NHCTUTYT SIHNEPHOU ®N3UKHU
uMm. I'"1. Bynkepa CO PAH

V.A. Monitch

ZTREE-DATA ANALYSIS AND
GRAPHICS DISPLAY SYSTEM

BudkerINP 94-78

i T
kB T PR P BT i
T e] T S S

HOBOCHUBHUPCK

V.A. Monitch

ZTREE - Data Analysis and Graphics Display System

ABSTRACT .
This preprint is the ZTREE users guide corresponding version
3.72 of the program which was released in July, 1994.

©Institute of Nuclear Physics, 1994

Chapter 1: Introduction
1.1 What is ZTREE?

The raw and processed data of CMD-2 are stored in ZEBRA sequential files (FZ-files). The ZEBRA
package [1] allows the creation of dynamic data structures in FORTRAN-77 programs at execution time
and also makes it possible to manipulate those structures, and even to write them to an external storage
medium and to recover them intact on another computer system. For example, raw data written on tape
by a PDP11/73 online computer are routinely processed on the VAXs or DECstations.
The main idea of ZEBRA is to use a big array (located in a COMMON block), reserved by the user in
the main program as a dynamic memory. The simplest ZEBRA data structures (banks) are allocated in
this COMMON block. Banks may be referenced by their ZEBRA address. The address of a bank is
simply it’s offset from the beginning of the array. Banks may form more complex data structure using
links. Two kinds of links which form data structure are provided: structural or down links and next
links which form a linear structure. A bank may be specified by a name (or Hollerith identifier) and a
numeric identifier.
CMD-2 raw data files consist of single-bank records. These banks are named CMD2 and contain raw
events in CERN-ON-LINE [7] format. The CMD-2 processed data files begin with a variable number of
banks with parameters of reconstruction and subsystem calibration data followed by a variable number
of events. Each event is a complex data structure of ZEBRA banks connected by links beginning with
the HEVT bank. The subsystem header banks under this level are followed by banks of event specific
information (i.e. found tracks, their fragments, clusters in CSI calorimeter, etc.).
ZTREE is a program for operating on FZ-files. It has many general commands not concerning CMD-2,
and hence may be used not only for CMD-2 nceds. However, the majority of ZTREE commands are
oriented towards the CMD-2 data file format (especially commands concerning graphical event display).
This Manual consists of the following chapters:

Chapter 2 describes general purpose commands.

Chapter 3 describes utilities.

Chapter 4 describes commands for output into FZ-files.

Chapter 5 describes commands concerning the graphics event display.

Chapter 6 describes a simple interface to ZEBRA.

Chapter 7 describes some KUIP features - vectors, aliases, macros and system functions

(built-in and ZTREE specific).
Appendix A describes an interface to COMIS (ZTREE macros).
Appendix B describes ZTREE documentation files.

1.2 Implementation

ZTREE has been written at Budker Institute of Nuclear Physics in FORTRAN 77 and C (Motif in-
terface), and requircs standard CERN librarics. It currently runs on two systems: VAX/VMS and
DECstation/Ultrix. Two kinds of graphics are supported: GKS and X11.

ZTREE is based on the KUIP[2] user interface package developed at CERN in the context of PAW,
the Physics Analysis Workstation system. Several large CERN application programs use KUIP: PAW,
GEANT, CMZ amongst others. It has some commands of its own, the system commands or KUIP
commands allow the user to get help, to choose among various options in the KUIP/user dialog, to

3

handle aliases, vectors, macros, etc. Some of its important features are described in chapter 7. Note that
this manual uses the same notation as KUIP (see figure 1.3 on page 7 as an example). Moreover, a dicect
interface to OSF/MOTTF and X-Windows is available inside KUIP. The first version of ZTREE using
OSF/Motif based Graphical User Interface (called ZTREE++) has now been released (see figure 1.2).

Ly oV
e BT

Iy
250 Lisiaeeray

L T EErmrrTrrrrrrrsssbAsSsAARIEREREEE

Figure 1.1: OSF/Motif based version of ZTREE

1.3 Starting ZTREE

To invoke ZTREE just type ztree at the shell. ZTREE may take three arguments from the command
line:

$ ztres [file_namal] [mede] [recl]
The meaning of parameters is the same as for FILE command (see 2.3). An example is:

$ ztree fvxced/sata/cmd?/raw/003161 .cmd -x 30720

i.3.1 VAX/VMS

When you start ZTREE, it tries to read a logon file pointed to by the logical name "ZTREE$LOGON". This
logon file may contain commands that are typically typed at the beginning of each ZTREE session. A
sample logon file is shown in figure 1.2 on page 5.

You must define (in your "LOGIN.COM' file) the logical name "ZTREESLOGON’ to point to the desired
default logon file. If your default logon file does not exist or is not defined, ZTREE will inform you
before proceeding.

If you run ZTREEX 11 (X11-based version of ZTREE) on the VAX, it tries to read a file pointed to by the
logical name *ZTREEX11$LOGON’ and then, if this file is not found, a file pointed to by *ZTREE$LOGON".

*®

* Createa a nsaful alias
E 3

ALIAS/CREATE NUM *RUN SYS$LOGIN:EV_NUM.ZTREE’

*

* Set workstation type (Tektronix)

*

SET/WORKSTATION 101

*

* Print date and time

* ;
SHELL TIME

*

* Type a message
*

MESSAGE ’Hi!’

Figure 1.2: Example of a ZTREE logon file.

1.3.2 Unix systems

The ZTREE logon file on Unix systems has the name .ztreelogon.kumac and must be in your default
directory (i.e. the full name is $HOME/ .ztreelogon. kumac). ZTREE will inform you if such a file does
not exist.

14 On-line Help

ZTREE features on-line help for every command. To find out how a command works simply type HELP
command. This gives a description of the command’s functionality, its arguments and options. To get a
one line reminder of a command type USAGE command.)

1.5 A Sample Session

Somewhere you have the file processed by CMD2OFF named 002048 . extr. To look through this with
ZTREE you simply type "

$ ztrea 002048.axtr i .

No ZTREE LOGON file defined Clde =
»* No e in
. mandatary parameter
File has record length 30720 bytes. Opl:lﬂllﬂ] parameters
1: Top-level bank <HEVT> 4 data word=, 50 down bank=s. 1_
ZTREE> TREE * CALIBRATION copt [fname chform |
! | L] g L L] ¥ e,
... the tree of ZEBRA banks is displayed ... ; COPT C "Option D="-D'R="D-F’
FNAME C 'File name’ D=""
CHFORM C "Data format’ D="-X"'R="-N,-A -X’
ZTREE> DATA FRCS
s & 1 ".'
Bank <FRCS5> contains 6 data words. | : !
dedderbadasbrsrassanenvany Daca of the bank <FRCS> sessrsssnsnserenenesssssnss L 'Range
1: 2 Number of crystale out of clusters It val
2: 0. 15450E+02 Energy deposition in the crystals, MeV | S g
3: 755 Crystal number ' Prompt siring
4: 0.16500E+01 Energy deposition in the crystal,MeV The parameter type:
5: 808 Crystal numbar Coul s
6: 0.11250E+02 +Enargy depozition in the crystal,MeV ;
LA R R L LS L B R e r R R ST e i st 'I'heparamel:r I-mtegcr
ZTREE> NEXT 3 i' R - real
2: Top-level bank <HEVT> 4 data words, 48 down banks.
ZTREE> BACK
1: Top-level bank <HEVT> 4 data words, 50 down banks. . . ' .
ZTREE> FZ/OPEN 1 an_event.fz + Figure 1.3: Format of notation used by KUIP and this manual.

ZTREE> FZ/WRITE 1
ZTREE> FZ/CLODSE 1
ZTREE> EXIT

Chapter 2: General Commands

Thegenaﬂpmposccmnmmdndﬂﬂ'b&dhﬁhwdunMGmmChﬁ)-lmdmayhcumdfmnpuaﬁuu
on any FZ-files.

2.1 BACKWARDS [nrec]

NREC I ’Number of records’ D=1,

Go back to the previous record.

ZTREE has a buffer where a number (currently up to 20) of the previously read records read from the
file are stored. You may return to one of the previous records which is contained in the buffer. You may
see the bufffer contents using the BUFFER command (section 3.3, page 16). To return to the beginning of
the FZ-file see the START command (section 3.11, page 19).

2.2 DATA [name idn]

RAME ¢ *[-A] | [Bank name]’ D=’ '’
IDN ‘I *[Address] | [Numeric identifier]’ D=0
Look at the data part of the bank.

The bank may be specified by the name and the numeric identifier (optional) or by its ZEBRA address
(in this case the ZEBRA address must follow the -A option given instcad of bank name). The list of
7ZEBRA addresses for banks with specified name may be shown by the ADDRESS command.

If the PAGE attribute is ON, the data will be displayed page by page using current HOST_PAGER or (for
VMS systems only) the ZTREE internal pager. The former is set with the KUIP/SET_SHOW/HOST_PAGER
command, while the latter may be not so convenient but much faster (it is significant for slow BINP
VAXes). The PDAT attribute is used to select KUIP or ZTREE pager (see section 2.8).

The nature of the contents of any bank must be indicated to ZTREE via the documentation files which
are described in detail in appendix B. See also the description of the DOC_FILE command (section 3.8).

Ex. DATA TCTK 1 : Look at TCTK bamk with numeric identifier 1
DATA -A 3214 - Look at the bank at ZEBRA address 3214

2.3 FILE [fname opt Irec]

FNAME C ’File name’ i G
OPT ¢ ’Data format’ D='-X’ R="-N,-4,-X%’
LREC I ’Record length’ D=0 R=0: '

Open a ZEBRA sequential access file (FZ-file).
If no parameters are given, ZIREE prints information about the previously open file. The character
option OPT specifies the data format:

-X - Exchange format, binary (default)
-& - Exchange format, ASCII mapping
-N - Native

Usually the exchange format (X option) is used. The record length must be given in bytes. If the record
length is not specified, (or zero is given} auto-detection will be used for binary files. For ASCII files (-4
option) this parameter is ignored and 80 bytes will always be taken.

When opening the file, ZTREE can check automatically significant CMD-2 parameters: CCS ' frequency
and DC amplitude correction. CCS frequency (which equals 249 MHz for runs up to 2150, and 199.4
MEE for newer runs) is checked when CSU attribute is ON. The DC amplitude comrection is checked
when DC option CHEX is active. The default for both is ON. The run number is extracted from the
START-OF-RUN record. An example:

ZTREE> 3ET C3U ON
ZTREE> DC/OPT CHEE
7TREE> FILE 003037 .BHABHA
File hae record length 30720 bytes.
e T T TP T LR L L S LA LR b
START-OF-RUN racord.
Header length - 17 words.
T reeweeessrrt IR T IV T PR LT L L Lo L LA L L
OPEN: CSU fraquency is changed to 199.4 MHz
OPEN: DC amplitude correction is changed to =50

ZTREE> FILE

File name . DISKSWEEK.C1:[MONICH.ZTREE}003037.BHABHA:1
Record lemgth : 30720 bytes

Hode i X

ZTREE>

2.4 FIND [name idn max]

NAME ¢ *-N§ | Hollerith identifier’ D='-N’
IDN I *Numeric identifisr’ D=0
MAX I ’Maximum number of records to pass’ D=100 R=0:

Find data structure containing specified bank.

You may press CTRL/C to interrupt the search and to get back the ZTREE prompt (but it is not rec-
ommended). ZTREE begins the search from the next data structure. IDN=0 means that the numeric
identifier is not specified. If you specify MAX=0, ZTREE will search until the end of file. If option >-N’
is given instead of a bank name, ZTREE searches for the next occurrence of previous search.

Ex. FIND TCTK : Find the record centaining TCTK bank
FIND -N : Find the next occurrence.

FIND VRTX 2 : Find the record containing VRTX bank
with numeric identifier 2

FIND VRTX 3 500 ; Find the record comtaining VRTX bank

with numeric identifier 2 within the
nearest 500 records

"CCS is the abbrivation of the Central Control Signal.

1.5 INFORMATION name | idn]

NAME C *(-A] | [Bank name]’ D=’ *’
IDN I *[Address] | [Numeric idemtifier]’ D=0

Display general information about the bank.
The following information is displayed:
ZTREE> info TCTK 1

dhddbddbdddndhinvibdnnitndnse st b AN <TOCTK> soetts s rstt ot s bt oo s bbb it e
REFERENCE LINKS:

- : 0

=3: 28198 <GREC»
STRUCTURAL LINKS:

i 0

-1: - 29618 <FRAG>
L= 25755
LO(L) =] { WEXT-LINK)
LA(L+i)= 23630 <YRTX» { UP-LINK)
LOLL+2)= 20710 { ORIGIN-LINK)
1Q4{L-5)1= | { WUMERIC RANK IDENTIFIER }
IQ{L-d}= <TCTK> { HOLLERITH BANY IDENTIFIER)
19(1L.-31= 4 { TOTAL NUMBER OF LINKS)
1Q(L-2)= . { WOMBER OF STRUCTURAL LINKS)
IGQ(L-1)= ¢ (NUMBER OF DATA WORDS)
1q(L)= 2572144 { STATUS HORD)

AR AR R RS R A AR LR L e T A L e T ITarIr RS TR A LR TS
ZTHEE>

The bank may be specified by the name and the numeric identifier (optional), or by its ZEBRA address
(in this case the ZEBRA address must follow the -A option given instead of bank name). For example,
in the previous example we could type info ~a 29755 to get the same information. The list of ZEBRA
addresses for banks with specified names may be shown by the ADDRESS command.

Ex. INFO HEVT . Gat information about HEVT bank
INFO -A 4523 : ; Get information about the bank at addrezs 4523

2.6 NEXT

Read the next data structure from the input file previously opened with the FTLE command.
If the NEXT attribute is ON, a message about data structure read is printed, for example:

ZTREE> MEXT
4: Top-level bank <HEVT> ., 4 data words, 65 down banks.
ZTRER>

2.7 RUN faame
FNAME C *File name” D=* *

Run a ZTREE macro.

This command actually invokes COMIS interpreter (see [4]). If FNAME does not contain an extension,
FNAME . ZTREE is searched for and executed. ZTREE macro is a FORTRAN program which may also
contain references to a number of standard routines from the CERN Program Library. Any KUIP or
ZTREE command may also be executed from ZTREE macro through KUEXEC routine;

10

CALL KUEXEC(’command’)
In addition to the CERN Program Library routines, some special routines may be used inside ZTREE
macros to allow the user to access some ZTREE commands directly with subroutine calls. Such access
is much more cfficient than through KUEXEC call. Sec Appendix A for more information.

2.8 SET/| attr switch]

ATTR C 'Attribute name’ D='7?
SWITCH C ’Switch’ D=* * R='=« 0N,0OFF*
Set a ZTREE attribute.

An attribute may be in one of two states: ON or OFF. ATTR is a character variable (of length up to 4)
identifying the attribute to be set. Abbreviations are possible. Special values are:

7 A list of all attributes and their settings is printed.
*# All attributes are set to their default values.

SWITCH specifies the new state for the attribute. There is a special value:

*#? The attribute is set to its default value.

ATl the possible ZTREE attributes are listed in the table 2.1 (page 12).

Ex. SET ESC OFF ; Disable ascape sequences
SET BELL ON ; Enable sound signal
SET WAIT ON ; Wait for key pressed after picture is drawn.
SET ; Display the list of all attributes, their
default and current settings

2.9 SKIP nrec [opt]

NREC I ’Number of ZEBRA records’ D=0 R=1i:
OPT C ’Option’ D='-M’ R="=M,-()’

Skip specified number of ZEBRA records.

Option -Q means quiet work without any output on the terminal. If -M option is given, NEXT messages
will be printed (depending on the state of the NEXT attribute).

i1

—17_

! -H show Numeric identifiers:

Name Default Explanation -A show Addresses of all banks: J
-4 [address] the bank with the specificd Address will be displayed i a boid face;
= <pame> [idn] | setbank <name> as the Top-level level bank for the tree display: idn is
BEEP ON ¥ 0N, some ZTREE commands (such as FIND}signals about dweir a numeric bank identifier {(optional);
successful compietion by 2 sound signal. -5 <addrass> set Start address for the tree dispiay;
BOX ON If OM, a box is drawn around the viewport. . 1 <file_name> | direct Output to the file;
CASE OR Tf 0N, bank names given in a command line are converted to the -f print a Header with an information about current day and fime. 'f you
UPPST CAe. are looking through the CMD2OFF output file, the run and event number
CLIP ON If ON, graphics primitives are clipped at the boundary of the also will be printed.
= viewport. | ‘ <
| CLRS ON If O, text screen is cleared before drawing. | j Table 2.2: Optioss of the THEE. command.
csu o ¥ oM, ZTREE will automaticaily change CSU frequency depend-
| ing on run number when opening an input file.
| ESC ON if 0FF, ZTREE endeavors not (o use escape sequences for ierminal E
% output. !
| MONO ~ OFF If ON, the graphics is black/white. This may be convenient for
: writing pictures into the PostScript metafile, if you dislike how
vour printer interprets other colors. :
NEXT ON If ON, the NEXT command prints 2 message about daia structure 2.10 TREE [optlist]
' read. It’s useful to turn it off in macros processing a large amount
, of events to prevent heavy output. OPTLIST € ’List of optioms’ D=1
PAGE OH 1f 0N, the DATA command prints data page by page using current v
HOST_PAGER or (on the VAX only) its internal pager depending Display tre= of current ZEBRA structure. .
on the FDAT attribute. Historically this was the first ZTREE command. - Structural and next links are represented by vertical
may be much faster then invoking HOST_PAGER. This works on begins from the top-level bank, but you may display a part of the tree (-T or -S options). The bank tree
the VAX only. 3 may be written into a file by using the -0 option. The ful list of possible options is given in table 2.9 .
— OFF If ON, ZTREE waits for key did hilian. ons ; ';‘l;:?iu;::k:;;mybcshuwnmmnwaﬁmgmﬂnmafth:ES{: attribute as shown in
drawn. . e 3
b Opuons ~A/-N and -T/-3 are mumally exclusive. Other options may be specified together in one
command line.
le 2.1: ZTREE attri i
—— witributes sl fhsir defoulcSaluce Ex. TREE : Display tree of the current data structure
2 TREE -N : Display tres with numeric identifiers shown
TREE -A ; Display tree with ZEBRA addresses shown
TREE -A 1233 ; Display tree marking bank with address 1233

TREE -T HDDC -N ; Display a partial tree beginning from HDDC
with numeric identifiers showa

TREE -H -0 T.DAT ; Write the data structure tree intc the file
T.DAT together with the header

“TREE command has distinguished honor of giving the name for ZTREE.

12 13

ITREE > tree -t hddc 3 ZTREE > tree -t vrix 2
VRTH--VRTX

| =
i o

|
|
l
s | '
hﬂ : I FRAG--FRAG--FRAG
i
|
|
|
|

|
TCTH--TCTK

R R '

FRAG--FRAG--FRAG

TCTH--TCTK

[CTH T "
=, I I
h | FRAG
I
R RAREFRAL '
FRAG--FRAG--FRAG

(a) ESC attribute is ON (b} ESC attribute is OFF

Figure 2.1: ZEBRA banks tree representation.

211 VERSION

Display the current version of ZTREE and the date of last modification:

ZTREE> ver=ion

|

| ZTREE version 3.72/00 for DECstation
| Last modification : 16/07/94
|
|

Graphics package version 1.03/01
I

== —————— N

ZTREE>

o——————

14

b

Chapter 3: UTILITIES

This chapter describes ZTREE utility commands.

3.1 ADDRESS name [idn |

NAME C *Bank namae?® D=* °?
IDN I *Humeric identifier’
List the address of thr NAME bank.

Numeric identifier may be specified. If not specified, ZTREE lists all banks with the name NAME.

3.2 BANK fname name [idn header display |

FNAME C ’File name’

NAME C-*=A | Bank name’

IDN I ’Address | Numeric identifier’ D=0
HEADER C 'Header option’ D=’-H’

DISPLAY C ’Display option’ D=’-N’ Minus

This command writes the bank contents into the file FNAME, ZTREE version, date, and time of file creation
may also be stored in this file depending on the HEADER option. Possible HEADER values are:

-H start event data with a header;
-NH do not write a header.

Possible DISPLAY values are:

-V view created file with current HOST_PAGER
-N do not display created file

The bank may be specified by the name and the numeric identifier (optional) or by it'’s ZEBRA address
(in this case ZEBRA address must follow -A option given instead of bank name). The list of ZEBRA
addresses for banks with the specified name may be shown by the ADDRESS command.

Tf the current data structure is an event record (top-level bank is HEVT) and the —NH option is not selected,
the file will start with a "header” like this:

ZTREE version 3.71/00 Date: 14/07/94 Tima: 19.48.38

PRI EE SRR SRR S22 2R R 2 b R Rt bl

* Run number: 1840 *
* Event numbar: 9 *
B T LT T T T T I T T e

The contents of the bank is then printed.

15

3.3 BUFFER [opt nbuf |

arT C ’Option’ D=’ * R=’ ,-5’
HEUF I ’Buffer zize’ D=20

Show contents of ZEBRA history buffer or set its size.

ZTREE has a buffer where currently a maximum 20 of the last records read from the input file are stored.
You may return to one of the previous records from the buffer using the BACKWARDS command. It may
be useful to decrease the buffer size in macros in order to reduce calculations when you do not need to
go backwards.

Ex. BUFFER ; Display the contents of the buffer
BUFFER -3 : Show current buffer size)
BUFFER -5 10 : Set buffer size to 10

34 CALCULATOR [chealc]

CHCALC C ’Arithmetic expression’ D=* °

Built-in calculator.
Expression is in FORTRAN where variables X,Y,Z can be used. The value of a variable can be obtained
in one of two ways:

CALC 7 : yalues of all variables will be listed
CALC X ; the X value will be printed

To change the value of a variable, simply type

CALC <variable>=<expression>

If CHCALC="#", all threc variables are set to zero. Typing CALCULATOR without parameters is equal to

ITREE> APPLICATION CALCULATGR EXIT

| Sadn Pl T Ezampleof using calculator |

2TREE> CALC
Helcome bo the ZTREE calculator.
Type ‘exit’ to return to the command proceszor
CALCULATOR > »
CALCULATOR > X=1,2345
1.224500
CALCULATOR > T=X
1.234500
CALCULATOR > Z=SQRT(STN(X) ##24C0S(Y) #+2)
0.9995999
CALCULATOR > 7
= 1. 234500

Y= 1.234500
Z = 1.000000
CALCULATOR > EXIT

ZTREE>

16

35 CLR
Clear the text screen.
36 COMIS

Invoke the COMIS FORTRAN interpreter.

COMIS allows the execution of FORTRAN routines without recompiling and relinking. It may commu-
nicate with ZTREE commands through vectors. COMIS is invoked by the RUN command, but it has also
its own command structure. An example in command mode:

ZTREE > COMIS
c3 » do 10 i=1,18

MND> x=eqrt (i) #10.
MND> T print ¢,1.x
HMND> 10 continue

NND> __ END

C8 » M

ZTREE>

COMIS code may be inserted into a KUIP macro. Example:

Vector/Creata Y(10) r 1 234 56 7 8 9 10

In the following COMIS code, the statement "Vector Y" declares
to COMIS an existing KUIP vector. KUIP dimension is assumed.
The statement "Vector X(10)" creates a new KUIP vector.

(Note that SUBROUTINEs must be declared before the MAIN program)
(KUIP vectors cannot be created intoc the MAIN program)

* #* B * = *+ *

APPLIcation COMIS QUIT
SUBROUTINE DEMO
Vactor Y
Vactor X(10)
do 10 i=1,10

XX=i
X(i)=Y(i)*sqrt(XX)=10.
10 CONTINUE
END
CALL DEMO
END
QUIT
Vector/print X * Print KUIP vector created by COMIS

The most usual way to use COMIS, however, is to execute your programs with the RUN command. See
section 2.7 and appendix A for more information on the RUN command and using COMIS inside ZTREE.

17

3.7 DESCRIPTION list

LIST C ’[-<option>] (List of the banks)’ D= '

Create a text file with the bank documentation.

The file name can be set by the DOC_FILE command (option -D). If the file name contains '** wildcards, |,

they are replaced with the bank name. The following options may be used:

-M to scan only the main documentation file;
e toscan ¢~ e local documentation file;
<T to direct ~ _ ut only to the terminal (no files are created);

-LATEX to produce a document in the IIgX format.
Bank names may contain wildcards *** and ’7’. See the appendix B (page 60) for more examples.

Ex. DOC_FILE *_FORMAT.DOC -D ; Set the name of a bank description
DESCRIPT TCTK : file and write the documantation
for the bank TCTK into the file
TCTE_FORMAT .DOC

DOC_FILE BANKS.DOC -D ; Write information about banks
DESCRIPT Z# ; beginning from Z into the file

BANKS .DOC
DOC_FILE *.TEX -D ; Write LaTeX descriptions of the banks
DESCRIPT -LATEX TCTK FRAG : TCTK and FRAG intoc the files TCTK.TEX

and FRAG.TEX, respectively.

3.8 DOCFILE [fname opt]

FNAME C ’File name’ D='7?
OPT C *Option’ D=?-M' R=’-L,-M,-D’

This command is used to define the name of the ZTREE documentation file (see a ix B for more
information about documentation files). If option -L is set then the name of the local documentation
file is FNAME. If option -M is set, the name of the main documentation file is FNAME. If parame-
ters are omitted, the list of current settings is displayed. By default the main documentation file is
DISK$C1: [MONICH.ZTREE]ZTREE . DOC (see this as an example of a documentation file), the local one
is ZTREE. DOC.

Using the option -D you can set the file name for the DESCRIPTION command (by default * .DOC). This
file name may contain '*’ symbols, which will be replaced with a bank name (see also the section 3.7
and the appendix B).

Ex. DOC_FILE ZTREE.MEW -L ; Define ZTREE.MEW az a local ZTREE
documentation file
DOC_FILE ; Display current namss of ZTREE

documentation files

18

3.9 FORGET name
NAME C 'Bank name’® D=" °

Force ZTREE "to forget” about the format of the bank.

ZTREE remembers the formats of the last 10 banks that were specified in the DATA command. If you
1ook at the bank data after the FORGET command, ZTREE scans documentation files to redefine the
format of the forgotten bank. This may be useful when you have changed the bank format in your local
documentation file and wish to view the data with a new representation .

3.10 HEADER [hdopt]
HDOPT C ’Option’ D=7 ¥ R="=1."

Look at the header of the current record.

Any ZEBRA record read from a FZ-file may have a header. Usually only Start-Of-Run (SOR) and
End-Of-Run (EOR) records have one. If the opiion -1 is given, the order of bytes in the header is
inverted.

3.11 START

Restart the reading of the file that is cﬁmnﬂy open.
3.12 STATISTICS

Display some statistics.

3,13 SHOW/LUNS/[luns]

LUNS T ’Logical unit numbers’ D=1

Show logical unit numbers used.

Sometimes you need to choose a logical unit number (LUN) not used yet (for example, in FZ/OPEN
command). This command prints information about specified LUN(s) or the list of all LUNs used (or
reserved for use).

Ex. SHOW/LUN 10 11 - show information about LUNs 10 and 11
SHOW/LUN : list all LUNs used

3.14 SHOW/PAGE [size]
SIZE C ’'Page gize’ D=???

Set or show page size. The page size is used by the ZTREE internal pager for data output (when the PAGE
and PDAT attributes are ON). When you wish to change it, you may give the new page size as a parameter.
If parameter **° is given, the page size is set to its default value. When the parameter is omitted, the
current page size is printed.

Ex. PAGE ; show current page size
PAGE # : set default
PAGE 40 ; set the page size to 40

19

Chapter 4: FZFILE

FZ output file control.

4.1 FZ/OPEN lun name [opt irec]

LUN I ’Logical unit number’

NAME C ’File name’

OPT C 'Data format’ D=’-X* R=’-N,-A,-X’
IREC I ’Record length’ D=30720

Open an output FZ file. Character option OPT specifies the data format :

-X - Exchange format, binary (default)
-4 - Exchange format, ASCIH mapping
=N - Native

If you choose the —A option, IREC is ignored. When you have opened the output file, you can write the

current data structure into this file with the FZ/WRITE command. Up to 10 output FZ-files may be opened
simultaneously. You may use FZ/LIST command to see the list of open FZ-files.

4.1.1 UNIX systems.

In UNIX version of ZTREE this command has a different syntax:

FZ/OPEN name | opt irec]

NAME ¢ ‘File nams’

OFT C *Data format’ D=?-X* R=’-N,-A,-X’
IREC I ’'Record length’ D=30720

You do not need to specify the logical unit because ZTREE on UNIX uses the C library to access FZ-files.
In this case you must use C file descriptor number instead of FORTRAN logical unit number in FZ/WRITE
and FZ/CLOSE commands, ZTREE will inform you about this number:

ITREE> fz/open a.dat
OPEN: output file usez LUN 3
ZTREE> fz/11ist

PO S S N - . Y U BSOS +
| Lun | File name | Recl | Mode |
F - o AR S - ——i — ; +
i 3 | fusarsfuzers/monich/sa dat |- 30T X |
e e e e e e o e e +

ZTREE>

If you have have fogotten this number you may type FZ/LIST to be reminded.

20

42 FZ/LIST

List output FZ files. An example:

ZTREE> fz/open 1 data.dat
ZTREE> fz/open 2 out.dat
ZTREE>» fz/open 3 aout.dat -a
ZTREE> f=/list

S + —r— i = , —————fm————
| Lun | File name | Recl | Rode |
e R - + + iy
| 3 | DISK$WEEK: [MONICH.ZTREE] AOUT.DAT; 1 i 80 §o-n'3)
I 2 | DISKS$WEEK: [NONICH.ZTREE]OUT.DAT; { I 307201 x |
| 1 | DISK$WEEK: [MONTCH.ZTREEIDATA .DAT; 1] 3ot | X |
e ——— m——— e 4 -§ A
ZTREE>

43 FZ/WRITE lun

LUN - I ’Logical unit number’

Write the current data structure to the specified FZ-file.
The output file must first be opened with the FZ/0PEN command. You may type FZ/LIST to get the list
of currently open files. On the VAX you also may type UNITS.

44 FZ/CLOSE luns
LUNS C ’#| List of logical units’ D=’ ?
Close output FZ file(s). If LUNLIST="+", all open output FZ-files are closed.

Ex. FZ/CLOSE * ; Close all output files
FZ/CLOSE 1 23 ; Close logical units 1,2 and 3

21

Chapter 5: CMD2

This chapter describes CMD-2 related commands including an interface to the HIGZ [3] package (CMD-2
picture and event display).

5.1 CALIBRATION | copt fname chform |

COPT C *Option’ D=’-F’ R=’-D,-F’
FNAME C *File name® D= "'
CHFORM C *Data format? D=’-X*> R=’-N,-A,-X’

Read calibrations from the raw data file or sct defaults.

If COPT="'-D", defauit calibrations will be restored. If COPT="-F ", ZTREE tries to read calibrations from
the file FNAKE or from the file that is currently open if FNAME is not specified. Character option CHFORM
specifies the data format :

-X - Exchange format, binary (default)
-& - Exchange format, ASCII mapping
-§ - Native

Only calibrations of systems selected with the SYSTENS command are used. Others are ignored.
52 DETECTOR
Draw CMD-2 using current settings. Only sysiems selected with the SYSTEMS command are drawn.

53 EVENT [opt]

OPT C ’List of options’ D= 7

Display the current event.
ZTREE supports both data formats used by CMD-2 software:

e raw data format - a sequence of single-bank records containing raw data in CERN-ONLINE format:

e reconstructed events - complex data structurc per event with information about found tracks,
fragments from which tracks were built, etc.

When you are looking through a raw data file, you can only see just hit wires in DC, hit crystals in CS1,
etc. - the only information which can be taken from raw data. If the event is reconstructed reconstructed,
ZTREE can also display vertices, tracks, fragments and other information calculated by CMDZOFF.

ZTREE does not calculate anything except simple geometry!
It only displays what you give it.

Several options may be given in the command line. The list of possible options is given in table 5. .

22

- =T only tracks found by CMD2OFF reconstruction program will be
displayed (when you are looking through a CMD2OFF output
file);

-R the "raw" event will be drawn (taking an information only from
raw data);

-TCTK <tracks> (short form is -NT <tracks>) specifies tracks that you want to
display. Track numbers are simply numeric identifiers of the
corresponding TCTE banks. By default ALL tracks are displayed;
~VERT <vert_num> | (shortform is -NV <vert_num>)specifies vertices that you want
to display. Vertex number is a numeric identifier of the corre-
sponding VERT bank;

~-FRAG <frag_num> | (short form is ~NF <frag_num>) specifies fragments that you
want to display. Fragment number is a numeric identifier of
corresponding FRAG bank;

-CELL <cell_num> | (short form is -NC <cell_num>) the same as -FRAG option, but
an information is taken from the CELL banks;

-HDDC <head_num> | (short form is -NH <head_num>) specifies the number of the DC
data structure header (HDDC bank) to take the information from.

Table 5.1: Options of the EVENT command.

To see all vertices, fragments or cells you have to set DC options VERT, FRAG or CELL, respectively.
By default ALL tracks and raw data are displayed. If BUX attribute is ON, a box is drawn around the
viewport. ZTREE can wait for key pressed after the picture is drawn - when you turn the WAIT attribute
on (Not in MOTIF mode).

Ex: EVENT ; draw whole event (raw data & tracks)
EVENT -T ; draw tracks only
EVENT -T -NT 1 ; draw only track number 1

EVENT -NT 1 -NF 1 3 ; display track number 1 and fragments number 1,3

Only systems sclected by the SYSTEMS command are drawn. In order to see several projections of the
event simultaneously, you must select the desired projections with the command SECTIONS. An example
of output produced by the EVENT command is shown on figure 5.1.

Figure 5.1: An example of output produced by the EVENT command.

54 PARAMETERS [freq]

FREQ C 'CSU frequency’ D=’ ’

Set or show general CMD-2 parameters. X

Now the only parameter is CCS (Central Control Signal) frequency (called "CSU frequency” for historical
reasons). This value depends on the run number and is changed automatically when opening new CMD-2
data files. If you do not want ZTREE to change it automatically, you may tum off the CSU attribute with
the SET command.

Ex. CMD/BAR 7 : 1list of current ssttings
CMD/PAR ; change parameters in interactive mode
CMD/PAR 200. - get CSU frequency to 200 MHz {new wvalue)

5.5 METAFILE

A picture generated by ZTREE with DETECTOR and EVENT commands may be writien into a metafile.
Various metafile types are supported: GKS, PostScript, Encapsulated PostScript, PostScript Color, La-
TeX and LaTeX Encapsulated. The most widely used ones from above are PostScript and Encapsulated
PostScript metafiles. The former may be directly printed on a PostScript printer. Encapsulated
PostScript permits the generation of files which may be included in other documents, for example n

24

<

IAEX files. The size of the picture must be specified by the user with METAFILE/RANGE command. For
example if the name of an Encapsulated PostScript file is example. eps , the inclusion of this file into 2
IATEX file will be possible via (in the IXgX file):

\begin{figurae}
\epsffile{example.eps}
\caption{Example of Encapsulated PostScript in LaTeX.}

\label{EXAMPLE}

\end{figure}
Note that all the figures in this manual are included in this way. See [8] for more details. Let’s consider
an example of writing PostScript metafile:

ZTREE> WET/OPEN PICT.PS -111
ZTREE> EVENT
ZTREE> MET/CLOSE

That’s all. The file PICT.PS may be printed on a PostScript printer.

551 METAFILE/RANGE [range]

RANGE R 'Range, cm’ D=16.0 R=0:

This command is used to determine the maximum physical dimension of a picture in a metafile.

5.52 METAFILE/OPEN foame [metafl opt]

FHNAME C ’Metafile name’ D=’ZTREE.METAFILE’
METAFL I *Metafile ID’ D=4
OPT ¢ ’-[option]’ D="-8’ R=’-F,-3’

This command opens a metafile and controls the destination of the subsequent graphic output. Use the
this command to open a new file, METAFILE/CLOSE to close one.

Ex: MET/OPEN MY.METAFILE ; write GKS metafile
MET/OPEN A.A -111 : Direct graphics output to both screen
and PostScript metafile
MET/OPEN B.B -111 -F ; Direct graphics output to PostScript
metafile only

If the option ~F (File) is set, then the subsequent graphic output will be directed to the metafile only.
If default option -S (Screen) is set, the subsequent graphic output will be directed to both screen and
metafile. The following metafile IDs are valid:

METAFL= 4 Appendix E GKS.

METAFL=-111 HIGZ/PostScript (Portrait).
METAFL=-112 HIGZ/PostScript (Landscape).
METAFL=-113 HIGZ/Encapsulated PostScript.
METAFL=-114 HIGZ/PostScript Coler (Portrait).
METAFL=-115 HIGZ/PostScript Color (Landscape).
METAFL=-777 HIGZ/LaTeX Encapsulated.
METAFL=-778 HIGZ/LaTeX.

553 METAFILE/CLOSE
This command closes a metafile. The subsequent graphics output will be directed to the screen only.

56 CALORIMETER

Set parameters for CsI and BGO calorimeters display. Some parameters are common for both systems
(such as hits representation parameters), while others are different.

56.1 CALORIMETER/HIT COLOR [zone color]

ZONE I ’Energy zone? D=0 R=0:
COLOR I *Color index® R=0:

Set the colors for calorimeter hits display.

You may (and should) set different colors for displaying hits from different energy zones (see section
5.6.2). The number of zones may be changed with the ZONES command. Colors ID 0..7 are predefined
as White, Black, Red, Green, Blue, Yellow, Violet and Cyan, respectively (or Black, White, ... in case of
GKS). To use more colors (not in GKS versions) you must define the new color’s ID with the SET/COLOR
command and then you can give this ID as the COLOR parameter for the DC/COLOR, HIT_COLOR, etc.

56.2 CALORIMETER/ZONES [number enmax enmin |

NUMBER I ’Number of energy zomas’ D=0 R=0:
ENMAX I ’Maximum energy’ D=300 R=0:
ENMIN I ’Minimum energy’ D=5 R=0:

Define the number of energy zones.

The energy deposition scale is divided into energy zones in order to provide a visual presentation of hits
with different energy depositions. Giving ZONES without arguments or with NUMBER=0 will show you
the currently defined cnergy zones and corresponding colors, for cxample:

ZTREE» ZOHES
3 energy zones are currently defined:

e e - 1 o m————
| ZONE | ENERGY, WeV | COLOR | RED | GREEN | BLUE |
i e e e S
1 1 | B eihg | | 100 | 100 | 100 |
| 2 | 180...300 | T 1 100 | | VI |
| 3 | »300 = 3 | 01 100] 0|
+- e e et S -t —-—+
ZTREE>

When you change current values, ZTREE automatically divides the energy region ENMIN..ENMAX into
NUMBER zones. Each zone has its own low energy boundary and color index. These parameters must be
set with CALORIMETER/ENERCY and CALORIMETER/HIT_COLOR commands, respectively.

56.3 CALORIMETER/ENERGY [zone energy |

ZONE I ’Energy zone’ D=0 R=0:
ENERGY I ’Minimal energy, MsV’ R=0:

Set the lower boundary for a calorimeter energy zone.

26

‘h.‘

5.6.4 CSI/COLOR /| color]

COLOR I ’Coler index*® D=-1 R=-1:
Set the color for the Csl calorimeter display.

5.6.5 BGO/COLOR /[color]

COLCR 1 *Color index’ D==1 R=~1:
Set the color for the BGO calorimeter display.
566 BGO/OPTION [color]

aPT ¢ *? | « | [-](option]’ D="%*

Set or show BGO display options. One option is now available:
RAW - Raw hits taken from RBG1/RBG2 or CMD?2 bank are displayed (defauit).

Ex. BGO/OPT RAW ; raw BGO hits will be displayed.
GO/OPT RAW ; BGO hits will not be displayed
BGO/OPT ; show active options
BGO/OPT = : set default (RAW optionm)

57 DCHAMBER
Set the parameters for drift chamber (DC) display.

57.1 DC/COLOR [action object color]

ACTION C *Action’® D=*SHOW’
OBJECT C ’For which object to change the color’ D="RHIT”
COLOR I *Color index’ R=0:

Set the colors for DC display. Possible ACTION values are:

SHOW Show colors used for DC display
SET Set color for DC display
Possible OBJECT values are:
WIRE DC wire
HIT Normal hit (with both time and amplitudes)
BAD Hit without amplitudes

TRACK Track
VERTEX Vertex

Colors ID 0..7 arc predefined as White, Black, Red, Green, Blue, Yellow, Violet and Cyan, respectively
(or Black, White, ... in case of GKS). To use more colors (not in GKS versions) you must define the new
color ID with SET/COLOR command and then you can use this ID as the COLOR parameter for DC/COLOR,
CSI/COLOR, etc.

27

572 DC/MARKER [mtype msc opt]

MTYFE C ’Marker type | 7 | ** D=1
MSC R ’'Marker scale factor’ D=1
OPTION C *~{option]* D=*-F* Rs’-R,-F,-V’
Simplest markers Markers provided by HIGZ
Set the marker type and the scale factor for DC hits display.
Possible OPTION values are: Marker type Marker Marker type Marker
-R Set marker type for "raw” hits
-F Set marker type for reconstructed hits 1 : 28 ®
-V Set marker type for vertices -~ 2 + 21]
3 X 22 A
4 o 23 v
I no parameters are given, ZTREE displays the list of current settings: 5 X 24 O
. _ 25 L
ZTREE> dc/marker 26 A
R T ey ik, 27)
l_ Ell‘jj—aﬂt. | Hiz;l_:?_.: type 1 Scal f-:_iftl-.t_ai-i 28 &
| Raw hit i 1 | 1.0 | 29 *
| Hit from FRAG | 28 | 1.0 i : S0 e
| Vartax | a0 i 2.0 i 1 b 4
R il — -
ZTREE>
If MTYPE="=", the default values arc set.
Figure 5.2: Marker types available.
The marker types available are shown in figure 5.2 . All workstations support at least the marker types
1..5 . Additional marker types 20.31 are supported by HIGZ [3]. An example of using different marker
types for raw and reconstructed hits display:
ZTREE> SCALE 200 =90 0
ZTREE> DC/OPTION FRAG LINE G AT o i g
ITREE> DC/MARKER 4 1
ITREE> EYENT
The output produced by this example is shown in figure 5.3 .
~
-
28 Figure 5.3: Using different marker types for raw and reconstructed hits display.

30

CHEK - Check DC amplitude cmcﬂ;n“:;;nnaticaﬂy when opening new input file
(defaunit)

LINE - two points comesponding to one raw hit are comnected by a straight line
(defanit).

RAW - raw hits taken from RIDC or CMD2 bank are displayed (defauit).

TCTK - Dasplay reconstructed tracks taking information from TCTK banks (default)

FRAG - display reconstructed DC hits taken from FRAG banks.

VERT - display vertices found by the CMID20FF reconstruction program taking infor-
mation from the VRTX banks. =

Table 5.2: DC options.

53.7.3 DC/OPTIONS [opt]

OFT C ’[-]lopticn]’

Set or show DC display options.

ﬂ.:.!-?!‘

Current valid options are listed in table 5.2.

To turn option OFT off, type DC/OPTION -3PT. Note that options RAW and FRAG may be set simul-
tancously. Therefore, both raw hits taken from RJDC and reconstructed hits from FRAG bank may be
displayed. Different markers may be used to distinguish raw and reconstructed hits (see section 5.7.2).

See an example of using different marker types in section 5.7.2

Ex. DC/OPT :
DC/OPT = -
DC/OPT VERT ;
DC/OPT -LIKE ;

show active options

zset default options (LINE, RAW)
vertices are displayed

raw hit is displayed as two peints

574 DC/PARAMETERS [angle vdrift tstop iampl]

ANGLE

TSTOP
TAMPL

C *C [?] | [Lorentz angle, degrees])’ D='-26’
VDRIFT I *[Drift velocity, cm/ms 1’ D=4800

I ’[Stop time, ns] D=960

I * Amplitude correction ' D=0 R=-100:100

Set or show the drift chamber parameters.
When the DC option CHEK is set, the last parameter (Amplitude correction)ischanged automatically

when you open a new input file.

Ex. DC/PAR 7 ; list of current szsttings
DC/PAR ; change parameters in interactive mode
DC/PAR -32 ; set Lorentz angle

DC/PAR -25.5 5000 950 ; change all parameters

¥

58 ZCHAMBER

Set parameters and options for Z-chamber (ZC) display.

58.1 ZC/OPTIONS [opt]
OPT ¢ *[-1[option]*® D="7"

Set or show the ZC display options.
Current valid options arc listed in the table 5.3. Look at the example of using the AMPL option in figure

54.

Ex. ZC/aPT ; show active option
ZC/OPT =* ; set default option
ZC/OPT ZSCT : Take information about hitted sectors

from Z5CT banik.
ZC/OPT -ZSCT : Take information from raw data banks.

AMPL - draw Z-chamber (c) hits using bars with the height proportional to their ampli-
tudes (histogramming display).
ZSCT - display reconstructed ZC sectors taking information from ZSCT bank

Table 5.3: ZC options.

Figure 5.4: Histogramming display of Z-chamber hits (AMPL option).

31

582 ZC/PARAMETERS [thres upper lower scale |

THRES C ’C [?] | [Amplitude thresheld])}’ D='50’
UPPER I *Upper amplitude threshold’ D=4000 R=0:
LOWER I *Maximum amplitude’ D=4096 R=0:
SCALE I *Scale factor for histogramming display ’ D=4096 R=0:10000
Set or show Z chamber parameters.
Ex. ZC/PAR 7 ; list of current settings
ZC/PAR ; change parameters in interactive mode

59 MUCHAMBER
Set the parameters for MU chamber display.

59.1 MU/OPTIONS [muopt]
MUOPT C *[option]’ D=7’

Set or show MU chamber display options. (Reserved for future use - no options yet)

59.2 MU/PARAMETERS [mupar]

MUPAR C ’parameter’ D=" °
Set or show MU chamber parameters. (Reserved for future use - no parameters yet)

593 YOKE/COLOR | color fais fasi]

COLOR I ’Color index’ D=3 R=0:
FAIS I 'Fill area interior style’ D=3 R=0:3
FASI I ’Fill area stylae index * D=0

Set the parameters of the magnet yoke display.
The following interior styles are available:

Hollow: the perimeter od the area is drawn using solid lines.
Solid: the area is filled solidly.

Pattern: the area is filled with a dot dashed pattern.
Hatched: ﬂmmisﬁﬂudacmrdingtnﬂwFﬁSIvalue.

W ok o= D

FASI is the pattern and hatch style. If you give FASI=0, ZTREE uses its own default values to fill the
yoke area. See HIGZ [3] documentation for more information on the fill arca styles which are available
on your machine.

5.10 SET_SHOW
Set or show various parameters.

32

5.10.1 SET SHOW/COLOR TABLE [color red green blue]

COLOR I ’Color ID’ D=-1 R=-1:100
RED I *Red intemsity * R=0:100
GREEN I ’Green intemsity’ R=0:100
BLUE I ’Blue intemsity ’ R=0:100

Define/change color. Colors ID 0..7 are predefined as White, Black, Red, Green, Blue, Yellow, Violet
and Cyan, respectively (or Black, White, ... in case of GKS). The COLOR_TABLE command without
arguments or with COLOR=-1 will show you the currently defined colors:

ZTREE> COLOR_TABLE
e ;

| COLOR | RED | GREEN | BLUE |

—

o	100	100	100
1= o	o	o	
2	100	o	0
i\ o	100	o	
1	o	o	100
1 § | 100 | 100 | o4
I 6 | 100 | o | 100 |
i 7 | o | 100 | 100 |
e e e —_—tr——— # $ +
ZTREE>

This command usually has NO effect in the GKS-based versions of ZTREF!

5.10.2 SET_SHOW/WORKSTATION [wtype]

TYPE C ’Workstation type’ D=" ’

Set or show the workstation type. Some workstation types are listed below (the list may be differsnt for
different machines and versions of HIGZ):

0: Alphanumeric terminal

1-10: X11 window

101: Tektronix 4010, 4014

102: Tektronix 4012 :
103: Tektronix 4014 with enhanced graphics option
121: Tektronix 4107, 4207, Pericom MX2000
122: Tektronix 4109

123: Tektronix 4111

125: Tektronix 4113

127: Tektronix 4115, PericomMX8000

7800: MG600, MG200

7878: Falco, PericomGraph Pac (old Pericom)
1020: V1240

1030: V1340

7878: FALCO terminal

33

TB79: Xterm
8601-6: Vaxstation GPX
10002: Apollo DNXXXX monochrome (GPR’

10003-4: Apollo DNXXXX colour (GPR)
9701-8: Apoello DNXXXX (GSR)

IfWTYPE=' ?, the current workstation type is displayed.

If WTYPE="+" the HIGZ routine is called which inquires the workstation type from the standard input.
This may be useful to get the list of valid workstation types which is machine and system dependent.
NOTE that usually this routine asks you just one time. When you try tocall it a sccond time, it will just
return some value without any question.

If WTYPE="7", more information about the current workstation is shown: workstation type, display
surface, and number of raster units (Only in ZTREE versions which use GKS as underlying graphics
package).

If WTYPE="-L", the list of currently open workstations is shown.

Ex. SET/WORKSTATION 1020 Set VT240 workstation type.
SET/WORKSTATION : Display curremt workstation type

5.10.3 SET SHOW/SYSTEMS [list]

LIST C ’List of optiocna’ D=2

Select the desired systems or show those selected.
This affects CALTBRATION and EVENT commands. Option from LIST is one of the following:

2 List current settings
; Unselect all systems
ALL Select all systems
-<gyatem_id> Unselect specified system
[+]<system_id>- Select specified system

<opt> <syztem_id> Add/delete system’s view (see below)

Option *.” unselects all systems, option *ALL” selects all. <system_id> is a system identifier. It is one
of the following:

DC - drift chamber

ZC - Zchamber

CSI - CSI calorimeter

BGO - BGO calorimeter

MU - muon system

YOKE- magnet yoke {(to draw or not to draw)

34

For example, if option -MU is given, muon system is unselected, if option MU is given muon system is
selected.

You may wish to have the system displayed only on ONE projection. In this case you must specify the
system after one of the following special options:

+R <system_id>
-R <system_id>
+Z <system_id>
+Z <zystem_id>

If no parameters are specified with this command, you will be prompted to select systems interactively.
To sec the list of current settings, just type:

ZTREE> SYSTEMS 7

Drift chamber v O RZ

Z ~ chamber i i O | ¥

351 calorimeter ... ON RZ

BGO calorimeter ... ON =z

Ruon system v OW RZ

Magnet yaka o s O Rz
ZTREE>

In this example you see that all systems are selected to be displayed in all projections except the BGO
calorimeter which will not be displayed in R-,- projection (cross section).

EX. SYSTEMS 7 ; list of current settings
SYSTEMS ALL : szelect all CMD-2 aystems
SYSTEMS . ; Do 3ystems are selected
SYSTEME . DC ; salaect only drift chambaer
SYSTEMS ; Belact systems interactively
SYSTEMS -MU ; Turn off drawing muon system.
SYSTEMS =R BGO ; Don’t display BGO on cross sectionm

5,104 SET SHOW/SCALE [scalezc yc]

SCALE € ’Scale of the picture, mm’ D=’ *
X< R ’X coordinate of the picture center, mm’ D=0
et

R ’Y coordinate of the picturas center, mm' D=0

8=t or show the scale and coordinaies of the center.

Ex. SCALE ? ; list of current settings
SCALE = : set default values
SCALE 500 ; change scale only
SCALE 1000 500 0 ; change all parameters
SCALE ; change parameters in interactive mode
35

5.10.5

SET SHOW/SECTIONS { opt]
OPT C *Option’ D=* °

Sclect or show sections of CMD-2 to be displayed.
ZTREE provides 3 kinds of event representation (which I call sections):

1. R- projection (cross section).
2. longitudinal projection {Z-section).
3. CSI calorimeter plane projection.

When ZTREE usces X-Windows for low level graphics, it opens a new window for each new section
to be displayed. When you use other graphics system, several sections of the detector may be shown
simultaneously on one display. In order to see the currently selected sections, type SECTIONS ?. Sections
may be chosen interactively (typing SECTIONS without parameters) or via the OPT option. The option
must consist of 3 characters (Y or N). Y selects corresponding section, N unselects one.

Ex. SECTIONS 7 ; list of current settings
SECTIONS ; choose sections interactively
SECTIONS YYY ; display all CMD-2 sections
SECTIONS YNN ; display R-i sectiom omly SECTIONS NYN

J‘fh'_'"i

Chapter 6: ZEBRA
Simple interface to ZEBRA.

6.1 LOGLEVEL [logl opt lun |

LOGL I ’Log level’ D=-2 R=-3:4
OPT C ’Option’ D=’ ’ R=’ ,-M,-F’
LUN I *Logical umit’ D=0

Change ZEBRA log level. Possible values of OPT options are:

-M - set log level for the MZ-package;
-F - sct log level for the FZ-package.

LUN specifies which logical unit to change the log level for (in case of -F option). If LUN=0, this log level
will be set for all open FZ-files.

62 STORE [stor]

STOR C ’Store’ D='ZTREE’ R='ZTREE,PAW’

Display the structure of the main ZTREE store. This command calls the DZSTOR routine for the ZTREE
or PAW store depending on the parameter.

6.3 ZVERSION

Print Zebra / Kernlib version. This command simply calls the MZVERS routine.

64 Q addr| value]

ADDR I 'ZEBRA address’
VALUE R 'Tha value’

6.5 LQ addr [value]
6.6 IQ addr [value]

6.7 1Q2 addr [value]

ADDR I *ZEBRA addrae=zzs’
VALUE I *The wvalue’

Using commands 6.4 - 6.7 you may show or change the contents of Q, LQ, IQ, or IQ2 arrays (see ZEBRA

reference manual [1] if you do not know what’s this). If the VALUE parameter is net given, the current
value will be printed. Otherwise, it will replaced by the given value.

37

Chapter 7: KUIP interface

This chapter describes several KUIP features which are very useful and should be used more widely.
Some of them are new, such as application defined system functions which are since the spring 1994.
This chapter is not intended to be a complete description of of KUIP - the most recent and full information
you may find in KUIP manual [2].

7.1 Vectors

Veciors are named arrays of numerical data, memory resident, whose content can be by entered directly
by the user, or read from disk files. At the end of an interactive session they are lost, unless previously
saved onto disk files.
Vectors can have up to 3 dimensions (in fact they are “arrays”, called “vectors” for historical reasons).
The interesting characteristic of vectors is the possibility to handle them either interactively, or in the
application program, by mean of KUIP routines which retum the addresses of a given vector, thus making
its content available to the application.

- Simple arithmetic operations can be applied to vectors. In addition, if KUIP is linked with the SIGMA
array manipulation package, all the power of SIGMA is automatically available (through the system
function $SIGHA). In this case, you may see also chapters 5 {Vectors) and 6 (SIGMA) of PAW Manual[5].

Table 7.1: Addressing scheme for vectors in KUIP

Definition: VECTOR/CREATE V(NCOL)

e et ST

I 1 1 +1 | + isaddressedby V(3)

et i

Definition: VECTOR/CREATE V(NCOL,NROW)

B S e e it
:E ¢ 33
B R e e
$- -8 o ake
e e At
I =1 | | + isaddressedby V(2,3)
e e e = p o

Vi:,3) isthe 1-dim array representing the 31d row
¥(2,:) isthe 1-dim array representing the 2nd column
the shortcut notation V(2) can be used as well

Definition: VECTOR/CREATE V(NCOL,NROW ,NFLAN)

R LT PR
-+ |
B e Tt S S N
b - §. kg
B e el L
laahs 4 drp i
B e T S

o e — e — e

+ is addressedby V(3.1.1)

+ |
| +
*-
| +
+

38

7.2 Aliases

Aliases are defined to provide shortcut abbreviations for the input line (cither in the command elements
or in the parameter list) or for some part of it. An alias name can be any string of characters (except
the single quoie and the blank) and whenever encountered in an input line it will be replaced literally by
its value {(another string of characters). Alias substitution does not apply in quoted strings. Aliases are
defined by using the command ALIAS/CREATE.

B

Exnmpie of using aliases

2TREE> ALIAS/CREATE M7 ‘EXEC MACROT®' C
ZTREE> ALTAS/CREATE PP *10 20 30'
ZTREE> ALIAS/LIST

Argument aliases:

PP =» 10 20 30

Command aliazas:

M7 =» EXEC MACROT
ZTREE> M7FP
#o4 [Unknown command
ZTREE> W7 _PP

i Execuot ing: HACRDT 10 20 30

ZTREE> MESSAGE M7

M7
ZTNEE> HESSAGE PP

10 20 30
ZTREE> MESSAGE ‘FP*

PP

Note that if CHOPT="C* then the alias is a command alias, i.e. an alias that will only be translated when
it is the first token on a command line, e.g.

ZTREE> Alias/Create LS DIR € isequivalentto: ZTREE> DIR

Only when LS is the first token on a command line, i.e. in the case below LS will not be translated:
ZTREE> SHELL 1.8

Aliases need separators to be recognized in the input line, as evident from the M7PP line in the example
above, Possible separatorsare blank / , = : . % 7 ().

A double slash // can be used to concatenate aliases without any separator (i.c. to juxtapose them):

ZTREE> Aliag/Create DIR disk$data: [cmd?.raw]
ZTREE> Alias/Create FIL mydatafile
ZTREE> FZ/0PEN 3 DIR//FIL
Executing: FZFILE/OPEN 3 digkfdaca: [cod?. raw]mydatafile

39

Note that aliases arc recursive. Example:

ITRER> afcr aa bb

ITREE> a/cr bb cc

ITHFE>» mesz aa

2

ITREE> afcr docd 'exec docd®

ZTREE> docld

##* Line is too long after alias axpansion

Another way of legally omitting EXEC before the name of a macro, is using the command DEFAULTS
—AUTO. After having typed this command, a macro is searched whenever a command is not found: when
CMD fails, EXEC CMD is issued automatically. But this is valid only in command mode: this logic is not
active within macros, for security and portability reasons.

7.3 KUIP macros

A macro is a set of command lines stored in a file, which can be maiedfﬂitadwitha local editor and
executed with the command EXEC. For example the command

ZTREE> EXEC MNAME

executes the command lines contained in the macro file MNAME. As a macro file can contain several
macros, a dash sign (¥) is used to select a particular macro inside a file:

o If MNAME does not contain the character #, the file MNAME . KUMAC is searched and the first macro is

executed (it may be an unnamed macro if a MACRO statement is not found as first command line in
the file),

o IfMNAME is of the form FILE#MACRO, the file named FTLE . KUMAC is searched and the macro named
MACRO is executed.

| Example of macro calls |

ZTREE> EXEC ABC | Executs first (or unnamed) macre of file ARC.KUMAC
ZTREE> EXEC ABCHM | Execute macro M of file ABC.KUMAC

?ﬁn addition to all available KUIP commands the special “macro statements” in table 7.2 are valid only
inside macros {(except for EXEC and APPLICATION, which are valid both inside and outside)

Note that the statement keywords are fixed. Aliasing such as “ALTAS/CREATE jump GOTO” is not
allowed. '

Macro Statements

STATEMENT

DESCRIPTION

MACRO mname varl=valil ...
EXEC mnama varl var2=val2 ...
RETURN

READ var

SHIFT

label:

GOTO label

ON ERROR GOTO label

OF ERROR

ON ERROR

IF logical expression GOTO label
IF-THEN, ELSEIF, ELSE, ENDIF
CASE, ENDCASE

WHILE-DO, ENDWHILE

REPEAT, UNTIL

DO, ENDDO

FOR, ENDFOR

BREAKL

EXITM

APPLICATION command marker

var = arithmetic expression

i

begin macro mname

execute macro mname

end of a macro

read macro variable var from keyboard
control parameters list

label (must terminate with a colon)

jump to label

resume at label on error condition
temporarily deactivate the ON ERROR GOTO handling
reactivate the latest ON ERROR GOTO handling
conditional statement

Macro flow control

Macro flow control

Macro flow control

Macro flow control

Macro flow control

Macro flow control

Macro flow control

Macro termination

Inline text passed to application command
assignment statement

=

Table 7.2: List of statements possible inside KUIP macros

7.3.1 Macro definition and variables

A .kumac file can contain several macros. An individual macro has the form

e T

Each statement is either a command line or one of the macro constructs described below. For the first
macro in the file the MACRO header can be omitted. For the last macro in the file the RETURN trailer can be
omitted. Therefore a . kumac file containing only commands (like the LAST . KUMAC) already constitutes
a valid macro. Inside a macro the EXEC statement may call other macros.

Positional parameters can be passed to a macro, separated by blanks. Inside amacro, positional parameters
can be retrieved by including in brackets the number representing their order in the list.

41

| Example of macro file | | Ezample of macro-execution !
MACRO ABC ZTREE> EXEC ABC P1 123 'This is P3°
RESSAGE [1] [2] [2] Pt This is P3 123

RETURN
1 I 1

Note that normal variables are not translated if they have not been assigned a value, whereas unassigned
positional parameters are always replaced by the blank character * ’. Macro parameters can be concate-
nated to anything in the command line; whenever a parameter number (or name - see below), enclosed in
brackets, is encountered in the command line, it will be substituted by its value before execution of the
command line.

Non-positional (i.e. named) parameters can also be passed. This is useful when several parameters are
associated to a macro. Initial values of parameters should be specified in the MACRO statement.

Parameters can also be read in at macro run time. When a READ statement is executed the user will be
asked to provide values for the given parameters. If just <CR> is entered, the values remain unchanged.

i - S
i

MACRO TINP
READ PPP
READ 1
MESSAGE 'The value of the parameter PPP i= ... ' [PPP]
RESSAGE 'The value of the parameter 1 is ' [1]
RETURN

o |

The order of priority for macro parameters is such that the values given in the EXEC statement supersede
those given in the MACRO statement.

7.3.2 Special Parameters
The following Three special parameters are always defined inside any macro:

[#] number of arguments given to the macro in the EXEC command which called it.

[*] String containing the arguments given to the macro in the EXEC command, separated by spaces.

[@] Return code (see the description of EXITM, page 47) of the last macro called by the current one (0
if no macro has been called).

In addition, it is possible to use indexed positional parameters of the form:

[kvar] var is a variable with an integer value. This accesses the positional parameter corresponding
to the value of var. If var does not have an integer value then parameters of this form will not
be replaced by a value. This can be used in conjunction with the parameter [#] to loop through
all of the parameters given to a macro.

Note that positional parameters may not be assigned values using this form.

42

Assignments

Assignments to a variable simply take the form

variable S d¥praggion

where variable is the name of the variable to be assigned, and expression is the expression which is
evaluated to obtain the new value of variabla.

Inside a macro, values may be assigned to variables without distinction of their type: an automatic
mechanism is used to distinguish between integer, real or character type variables.

The right hand side of an assignment command may be a vector name with an optional subscript, as in
the following.

The SHIFT command

Normally when parameters are given to a macro on an EXEC statement, the first one is called [1], the
second [2] etc. The SHIFT command “shifts” the values of these parameters so that [1] gets the value
of [2], [2] the value of [3], and so on. The previous value of [1] is lost, and the last parameter is
assigned the “unassigned” value ’ °. This can be useful for looping through the macros parameters with
¢.g. a WHILE loop.

I Example of 2 macro using the SHIFT command _ |

WHILE [1] <> * * DO
1 = $LOWER([1])

CASE [I] IN

(-ftn) SHIFT
FTH = [1]
SHIFT

{(=1ib) SHIFT
LIB = [1]
SHIFT

€3 MESSAGE #++ Tllegal argument [1] e+
EXITH 1

ENDCASE

ENDHHILE

The WHILE, CASE and EXITM commands are described later in this chapter.
The same effect can be achieved using indexed positional parameters, a method which has the advantage
that the parameters are not lost after the loop has been executed.

S bea Example of a macro using indexed positional parameters I
K =1
WHILE [K] <= [#] DO
1 = $LOWER([(K])

CASE [K] TN

{(-ftn) K = [K]l+1
FTN = [%X]
K = [K]1+1

(-1ib} K = [K]+1
LIB = [%K]
K = [K]+1

(%) MESSAGE #¢+ Illegal argument [%K] wes
EXITH 1

ENDCASE

ENDWHILE

43

7.3.3 Macro Flow Control

There are several constructs available for controlling the flow of macro execution, which include condi-
tional statement blocks, several looping constructs and variable assignments.

Flow Control

The simplest (and most obsolete) of the flow control constructs are the GOTO and IF GOTO statements.
GOTO jumps unconditionally to the specified label, while IF GOTQO tests the given condition and jumps
to the label omly if the condition is true. The condition may involve macro variables and arithmetic
expressions. These statements are of the form:

The IF-THEN, CASE, WHILE-DQ, REPEAT, DO and FOR constructs all involve a block of statements, rather
than just a single one. The block begins with the first control statement and ends with the terminating
statement for that construct (usually starting with END). The statements in a block may include other
block constructs, i.e. they may be nested arbitrarily.

IF-THEN, ELSEIF, ELSE, ENDIF

This allows groups of statements to be executed conditionally depending on the status of one or more
conditions.

ENDIF

Here the logical expressions are evaluated in tumn until either one is found to be true, or an ELSE or an
ENDIF is encountered. If an expression is found to be true, or an ELSE is encountered, the statements
following it are executed, and then execution jumps to the first statement after the ENDIF. If none of the
expressions are true and there is no ELSE component, then nothing happens.

Any number of ELSEIF components are allowed (including zero), and at most one ELSE compeonent is
allowed (it may be omitted).

44

CASE, ENDCASE

This allows groups of statements to be executed conditionally depending on the value of a parameter.
gﬁﬁiEﬁ:”']"”" HiF I}f

where expr_list is of the form expr1, expr2, ..., exprh, ie. alistof cxpressions separated by
commas. Here the comma may be seen as a disjunction operator.

Bach expression list is searched for an expression which matches the value of the parameter. When a
matching expression is found in one of the lists, the statements following this list are executed and then
execution continues from the statement following the ENDCASE. Otherwise, if no matching expression is
found, none of the statements are executed and execution jumps straight to after the ENDCASE.

The wildcard character * is allowed in expressions. It matches any string of zero or more characters, e.g.
F+T*N will match FORTRAN, FRICTION, FTH, etc. s

I Exampie of the use of the wild character |
HACRD CASE
READ FILENAME
CASE [FILENAFE] IW

{¢#.ftn, *.far) TYPE = FORTRAN
(».c) TYPE = C
(+.p) TYPE = PASCAL
(*) TYPE = UNKNOWN
ENDCASE
MESSAGE [FTLENAME] is a [TYPE] file.
RETIRN
WHILE-DO, ENDWHILE

This allows loops WHILE DO where a test is made before executing the statements in the loop. While the
result of the test remains true the loop is repeatedly executed. If it is false the loop is terminated and
execution jumps to the first statcment after the loop. Note that since the test is made at the beginning of
the loop it is possible that the loop will never be executed.

REPEAT, UNTIL

This allows loops REFEAT UNTIL where a test is made after executing the statements in the loop. If the
test evaluates to true, execution jumps back to the stari of the loop, otherwise the loop is terminated and
execution continues at the first statement after the loop. Note that since the test is made at the end, the
loop will always execute at least once. The form is:

45

DO, ENDDO

This allows loops DO which arc executed a predetermined number of times, using an automatically
updated counting variable. Its form is:

The va.lu:u start, finish and step may be integer or real. step is optional (the default is 1), and may
be negative for counting backwards. When the loop is first entered the variable is initialized to start.
Bdo?tfh:luopismacmedﬂlev&mufﬂnvuiahhhcmnpundwithﬂlelimit,finiah. If it has passed
the limit then execution jumps to the statement after ENDDO. Otherwise the loop is executed and when
ENDDQ is reached, step is added to the variable and the loop is repeated, starting from the comparison.

r Exampile of Input Macro 7 Output when executing |
MACRD DO ZTREE> EXEC DD
DO T =1,3,0.5 1 squared is 1
J = [1}+[1] 1.5 zquared is 2.25
HWESSAGE [I] squared iz [J1] 2 squared is 4
ENDDO 2.5 squared iz 6.25
HESSAGE How 1 = [I] o gquared iz 9
RETURN Now I = 3.5
L] 1 |
FOR, ENDFOR

This allows loopsFUR where a list of values is specified, and these values are given to a loop variable in
turn. 'I'len-ul:::sexecubed once for each value of the variable. The special parameter [*] can be used to
stand for the list of positional parameters given to the macro on the EXEC line.

‘Eﬂ?mvaluasiua]istof?nluﬂssepamtedbyspm. One or more of the values can be the parameter
*].

I Example of Input Macro & Output when executing
MACRO FOR ZTREE> EXEC FOR 23 9 48
READ T Macro FOR: T 7 100
FOR P IN [+] [I] _ 23 =quared is 529
50 = [P]+[P] 9 squared is 81
MESSAGE [P] squared is [SQ): 43 squared iz 2304
ENDFOR 100 squared is 10000
RETURN L |
| RS I

BREAKL

The command BREAKL aborts the current WHILE, REPEAT, DO or FOR loop, i.e. jumps to the statement
after the terminating statement of the loop.

i BREAKL
Moie that if several loops are nested, it is only the innermost loop which is aborted.

EXITM

The command EXITH exits from the current macro with a return value, which isstored in the parameter
[@] of the calling macro. If this value is not given it is zero by default.

This can be useful for returning error codes, as shown in the following example:

[Example of Input Macros !

Fa T Oulput when executing
ZTREE> EXEC EXTTHAC

MESSAGE At first, *[0]7'= [€] At first, [@] = O

EXEC BXIT2 HMacro BXITZ2: NUM 7 25

IF [8] = O THEN Humbar toc large

Error in macro BXITZ - ceda 5
ZTREE> EXEC BXTTMAC

BACRD EXTTMAC

MESSAGE Macro BEXITZ2 anccassful

ELSE
HESSAGE Brror in BEXIT2 - code (2] At firzt. [0] = 0
ERDTF Hacre EXITZ2: NUM 7 16
RETURN Macro BXIT2 successful
MACRD EXITZ I
READ WUM

IF [WOM] > 20 THEK
ME3ISAGE Number too large
EXTTHM. [NUW}-20
ELSE
YEC/CRE VV([NUM])
ENDITF
RETURN

47

7.34 Parametersin GOTO and EXEC statements

The macro name given to an EXEC statement, or the label given to a GOTO statement, may contain one or
more parameters, which are decoded in the normal way. 'I‘hisisde:nulmﬁinﬂufollowipgenmpic:

{ Example of Input Macres §iii Output when executing i
MACRO DOC10 IZTREE> EXEC DOC1Q
NAME="TE3T® Inside macro TEST1

DO I=1,3 Inzida macro TEST?
EXEC [WAME][1] Inszide macre TEST3
ENDDO l 1
RETURN
MACRO TEST1
MESS ’'Inside macro TESTi’
RETIURN
MACRO TEST?2
MESS 'Inside macroe TEST2?
RETURN
MACRD TEST3
MESS ‘Insids macro TEST2®
RETURN

' - 4

74 System functions

KUIP provides a set of built-in which allow, for cxample, to inquire the current dialogue style or to
manipulate strings. An application may provide additional functions. The complete list of available
functions can be obtained from HELP FUNCTIONS.

The function name is preceded by $-sign. Arguments are given as a comma separated list of values
delimited by “(™ and “)”. The arguments may be expressions containing other system functions. Functions
without arguments must be followed by a character which is different from a letter, a digit, an underscore,
or a colon. “$0SMOSIS” will not be recognized as the function “$0S” followed by “MOSIS” If that is
the desired effect the concatenation operator has to be used: “$0S//MOSIS”. Note however that two

functions can follow each other, e.g. “$0S$MACHINE” because the $-sign does not belong to the function
name.

Depending on the setting of the SET/DOLLAR command the name following the $-sign may also be an
environment variable. The replacement value for $xxx is obtained in the following order:

L. If xxx is a system function followed by the correct number and types of arguments, replace it by
its value.

2. Otherwise if xxx is an argument-less system function, replace it by its value.,
3. Otherwise if xxx is a defined environment variable, replace it by its value.
4. Otherwise no replacement takes place.

-

7.4.1 Alias inquiries
s SANUM returns the number of argument aliases currently defined.
e $ANAM(n) returns the name and

e SAVAL(n) returns the value of the n’th argument alias. No substitution takes place if n is not
a number between | and $ANUM. There is no guarantee that $ANAM($ANUM) refers to the most

recently created alias.

74.2 Vector inquiries
e SNUMVEC returns the number of vectors currently defined.

@ $VEXIST (nmc) returns a positive number if a vector name is currently defined. The actual vall.fe .
returned is undefined and may even change between tests on the same name. I the vector is
undefined the value “0™ is returned.

e $VDIM(nmarnc, dim) returns the vector size along index dimension dim;dim= 1 is used if the second
argument is omitted. If the vector is undefined the value “0” is returned.

e IVLEN(narme) returns for a 1-dimensional vector the index of the last non-zero element. For 2-
and 3-dimensional vectors the result is the same as for $VDINM. If the vector is undefined the value

“0” iz returned.

ZTREE> /CREATE vi(10) R 1 23406

ZTREE> MESS $VDIM(v1) $VLEN(v1) i
10 6

ZTREE> V/CREATE v2($VLEN(vi))

ZTREE> MESS $VDIM(v2) $VIEN(v2)
&0

74.3 Environment inquiries
¢ $DATE returns the current date in the format “dd/mm/yy”
e $TIME returns the current time in the format “Ah/mmiss”
e $RTIME returns the number of seconds elapsed since the previous usage of $RTIME.
¢ SCPTIME returns the seconds of CPU time spent since the previous usage of $CPTIME.

e $0S returns an identification for the operating system the application is running on, e.g. “UNIX",
“VM” or “VMS"

e $MACHINE returns an identification for the particular hardware platform or Unix brand, e.g. “HPUX",
“IBM", or “VAX".

s $PID returns the process number on Unix or “1” on other systems.

o $IQUEST (/) returns the i'th component of the status vector IQUEST. IQUEST(1) always contains
the return code of the most recently executed command.

49

&

$ENV { nazine) returns the value of the enviromment variable name, or the empty string if the variable
is not defined.

$FEXIST(f#leneme) returns “1™ if the file exists, or “0” otherwise.

$SHELL (rom muand) returns the output from the shell command. containing more than one lne 15
concatenated replacing the new linez by blanks.

$SHELL (romumand, 1) retums the n’th line of output from the shell command.

7.44 String manipulations

$LEN(=/ring) retuns the number of characters in string.

$INDEX (siring, suhsiring) retums the position of the first occurrence of substring inside siring.
or zero if there is none.

$LOWER(~/ring) and
$UPPER(#/riny) retum the argument siring convericd to lower or upper case, respectively.

$SUBSTRING (sirtng, k.) returns the substring .ﬂriné{k:k+n-1 J. The argument may be omitied
and the result will extend to the end of string. Character counting starts with 1. If » < (je an error
message is emitted. :

ZTREE> MESS $SUBSTRING (abcde,2)/$SUBSTRING (abcde,2.3)
bodefbad

ZTREE> MESS $SUBSTRING (abcda,-2) /$SUBSTRING (abeda.-4.3)
b £ : L

$WORDS (#fring, scp) returns the number of words in string separated by the sep character. Leading
and trailing separators are ignored and strings of consecutive separators count as one only. The
second argument may be omitted and defaults to blank as the separator character.

ZTREE> MESS $WORDS(® .abc.defl,.ghi®,”,")
3

$WORD(siring,k,n,sep) (r)eturns n words starting frem word k. The last two argumenis may
be omitted.

ZTREE> MESS $WORD(’abc def ghi’)

abe
7TAEE> MESS $WORD(’ahc def ghi’,?2)
def
2TREE> MESS $WORD(’abc def ghi®,2.7)
daf ghi

$QUATE («/ring) returns a quoted version of siring, i.c. the string is enclosed by quote characters
and quote characters inside string are duplicated. The main use of this function is if an alias value
containing blanks should be treated as a single lexical token in a command line.

$UNQUOTE (~/ring) returns a string with enclosed quote characters removed. The main use of this
function is if 2 macro variable should be treated as several blank-separated lexical tokens.

50

Exzample of macro using system functions

HACRD DOC1L 1=* °
IF $VEXIST(VVV) <> & THEN
Y/DEL VvVY
ERDIF
YH = $SUBSTRING([1].1.1) | get first character
YN = SUPPERIL[YN]) | move to upper cass
IF [YN]=*Y* THEN
MESSAGE *‘You said Yes®
ELSEIF [YN]1='W® THEN
MESSAGE "You said Neo®
ELSE
MESSAGE 'ERRDR®
ENDIF
RETURN

| S r—

[sam Output when executing macros DOC11 with various arguments

ZTREE> exe docit
ERROR

ZTREE> axe docll y
You s=aid Yes
ZTREE> exa docll YE
You said Yez

ZTREE> axe docll YOO
You zaid Yes

ZTREE> gxe docll no
You zaid No

7.5 ZTREE specific system functions

7.5.1 General purpose functions

e $VERSION() returns ZTREE version, for example “3.72/01".

e $NEVENT() returns current event number if the current record is a CMD-2 event, otherwise the

value “0" is returned.

e $FILENAME() returns the name of the current input file. If input file is not open, empty string is

returned.

s $FILEMODE() returns the format of the current input file or The following values may be returned:

X - exchange format, binary;

N - native format, binary;

A - ASCII format;

*? - empty string is returned when input file is not open.

¢ $FILERECL() returns record length of the current input file in bytes, “0” is file is not open.

51

7.5.2 ZEBRA storage access

$LTOP() retumns ZEBRA address of top-level bank in current data structure.
$NBANKS () returns number of banks in current record.

$IADDR(:) returns ZEBRA address of /-th bank { 0 < + <$NBANKS()). If ; is out of bounds the
value “0” is returned.

S$INAME(:) returns name of /-th bank (0 < ¢ <<$NBANKS()). If / is out of bounds the value “0” is
returned.

$SNBANK (nner1ri¢) returns nomber of banks "name’ in current record.

$ADDRI(r. narrrec’) Address of the i-thbank "name’ (0 <. i/ <$NBANK(name)). If / is out of bounds
the value “0” is returmed.

$ADDRN(idn_ name) Address of the bank "name’ with the numeric bank identifier /dn. Returns
“0" if there is ne such bank in the current data structure.

$ADDR(rame) Address of the first found bank 'name’. This function may be used when you
exactly know that there may be only one such bank in the data structure or you simply want to
check if any bank with this name exists in the data structure. If bank was not found, $ADDR (name)
returns “0”.

$NAME(addr) name of the bank at specified ZEBRA address. This function always retumns
something, so it is better to be sure that there is anything at this address.

$CTOH(~) Hollerith representation of 4-char string.
$HTOC(/) Character representation of 4-byte Hollerith constant.

$QC:), $LQC), $1QC/), $IQ2(:) return the value of the coresponding ZEBRA array, i.c.
$HTOC($IQ(1234)~4) is the same as $NAME(1234)

7.5.3 Output FZ-files inquiries

$NFILES() Number of open output FZ files.
$FZFILE(:) Name of the /-th file.

$FZLUNC(:) LUN of the /-th file.

$FZMODE (/) Mode of the i-th file (A, X or N).
$FZRECL (/) Record length of the i-th file in bytes.

52

Example of macro using ZTREE system functions

HACRO find_event number=’+’ max=500 skip=100
IF ([1] = *#»') THEN
message 'Paramatersz: <number> [max] [=kip]’
meszzaga ' nusbar - avent numbar.’
- maximum numbar of records to paszz. [500]°

messaga ' max
messages ° gkip - how often to digplay current avent number. [100]°
EXITH 1

ERDIF

IF { $LEN(YFILENAME()) = O) THEW
mossage ' s+ Input file is not open.’
EXITH 1

ENDIF

gat next off
count = 0

D0 i=1,[max]
naxt
IF { $IQUEST{1) <> 0 } THEN
message ' &% BError reading imput file’
get next on
EXITM 1
ENDIF
count = [count]+1
nevt = FNEVENT()
IF { [nevt] = [number])} THENW
message ' Ok! Event '//[number]//’ has= been found.’
set next on
EXITH
ENDIF
IF { [zount] >= [zkip])} THEN
messags [i]//7: evant *//[nevt]
count = 0
ENLIF
ENDDO

message ' ++* Event numbar *//[number]//' has not been found.'®
mezzage ' Current event number i= '//$NEVENT(}
gt next on

RETURN

53

Appendix A: Using COMIS
A.1 How to use COMIS?

COMIS is an interpretation system which can execute a FORTRAN program without compilation.
A COMIS program can be createdfedited by a local editor and executed with the RUN command. Such
programs are called ZTREE macros for historical reasons. By default a ZTREE macro file has extension
".ZTREE'. For example the command

ZTREE> AUN HHAME

executes the program stored in the file MNAME . ZTREE. Actually, the RUN command simply invokes the
COMIS FORTRAN interpreter [4]. Therefore, the ZTREE macro is a FORTRAN program which may
also contain references to many CERN libraries and ZTREE internal routines. That is why such macros
are useful - they can communicate with ZTREE and perform analysis of data read from FZ-file without
dealing with ZEBRA, i.c using ZTREE ability to operate with FZ-files.

In the specification of arguments for the calling sequences the FORTRAN-77 conventions are followed,
i.e. integer type arguments are starting with I-N, and character type arguments always start with CH.
The scope of variables is INPUT (by default), OUTPUT (if a = follows the name), INPUT-0UTPUT (if a *
precedes and follows the parameter’s name).

The following routines from the CERN Program Library can be referenced:

From HBOOK:

HBOOK1,HBOOK?Z , HBOOKN , HFILL , HF1,HPRINT , HDELET , HRESET
HFITGA ,HFITPO,HFITEX,HPROJ1,HPROJ2, HFN ,HGFIT

HROPEN ,PADPEN , PACLOS, PAREAD ,PAWRIT ,HCDIR, HGIVEN
HTITLE,HBFUN1, HBFUN2, HRNDM1 , HRNDM2 , HBARX , HBARY

HPAK , HPAKE , HUNPAK , HGIVE ,HGN , HGNF ,HGNPAR , HF 2 ,HFF 1 , HFF2
HRIN,HROUT,HI,HIE,HIX,HIJ,HIF,HIDALL ,HNOENT,HX HXY
HTITLE,HCOPY,HSTATI,HBPROF, HOPERA , HIDOPT ,HDERIV
HMAXIM ,HMINIM ,HMAX ,HMIN ,HSUM, HNORMA , HREND
HEXIST,HRGET, HRPUT ,HSCR ,HFIND,HCX,HCXY ,HLABEL

HBPROX , HBPROY , HBANDX , HBANDY ,HBSLIX,HBSLIY

HBOOKB ,HBSTAT , HDIFF , HUNPKE , HREBIN , HERROR

HOUTPU , HERMES , HISTDO, HFUNC , HIJXY ,HXYIJ,HLPOS, HFC1
HSPLI1,HSPLI2,HMDIR,HLDIR,HLOCAT ,HFITH, HFITV,HFINAM
HBNT , HBNAME , HBNAMC , HFNT ,HFNTB, HGNT , HGNTF , HGNTV , HBSET

From HPLOT:

HPLOT ,HPLSYM ,HPLERR ,HPLEGO , HPLNT, HPL;SUFL, HPLSOF
HPLABL ,HPLSET ,HPLGIV,HPLOC ,HPLTOC, HPLNEW , HPLOPT

From ZEBRA:

LZFID,LZFIDH,LZLOC,
MZLIFT,MZPUSH,MZDROP ,MZFORM , ZSHUNT,
FZIN,FZOUT,FZFILE,FZENDI ,FZENDO
RZCDIR,RZLDIR,RZFILE,RZEND,RZIN,RZOUT,RZVIN,RZVOUT
RZOPEN ,RZI0ODGC

54

From KUIP:

KUGETV ,KUDPAR,KUVECT ,KILEXP ,KUTIME , KUEXEL ,KUEXEC
KUPROS ,KUNWG , KUCMD , KUGUID , KUNDPV ,KUPAR , KUPVAL , KUACT

From HIGZ:

IPL,IPM,IFA,IGTEXT, IGBOX, IGAXIS,IGPIE, IGRAPH, IGHIST
IGARC,IGLBL,IGRNG,IGMETA, IGSA, IGSET, IRQLC, IRQST,ISCR
ISELNT,ISFAIS,ISFASI,ISLN,ISMK,ISVP,ISWN,ITX, ICLRWK
IGPAVE, IGTERM

From KERNLIB:

VZERO,UCOPY, RNDM , RANNOR , LENOCC,SBIT0,SBIT1,SBYT
JBIT,JBYT,UCTOH,UHTOC,CLTOU,CUTOL
ERF,ERFC,FREQ,PROB,

TIMED

The following COMMON blocks may be referenced:
/PAWC/, /QUEST/, /ZTREE/

The format of /ZTREE/ COMMON block is described in section A.2. Noie also that ZEBRA -like routines
LZFID, LZFIDH and LZLOC search ONLY for banks in the current data structure.

Any KUIP or ZTREE command may also be executed from a ZTREE macro through KUEXEC routine:
CALL KUEXEC(’ command’)

In addition to those mentioned above, some other routines may be used inside ZTREE macros to allow
the user to access some ZIREE commands directly with subroutine calls. Such access is much more
efficient than through KUEXEC call. Some special routines are also defined to simplify the work with
ZEBRA inside a macro. These routines are described in section A.J.

A.2 ZTREE internal common block

The ZTREE internal COMMON block may be used inside ZTREE macros to work with ZEBRA banks,
to alter the contents of a bank or to change the structure of data stored in memory. It is much more
convenient than to wrile a separaie program because you do not worry about ZEBRA initialization,
reading and writing FZ-files. The /ZTREE/ COMMON block has the following format:

PARAMETER (NWORD=500000)

INTEGER IQ(NWORD),LQ(NWORD)

REAL Q(NWORD)

EQUIVALENCE (IQ¢1),Q(1),LQ(9)),(LQ(1),LTOP)

COMMON /ZTREE/ IXSTOR,IXSYST,IXWORK,IXRUN,FENCE(16),LTOP,
+ LA(NWORD) ,LASTA

where LTOP is a pointer to the top-level bank of the current data structure. But actually you do not
need to put this COMMON block in every one of your COMIS programs. Alternatively you may use
the special routines defined for use inside ZTREE macros - LTOP (1) function instead of LTOP, IQ(N)
function instead of IQ (NWORD) array, etc. See the detailed description of these routines in section A.3.

55

A.3 Special routines

Below is the list of special routines that can be referenced from the ZTREE macros. In the specification
of arguments tixx FORTRAN-77 conventions are followed, i.e. integer type arguments are starting with
I-¥, and character iype arguments always siart with CH. The scope of variables is always INPUT.

A31 Input/output files control

Action: logical functions. Returns . TRUE. ifmnentpmiﬁmisﬁndl-ﬂf-ﬁl:, Start-Of-Run or End-Of-Run,
respectively.
Parameter Description:

THUMMY dummy argument

i
P
“
i

o

Action: opens output FZ-file CHNANE on unit LUN (see alsc FZFILE/OPEN command).
Farameter Description:

S e e

LiTH logml unii number
CHFVAME file name

B e onanods o E ; AT . " B .'::'1 - = S -.;‘;5-

Action: writes current data structure int~ the FZ-file previously open on unit LUN (see also FZFILE/WRITE
command .
Forameter Description:

Lun logical unit number

g 3 2 b % ﬁ.—%‘;‘?ﬁ?g}ﬂ ne
s oo b s et -2 S R S

Action: closes the output FZ-file previously open on unit LUN (see also FZFILE/CLOSE command).
Parameter Description:

LUN ; logical unit number

Action: returns the number of banks CHNAME in the current data structure.
Parumeter Descripticn:
CENAME bank name (CHARACTER=4)

o - L -
o Lt

Action: retumns the evant pumber if the current data structure is an event record, ¢lse roturns 0.
Parameter Description:
IDUMMY dummmy argument

Action: returns the ZEBRA address
Parameter Description:

IDUMMY dommy argument

o b, - P
Action: four above functions return the value of elements of arrays from /ZTREE/ common block. The
may be used insicad of ZEBRA arrays but you do not need to put ZTREE common bleck in your macro.

Parameter Description:
B ZEBRA address

IQ2(N), LQ(N) and Q(N), respectively.
Parameter Description:

] ZEBRA address
IVAL,VAL the value

et ‘!“/ﬁ:%"l‘;

T Iy R

Action: rﬂmdtcumnbcrufpumm mpphedmdmcummandhmaﬂ:rd:mmﬁlem

Action: luglcnlflmuon Geﬂﬂtcsh‘ngtypcpum:brnmnberﬂﬁmdwmmdhm Returns
.TRUE. if parameter was given.

Parameter Description:

N parameter s number.

CHPAR* the CHARACTER parameter

L* logical length of the returned string, i.e. without trailing blanks.

Action: logmlﬁuwuun. Gcﬁﬂwmtcgwtympwmhrﬁmnth&cmandhm Returns . TRUE. if
parameter is present and successfully decoded.

Parameter Description:
N parameter s number.
IPAR+ the parameter

Action: Ioglcalftmdmn Gﬂsﬂmmltypcparmneterfmmﬂwmmmmdlm Returns . TRUE. if
parameter is present and successfully decoded.

Parameter Description:
N parameter's number.
RPAR* the parameter

38

A4 Macro Example
| ZTREE macro exampie
e
¢ Example 1. Find an event with specified number
c
e Sie ML R TR L SOSR G e Gi%
PROGRAM FE
IHTEGER HCUR . EVENT_NUMBER.NUMEV.T,HAX
COMMON /QUEST/ IQUEST(100)
DATA MAXS500/
IF (TARGC (IDUMHY) .EQ.0) THEH
PRINT #.' Usage FE <number> [max]’®
PRINT #.' nuaber - avent numbar.®
PRINT *," max = maximum number of records to pass.’
PRINT +.° Default iz * MAX
5T0P
ENDIF
CALL KUEXEC('SET NEXT OFF’)
10000 FORMAT(' Searching for event number ',I7,’ *)
IF(.HOT.GETARGI (1 .EVENT _NUMBER))| THEN
FPRINT *,* #+#* Invalid parameter’
3TOP
ENDIF
IF(GETARGT (2, TPAR))} MAX = TPAR
PRINT 10000 ,EVENT_NUHMBEER
DO 10 I=1,MAX
CALL MWEXT
IF(IQUESTC1) . GT.2.0R. TQUEST(1) .LT. Q) THEN
PRINT #,' ##% Error reading input file’
sToP
ENDIF
NCUR = NEVENT(IDUMMY)
IF { NCUR.EQ.EVENT_NUMBER) THENX
PRINT +,' Ok! Event is found.’®
GOTO 100
EXDIF
16 CONTINUE
PRINT #.° Such evant i= not found.’
IF(HCUML.NE. ¢) PRINT #.° Current events number is= ' HCUR
100 CALL KUEXEC('SET WEXT ON')

sTOP
END

59

Appendix B: Documentation Files
B.1 ZTREE documentation files format

The nature of the contents of any bank must be indicated to ZTREE via the documentation files which
may contain a description of the bank format and comments. Two documentation files may exist
simultancously: the local file and the main file. The main file usually contains a description of the banks
used by many users. But if the user works with his(her) own ZEBRA banks, he(she) can create a local
documentation file containing their descriptions. First ZTREE tries to open the local documentation file.
If this file does not exist or the bank format is not found, ZTREE uses the main one. You may change
documentation files names using DOC_FILE command.

The documentation files contain bank descriptions in ZEBRA format {see help on MZFORM routine, [1])
following bank names, for example:

FRCS 1I IF / 1I 1F ! information about "free" crystals

A bank description line may be followed by comment lines which are started by a space (a description
lines must start from the first position):

FRCS 1I 1F / 1I 1F ! an information abocut "free" crystals
Number of crystals out of clusters

Energy deposition in the crystals, MeV

Crystal number

Energy deposition in the crystal,MeV

'Every comment line corresponds to 4 bytes of data. Note that there are some differences between ZTREE
data type identifier syntax and ZEBRA. One reason is because using ZTREE you must specify not only

the data type but also how to represent this data (for example, in octal or decimal notation). The possible -

data type identifiers are listed in table B.1.

bit string of 32 bits

bit string of 16 bits

integer*4

integer*2

integer*4: in octal presentation
integer*2 in octal presentation
floating-point

4-character Hollerith

Moy e O = oo

Table B.1: ZTREE data type identifier syntax

60

If you use 2-byte integers stored in a ZEBRA bank, you may specify comments for every one. These
comments must stay on a one line scparated with *\’:

HEVT 1i 1b 1B iI 1B ' the header of the reconstructed aveant
Run number\ Date

Time

Event number

Triggaer

B.2 Producing bank documentation

When you write programs using ZEBRA, you need a paper describing the formats of the banks used.
In order to produce such kind of documentation, the DESCRIPTION command is provided (described in
section 3.7 on page 18). For example, the command

ZTREE> DESCRIPT FRCS

will create the plain text file containing the bank description shown on figure B.1. The file name will be
FRCS . DOC, if the name of the ZTREE description file is set to *.DOC (this may be set with DOC_FILE
command described in section 3.8 on page 18). In any case ZTREE informs you of which files has been
created:

ZTREE> DESCRIPT C+

File CLUS.DOC iz creatad.

File CELL.DOC is creatad.

File COND.DOC iz created. .
ZTREE>

Note, that both the bank name and the description file name using the DESCRIPTION command may
contain wildcards. The *+* symbols in the file name are replaced by the name of the bank found in the
documentation file. The documentation may be produced in the ISIgX [8] format using option -LATEX:

ZTREE> DOC_FILE ».TEX -D
ZTREE> DESCRIPT -LATEX FRCS
File FRCS.TEX is creatad.
TTREE>

This makes a file to be processed by I&IX. The output is shown on figure B.2 on page 62. If you need
to create a single file containing the formats of the all banks known to ZTREE, you simply type:

ZTREE> DOC_FILE BANKS.TEX -D

' 2TREE> DESCRIPT -LATEX »

File BANKS.TEX i= craated.
ZTREE>

Of course you may omit ~LATEX option, if you want the plain text file.

61

Bank FRCS - an information about "free" crystals

+
1
|

— —— _— =

+ - -—— ——— -+
! Offset e s o R Content !
+- - — - ————— -
$ +1 ! Int*4 ! Number of crystals out of clusters :
' +2 * Real ! Energy deposition in the crystals, MeV !
' :
: !
g !
! +342%(n-1) ! Int#*4 ! Crystal number !
' #442+(p-1) ! Real ! Energy deposition im the crystal,MeV !
: !
s !
y !

Figure B.1: An example of documentation produced by DESCRIPTION command in a plain text format.

Bank FRCS - an information about "free" crystals

Offset

Type

Content

+1
+2

Int*4
Real

+3+2%(n-1)
+442*%(n-1)

Int*4
Real

Number of crystals out of clusters
Energy deposition in the crystals, MeV

vvvvvvvvvv

Crystal number

Energy deposition in the crystal, Me V

1111111111

Figure B.2: An example of documentation produced by DESCRIPTION command in I&TEX format.

62

Bibliography

[1] R.Brun, M.Goossens and JZoll. ZEBRA Users Guide, CERN Program Library Q100. CERN, 1991.
[2] KUIP - Kit for an User Interface Package, CERN Program Library 1102. CERN, 1993,

[3] HIGZHPLOT Users Guide , CERN Program Library Q120 and Y251. CERN, 1993

[4]1 COMIS - Compilation and Interpretation System , CERN Program Library L210. CERN, 1993,

[5] R.Brun, O.Couet, C.Vandoni and PZanarini. PAW users guide. CERN Program Library QI21.
CERN, 1991.

[6] CMZ-ASourceCode Management System. User’s Guide and Reference Manual. CodeME S.AR.L.,
1991.

[7] PDP-11 ON-LINE DATA ACQUISITION SYSTEM MANUAL. CERN, 1983.
[8] L.Lamport, IXIgX: A Document Preparation System. Addison-Wesley, 1986,

63

Table of Contents

Introduction 3
1.1 Wiatie TRRBME . ¢ i § v o0vd DD opad it o iwburdVowid i WA - S908, 3
B I o o e i e G o s 3
BT e et R e N o 0 e 4

LR SIS o VSISO =09 seiturvreis]) bim noasligiee.) « Ao 5

R R el TR e e a g &] 3
1A Olsslielp”, Seai | L leson, depars Om g the, qrgatals, Kal00L JEETD 6
R P O I 6
General Commands 8
2.1 BACKWARDS Filie] a0 s po 0 (VR DRZIDOO A ATAG S00L1AD § -5 8
L2 DRIA IR] e el b NEME L Y 8
33 PREETNNNNINE ;. ..o i e e o e e 8
24 PEDEOEMBIET0 orrin s e s e b e sn e 9
0 ORI R TIIR) . . v s e s s e e e 10
B o T e i e 10
P REVRNN = Aot sk S FUSL LA T I v pwies 6 & aaln g e 10
L EE s R T 11
R e NN IUE R S S 0 W 11
I O I ooty i ot e A 13
g e mecmali o Sha s ipne B SO S S S AN 14
UTILITIES 15
SE R TIEY .. - . . Ve i e 15
3.2 BANK fname name [idnheaderdisplay] 15
33 DUNER F bl Forno dosositomin Seaseins, 50T o+ s s T i 16
3% CALCURMPUREBIET . . - .o 5o wn o wian wd bl b et RS 30 16
FE BRI oo v o bm i 0 e VR e B DA% e et e 17
R TRl T e 17
3.7 DESCRIPTIONEst IR e = e s s 18
38 DOCFILE[fnameopt] Sty ae s R s 18
BN DONEMEL RN o oone vy 5 vsawwis cmin vosn it &b I 19
S TRADERERRGET.- G I A e b e s e e 19
BARSEEIIE o oot s i e R e & 19
3.12 STATISTICS P I D W s o S RS
313 SEHOWETBEEINET -« ooviononnstonn nnh pve s s aiam 19
i b o b C AN DN S e S LN e =S A L S 19

64

4 FIFILE
RO s apte] . A T R A Py < v

4.1

4.2
4.3
4.4

4.1.1

E R TR R T R i g e B N O 1B S e s

PERIRL. < oo v b il A R R R R P e s

FEITE I . .. i diie o it e e S ama B 0 3 o o G RN T
FERIDGE B . ool i ia s arin it Gl G a5 3 5 e o oe J OREREN 3N 5000 - . 5

5 CMD2
CALIBRATION [coptfaamechform]

8.l
3.3
Jud
54
2.3

5.6

3.7

5.8

5.9

5.10

DETECTOR

3.5.3

METAFILE/RANGE [range]
METAFILE/OPEN fname [metaflopt} onpme v555 ..
METAFILE/CLOSE

CALLHORIETER vt ot b e et s s sl SR - »

5.6.1
5.6.2
5.6.3
5.6.4
5.6.5
5.6.6

CALORIMETERMHIT.COLOR[zonecolor]
CALORIMETER/ZONES [number enmax enmin] . . .
CALORIMETER/ENERGY [zoneenergy } - -, c.pa--
it gn B 0T T e i e o ML < R N SN
o BT T L e e e I L D, i L S R
R R R T R R N e S s i e, o e

...........

SPENIRRIIREIE =, & . o ot T AT T W i i e W1 T e e e s

3.1.1
3.72
i
3.74

DOIOOLOR [sctosobjectoalor | «. . . 7702 . 7 o X e e s e s v v
DC/MARKER [mivpensc opt] - - .. - . - MO o ARDSS . . .

DC/CPTIONSLapt] -« wic & o v o o Spps 0ol S 00gm) £2T
DC/PARAMETERS [angle vdrift tstopiampl]

RCRIMBRIIIE. . . o a5 e R T e B N e e T Sk ek i

3.8.1
3.8.2

e b oggy o ST R A S O e Wl s i R
ZC/PARAMETERS [thresupperlowerscale] ;

DRI . 2 s S sl Ay A R AT L T T Y

3.9.1
592
- g

MUOPTIONS [amiopt] - . - . - . - DUESCORRIgNg 0.,
MUPARAMETERS [mupar]. PoSREsee S50 L4 |
YORKECOLOR [colorinisfast] SYS00p Ssapsd | S8,

DELL O . o o vos v ey e e e wie e ey« DURTREINLOTESE . §

5.10.1
5.10.2
5.10.3
5.104
5.105

SET_SHOW/COLOR TABLE [colorred greenblue]
SET_SHOW/WORKSTATION [wtype]
SET SHOW/SYSTEMS [list] '0sogt &b sobalasatoal, OGS |
SET_SHOW/SCALE [scalexcyc] 0o v,
SET SHOWSBETIONBEGR] . . . oo s 4 vov o o o v o wivcs o 5

20

21
21
21

6 ZEBRA

6.1
6.2
6.3
6.4
65
6.6
6.7

74

y -

LOGLEVEL [Toghoptdmm] d o ol TR, 1.
e ol - ¢ T T

73.1 Macrodefinitionandvariables
P s .. [e
SR I I ... oy o o ol T A e e L
734 Parameters in GOTOand EXEC statements

TRV 5. oo v o o bt S B e it
e B R S
TR SRR . .-, . ¢ - o : o0 v WP N BT IO o s
TR OIS v e TR RS B
ZTREEspecificsystemfunctions . _ . , c5u% s .t
151 Goeuersl purposcTanctions . . . ;. icu msidonbiiog 35 ERRAE L52. .
1o ZEDRN SIOMMEBI000 { oo wesm oqvich L ASERAMYNG, . BTE. .

Using COMIS

NS TR) .. oo i i o s ST A 5 o Rl

A BPEMEDNNNE eaiie eniepesde s n TTENAHTDE. . §

K33 Thdsialgulotnd {mque lCST I ARARIDE 502 |
A33 Parametervetrieval o el SU SIS

AACHINRRIIE T . ..o e e s ey WNOMETHE D

B.1

Documentation Files

ZTREE documentationfilesformat

B.2 Producing bankdocumentation.

37
37
37
37
37
37
37

38
39

41
42

48
48
49
49
49

51
51

52
52

55

56
57

59

