/% L M)] } 1

where u = (A% 4+ 82 + ,83 )/28:53; . At A L 1/r. the formula (33) cc:-mcldes

with (29). At m > A > 1/r. the formula (33) turns into
23&&&(2&)2 41
U — - - o 34
M i {1 = Rey(l — iZa) — C + 0 } i (ad)

in agreement with the result of [8, 9, 2]. Similarly, for the amplitude M+,
we obtain:

O
4 96\°
M- = ;g:; /p(g;) Ja(pA)dp. (35)
; 0

Here the lower limit of the integral is replaced by zero since the domain from
zero to pg doesn’t contribute. For the Moliere potential one has

i _ﬁaw Za)? 1 bi
- A7 &0 @i -smg o

u(B? + B7) — 26:B; T
otk SR \/*—1)]}
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HA—0 then M+~ (36) tends to zero. At m > A > 1/r, the furmula (36)

turns into

2aw(Za)?
Im? ;

which is in accordance with the result of [8, 9, 2].

M (37)

Thus, we have demonstrated on the example of Delbriick scattering in a

screened Coulomb potential that the quasiclassical Green function obtained
in the present paper can be used effectively at the consideration of high-
energy QED processes in an arbitrary spherically-symmetric decreasing ex-
ternal field.

We are grateful to V.M.Katkov and V.M.Strakhovenko for useful discus-
sions.
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