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Abstract

The problems connected with the design of a beam
screen for dipole magnets of proton collider LHC
are discussed. In particular, we consider restric-
tions connected with possible beam screen deforma-
tions at quench, from one hand, and with beam dyna-
mics and energy losses, from another hand.

The beam screen design variants with copper
strips coating and everywhere copper coating were
considered. Mechanical stresses and deformations at
quench are analysed as well as beam screen heating.
Symmetrical multibunch transverse oscillations were
considered with respect to their resistive insta-
bility and transverse resistive impedance. Image
currents ohmic losses were calculated with the
account of anomalous skin effect at low tempera-
tures.

A compromise variant is put forward for the
operating temperature choice and copper coating

thickness.
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1. Introduction

One of principle functions of the beam screen is inter-
ception of synchrotronous radiation (0.4 W/m) and image cur-
rent ohmic losses (0.35 W/m) at average current in one beam
~0.8 A and bunch length ¢~10 cm, in order that this power
was not dissipated in cold bore walls at the level of 1.8 K.
The cold bore and beam screen cross section is shown in
fig.l.

Because of its location in strong magnetic field, the
beam screen is subjected to the action of ponderomotive
forces due to eddy currents flowing at magnetic field swit-
ching-off. The beam screen must be designed to bear multiple
magnetic field switchings-off without damages and residual
deformations.

For retaining the mentioned low level of image current
losses, the beam screen must have small surface impedance
with the account of skin effect. For this purpose, it must
be coated with copper layer. The ponderomotive forces at
quench depend on thickness of this layer, because eddy cur-
rents are determined by small copper resistance. Stainless
steel at low temperatures in strong magnetic field has
specific resistance about 1000 (at maximal energy) - 2500
times (at injection energy) greater than copper.

An additional condition imposed on the beam screen is
connected with ensuring collective stability of symmetrical
multibunch transverse oscillations modes. For that, so call-
ed transverse impedance must not exceed given values [1].
This condition is ensured by copper coating.
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And finally, the operating temperature of the beam
screen must be chosen in an optimal way. With a respect to
thermodynamics, it is advantageously to take this tempfar:a—
ture sufficiently high, for example, equal to the boiling
point of liquid nitrogen. In this case copper resistance
increases, which causes mechanical stresses and beam screen
deformations at quench to decrease. But this can result in
prohibitive increase of image current ohmic losses Efnd also
going transverse impedance over a given limit. Besides, at
high beam screen temperature, absorption of heat by a cold

wall (liquid helium point ~ 1.8 K) can appear to be too big,
which leads to big energy expenditure at compressor level.
The beam screen temperature must be chosen in order to
optimize, for example, total compressors power necessary for
heat removal from the beam screen.

In order to satisfy contradicted requirements, it was
suggested in [2] to make copper coating of four 18 mm wide
strips. . That causes mechanical forces to decrease, and
transverse impedance growth is offered to compensate by the
corresponding increase of copper coating thickness. Image
currents were assumed here to flow in the main in copper
strips with small resistance.

In order to have the possibility of optimal variant
choice, we have made the calculations of beam screen
electric parameters at various conditions. Operating tempe-
ratures 20 K, 50 K and 70 K were considered at the injection
energy and maximal one. Calculations have been made for
copper coating thickness 10, 20, 50, 100, 1000 2000 pm,
stainless steel 1 mm, and besides, for everywhere copper
coating and strips coating a half of a beam screen, as
offered in [2]. For these conditions, image currents ohmic
losses per unit length, transverse impedance and the insta-
bility growth rate for the most dangerous mode were calcu-
lated (see further).

Below, some explanations are given, in particular, the
question of a dangerous frequency with respect to transverse
oscillations stability (the frequency, for which one should
to calculate transverse impedance and instability growth
rate). According to criteria derived in [9] the frequency
maximally contributing to the growth rate has a form
{k-Q]-fDD*O, where k is integer, Q is betatron tune, fu is

revolution frequency. Because for LHC Q=70.3, the dange-
rous frequency is about 8 kHz (for k=71). In [1] and [2],
another frequency was specified - 3.3 kHz (for k=70). But
the latter frequency corresponds to damping a neighbour mode
and therefore is not dangerous.

Transverse impedance was calculated assuming thickness
of the stainless steel part of the beam screen to be much




more than skin depth, although in fact beam screen thickness
is equal 1 mm, and skin depth for dangerous frequency 8 kHz
is ~4 mm. On these grounds, it was assumed in [2] that image
currents do not flow in beam screen parts without copper
coating. But in fact the magnetic field penetrating through
the beam screen meets a cold bore wall, also of stainless
steel, with considerably greater thickness. As shown in
App.2, a vacuum gap can be neglected at calculation, and
total thickness of steel wall must be taken into account.
Where the steel wall is coated with copper, almost the whole
current flows in the copper layer, even if its thickness is
less than skin depth in copper. Owing to this, transverse
impedance at copper strips coating appears to be essentially
greater than at everywhere coating.

Now, some words how to treat admittable value of trans-
verse impedance. In our opinion, it must be done comparing
growth rate caused by it with supposed decrement of a spe-
cial feedback, which, as pointed in [1], should be present
prnceedmg from other requirements: injection mistakes dam-
ping, emittance growth (because of vibrations and other
factors]l damping. The following values are pointed out:
1000 s at injection energy and S00 s at maximal energy.
Caused growth rates should be with a reserve less than these
values.

In the tables image current losses are given. At cor-
responding frequencies steel and copper thicknesses are much
greater than skin depth. The losses are calculated summing
those over all beam harmonics.

According to our calculations, everywhere copper coat-
ing is advisable. Its thickness can be essentially decreased
(for example, 20 or 50 um instead of 100 pm in [2]). It
decreases noticeably quench forces and in the same time
provides admittable transverse instability growth rate.

2. Electrodynamic parameters calculation

In this chapter we’ll discuss the limitations for
thickness of copper coating of the beam screen caused by the

multibunch transverse resistive instability. As there was
mentioned above, the stainless steel beam screen wall has
the thickness less than skin depth value for the frequency 8
kHz responsible for instability growth. As it shown in
App.2, in this case the wall resistance will be close to one
for the wall with infinite stainless steel wall coated (or
not coated) by copper. Copper resistance depends both on the
temperature and magnetic fleld We use the next values for

copper resistance pc (Ohm-m- 10! ] for different beam screen
wall temperature T and magnetic field B [2]:

= 0.0 Ts B = 10.0 Ts
1 =20 K 1.5 6.16
T =350 K 6.20 HES
T =70 K 15.0 19.1

The stainless steel resistance is 5-10"7 Ohm-+m. For our
calculations we considered a round cross section of beam
screen with the radius 18 mm. We used the next beam and
storage ring parameters [3], [1]:

I =0.85 A - average beam current;

nh=5940 - number of bunches in the beam;
e 11 em - bunch length [3];

E1=0.4S TeV - injection energy;

Ez=7.7 TeV - maximal energy;

R = 4247 m - storage ring average radius;
nx=‘?0.3 - betatron frequency;

<,'3x> = 82.5 m.

Below (tab.2.1) there are the results of calculations
of maximal growth rate (GR) of multibunch transverse
instability and of the beam screen wall transverse impedance
(Rt) for frequency of 8 kHz for different values of copper
coating thickness (DC). Calculations have been done both for

beam injection energy and operating energy for total and for
partial copper coating.



The growth rate values hav

e been calculated according

Continuation Table 2.1

to App.l. Transverse impedance values have been calculated b Sl
. e ) =1i. = e =
e S Table 2.1 10.00| 7.77 | 34.68 14,05 {-62.77
SRR S TRTOTS S T o e [ L
= e st'<ﬁ> 100.00| 1.01 4.52 10.67 | 47.69
DC, GR., Rt-<p2, i e 200.00| .66 | 2.97 10.49 | 46.91
mkm 1/s GOhm = 500.00| .71 | 3.20 10.52 | 47.03
E=0.45 eV; T = 20 K - 1000.00| .71 3.19 10.52 | 47.02
10.00| 46.65 12. 17 197 221 51.51 2000.00| .71 3.19 10.52 | 47.02
20.00| 24.24 6.32 186.01 | 48.59 E=17.77eV; T = 50 K
50.00| 10.10 2.64 178.94 | 46.75 10.00(11.11 | 49.56 ¥5. 72 -F 70:21
100.00| . 6.22 1.63 177.01 | 46.24 20.00| 6.89 | 30.75 13.61 | 60.80
200.00| 6.57 1.72 177. 18 | 46.29 50.00| 3.16 | 14.11 11.74 | 52.48
500.00| 6.59 {72 177.19 | 46.29 100.00| 1.67 | 7.46 11.00 | 49.16
1000. 00 5.59 118 1717.19 46.29 200.00 .96 4.28 10.64 47.57
2000.00| 6.59 .12 177.19 | 46.29 500.00| .93 4.16 10.63 | 47.51
—0.45 eV; T= 50 K 1000.00| .93 4.16 10.63 | 47.51
10.00| 37.25 35.79 242.52 | 63.32 2000.00| .93 4.16 10.63 | 47.51
20.00| 78.70 20.53 213.24 |55 69 Ee 7.7 1€V; . T = 710K
50.00/(.34.27 8.94 191.03 | 49.90 10.00(14.89 | 66.41 17.61 | 78.64
100.00| 18.03 .71 182.91 | 47.78 20.00(10.50 | 46.84 15.41 | 68.85
200.00| 11.64 3.04 179.72 | 46.95 50.00| 5.34 | 23.85 12.83 | 57.35
500.00| 12.50 3.27 180.15 | 47.06 100.00( 2.92 | 13.02 11.62 | 51.94
1000.00| 12.47 3.26 180.13 47.06 200.00| 1.59 1,09 10.96 48.98
2000.00| 12.47 3.26 180.13 | 47.06 500.00| 1.20 | 5.37 10.76 | 48.12
E = 0.45; T = 70 K 1000.00)| 1.26 5.62 0. 748 48.24
10.00| 31.16 60.27 289.48 | 75.56 2000.00| 1.26 5.62 10.79 | 48.24
20.00}| 54.73 29: 29 g?igg gggi Below (tab.2.2) there are results of calculations of
10:08] 1542 lggg 194‘ 11 50:71 the beam Ohmic losses per unit length (P/L) in the beam
100.00 ;g ;g 15' o 185 . 01 48.33 screen wall according to App.4: _
$UD, 00 : : £83.27 47.88 The losses have been calculated using classical model
500.00| 18.74 490 183-43 41'94 & of skin-effect, for anomalous skin effect (Chambers
éggggg 1312 ggi ' 183:49 47:94 formulae, diffusion and full reflection models). One should

see that the results for all three models are close. Wall
losses for partial coating are more than ten times greater

than for everywhere copper coating. Thus, copper strips
coating looks to be unacceptable.
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Table 2.2

Power losse P/L, Wt/m:
E, TeV| T, K| class. | anom. anom. 0.5 copper
skin diff. ref b strips

0.45 20 0.16 0.24 0.20 &kl

50 2.30 0.33 0.30 4 .34

70 0.46 0.48 s 50 4.42
Tod 20 0.29 .33 0.30 4 .34

50 0.38 0.40 0.39 4 .38

70 Q.52 0.54 0.60 4 .45

3. Mechanical and thermal problems at quench
3.1. Initial points

In this section, we analyse mechanical stresses and
deformations of a beam screen and its heating by the quench
currents. The analysis was carried out on the basis of the
beam screen construction offered in [4] (fig.1)

At a superconductivity break-down ("quench") the magne-
tic field decreases rather quickly (according to [4] =~

within ~ 0.3 sec) from B x=10 T to zero. The eddy currents
ma

induced in this time in the beam screen produce the
ponderomotive forces, which deform the screen, tensing it in
the horizontal direction and contracting - in the vertical
one. According to [4], the screen must bear not less than 20
such cycles without mechanical damages and residual
deformations.

We have considered here only variants with everywhere
inner copper coating, because of shown above essential
advantages of it in comparison with copper strips coating
(for example, for 1/2 of the screen surface), in particular,
with respect to the beam image current power losses.

The total heat release in the beam screen, according to
5 [ UL e e qﬂa.TS W/m at average beam current

0.85 A in one beam and bunch length ¢=10 cm. The synchrotron
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radiation contribution is here ~0.4 W/m, and the beam image
current ohmic losses are desired not to exceed ~0.35 W/m.

In order to decrease the latter parameter - the beam
image currents losses, it 1is natural to decrease the
electric resistance of screen inner coating. It can be
achieved through the screen operating temperature lowering,
because the copper specific resistance decreases in doing
so. But that leads to increasing of eddy currents and,
therefore, of mechanical stresses and screen deformations.
Because of this, for the best solution choice, coatings of
three thicknesses were analysed (20, 50 and 100 pm), made
from copper of purity RRRI10Q.

Besides, the change of the screen operating temperature
is associated with the change of energy expenditure to
evacuate the heat released in the screen to the zone with
T=300 K. So, for example, at too high beam screen operating
temperature, the heat evacuation is easier, but heat gain by
the cold bore through radiation and supports heat conduction
increases. And this heat must be evacuated already from the
cold bore with the temperature T=1.8 K. With respect to
that, an optimization of the screen operating temperature is
possible for minimal energy expenses "at compressor level”
[2]. This optimization is fulfilled further, but for more
complete comprehension, the screen operation at quench was
studied at three temperatures - 20, 50 and 70 K.

The inner copper coating presence gives rise to one
more mechanical problem at quench - a problem of joint
operation of steel screen shell and thin copper coating. The
analysis shows that practically at any possible constructive
and operating screen parameters mechanical stresses in
copper coating can not be less than the elastic limit.
Nevertheless, the screen must fulfil necessary number of
quench cycles without mechanical damages.

An adequate solution of this problem seems us to be the
following.

The copper layer shake-down, when working in the
elastic-plastic region (i. e. at the stresses about the
copper elastic limit or higher) is determined by the actual
values of relative deformations of this layer. And this

13




deformation for the copper layer is established by the steel
shell. Therefore this shell must work in the elastic region
and at the stresses, when the relative deformation at the
boundary "steel-copper” would possibly less.

Finally, it is necessary to estimate the influence on
the screen operation at quench of the dynamic nature of the
quench forces. A precise calculation of the corresponding
plane bending oscillations mode eigen frequency for a
mounted on supports screen with rather complicated cross
section (fig.1) was not fulfilled; however, this frequency
must be, in any case, higher than one for free steel round
ring with the average radius 22.5 mm and a wall thickness 1
mm. And the estimation of the latter frequency by the method
recommended in [6] gives 1200 + 1300 Hz, when the charac-
teristic frequencies of quench forces action lie within 1.5
+ 3 Hz (at the quench time 0.3 sec). On this basis, the
forces acting on the screen during quench were treated by us
as static ones.

The results obtained by the investigations of all men-
tioned questions are given further (the detailed calcu-
lations are given in App.5)

Besides considerable mechanical stresses and deforma-
tions, the currents induced in the screen at quench cause as
well its essential heating. These processes are also consi-
dered further.

3.2. The optimal operating temperature

As mentioned above, the optimal operating temperature
of the beam screen was determined for minimal energy
expenditures at a removal of all heat released in the beam
screen with the account of heat transfer to the cold
bore.

A criterion was a parameter

3 =T i

0 k 0
SER B2, T +(qn qk) g
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where Tu=300 K, Tk=1.8 K, T is a beam screen temperature,
q0=0.75 W/m, q, is a power transferred from the screen to

the cold bore, W/m. Emissivity factor for the beam screen as
well as for the cold bore was taken, as in [2], £=~0.1.
The results of calculations are given in tab.3.1:

Table 3.1
1,51 1.8 10 | 20 30 40 | 50 60 70 | 80
0 .38 .85 11.40]2.09|3.03(4.37|6.28| 8.96

K 124.3121.68|10.43|6.68(4.79|3.66(2.90]|2. 34 1 .91

k |124.3]22.06(|11.28|8.08(6.88|6.69(7.27|8.62/10.87

As it follows from the tab.3.1, with respect to the
energy, the operating temperature 40+50 K is optimal.

3.3. Mechanical stresses at quench

Fig.2 shows a sketch of a quater of a steel shell of
the beam screen cross section. Copper coating is applied to
the inner surface of this shell, therefore the mechanical
stresses on this surface are of most interest. Maximal
tension stresses on it take place in a section "a-a" (¢ ),

a

maximal contraction stresses - in a section "e-e" (¢ ).
[

According to AS.14 (App.5), these stresses can be calculated
as

6Ma Aa
a*a= - + ; (3.1)
t
6M
e
e M, (3.2)
t
15
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which gives, with the account of AS5.12 and AS.13:

643 10‘3(10 5.436-Q,
g = +

2 I
=, ZESQG,MPaﬂ.OZGSQG,daN/mm 2315

g 0" 10"
B
6:30-10°°Q " ‘
o == . =-.18Q_,MPa=-.018 Q , daN/mm". (3.2°)
g 10°

(In latter expressions Qu is measured in N/m.)

With the account of tab.A5.1 the stresses n*a and cre

become values given in tab.3.2.
Thus, for copper coating thickness A=100 um at all

considered temperatures, and for A=50 um at the temperfture
20 K, the stresses in the steel shell on the boundary ste?l
- copper" either exceed or are dangerously close to elas*_tlc
limits of steels - possible variants of beam screen material
(316LN, X20MD, 13RMl19, a russian specification 12X18HIOT and
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Table 3.2
Operating temperature, K
20 50 T 70

Stresses, i daN/I_'I_lmz

o o o o 1) a
a e a e a e

= e

20 LT =21 T{16.7T| =11.4| 9,21 =6.3

P o -

o0 | THO¥=02,.9139.6~27. 1} 21:11~14.4

- e

100 (153.6|-1035 |78 -53.2|140.8| -27.8

A, um

~other). As acceptable variants, we can consider here the

copper coating thickness 20 pm at all (20+70 K) operating
temperatures or the thickness 50 pum at the temperatures
50+70 K.

A copper coating state can be analysed on the basis of
a linearized joint steel and copper test diagram (for
T=50+70 K - fig.3). One can see that the stress in copper
achieves elastic limit (~82+9 daN/mm?) already at the stress
in steel > 12+14 daN/mm~. However, even at the stresses in
steel near to its elastic limit (~40 daN/mmz}, the total
relative deformation of steel (and hence, of copper on its
surface) does not exceed 0.002 (0.2%). The residual relative
deformation of copper, even in this case, does not exceed
0.13+0.14%. It allows to hope that copper coating of the
thickness 20+50 pum at the operating temperature 50+70 K will
work reliably during required 20 quench cycles.

3.4. Beam screen deformations at quench

Maximal beam screen deformations by the quench forces
action are changes in its horizontal and vertical transverse
dimensions. These values, calculated by the method given in
App.5, can be described as

5 = 5.39-10'7Q0.m , (3.3)
Gy#—5.94-10_?(}0,m ; (3.4)
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where 8 and 8 are total changes of horizontal and vertical
x y
transverse dimensions correspondingly; a sign "+" corres-
ponds here to ‘size increase, "-" - to size decrease.

Taking into account values Qn given in tab.AS5.1, we get

following beam screen deformation values depending on the
operating temperature and copper coating thickness:

Table 3.3
Operating temperature, K
0 50 70
alt Screen deformations, mm
S | o &4, O S 3
X v x| y x | y
20 A1 )=. T2 vl =38! 21F=. 21

50 |1.73|~-1.75| .89 =-.90}|.47]|~.48

100 |3.44(-3.46|1.74|-1.76|.91 | -.92

The tab.3.3 allows following important conclusions:
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- at the nominal gap value between the beam screen and
the cold bore 1.15 mm (fig.1) obtained deformation values at
A=100 pm for temperatures 20+50 K and at A=50 um for a
temperature 20 K are unacceptable; '

- actual screen deformations can be somewhat (but not
essentially, in our opinion) different from those given in
tab.3.3, because of screen supports, which were not taken
into account in the calculations;

- at the stresses corresponding to A=100 pum at all tem-
peratures and to A=50 um at T=20 K (tab.3.2), a dependence
between deformation and stress becomes nonlinear, and as a
result, actual values of deformations can far exceed
(according to [7] - 10 times and more) those given in
tab.3.3, based on the linear dependence.

Therefore, in this case also, the only actually
possible combinations are A=20 pym at T=20+70 K and A= 50 um
at T=50+70 K.

3.5. Beam screen heating at quench

Currents, induced in the beam screen at quench, except
dangerous stresses and deformations, produce its essential
heating. Different screen sections are heated in the process
differently, and one can show that no essential heat
redistribution over a screen contour takes place during
quench.

A time constant of temperature relaxation can be
determined in this case as

T =mcR_, s, (3.5)
c T
where m=grss-t-lam is a unit length mass of the screen
steel shell (neglecting the mass of a thin copper layer) on
a region between sections a and dl - fig.2 (here y s
88

steel density, t is shell thickness, Ia,ldlh is the length of
the region between sections a and dIJ;

c is specific heat of beam screen steel;

19




aldl ., ’ ;
RTﬁ T is heat resistance of the region Laldl’
f
ﬂ-hCu+t'Ass
o ' thermal conductivit factor for
Ag A+i LA Y

screen material (the thin copper layer, not changing
essentially screen mass, nevertheless, increases

considerably heat conduction) - here ?tcu and ?tss are thermal

conductivities of copper and stainless steel correspondingly

in the screen shell.
For example, at the operating temperature T=50 K

A =6.1 W/(m-K), Ptc =1100 W/(m-K), and for A=50um and t{=lmm
8 u

-5 -3
e 5-10 -11{:O+1DS 6.1 ueq W K) :
f 5-10 410

3 :
Then at c=85 J/(kg+K) and ;rsﬁ='7850 kg/m~ a time

constant of temperature relaxation becomes

cy 12 -2,2
o o ss aldl _ 85-7850+:(2.5-10 )
c j ) A 58
'
which far exceeds heating time (equal to quench time
T =.3 s), and therefore, main heat redistribution over the

=].2 8 ,

screen contour takes place in a time interval about 20+30 s.
after quench finishing.

A temperature of arbitrary screen contour point after
quench, as can be easily shown, can be found from relation:

T
0

2
t A dB 2
— e » K, {3'6]
T TD+ﬂT Tﬂ+ o o [ p + - ][_d'r ]

85 Cu

where x is the abscissa of the screen point in question. The
temperatures of characteristic contour sections, calculated
by relation (3.6), for different thicknesses of copper
coating and operating temperatures are given in tab.3.4:

™
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Table 3.4
Operatitg temperature, Tn

A,um|Section

20 50 70

a 2&. 9 90 .2 TS

20 & 34.9 52. 4 70.8
df1 44 .8 o6 ;& T |

a 25:'9 50. 6 T vl

50 e 42.9 o 3 Ll sid

25,0 ge: U 74.5

a 29.4 °l1.1 T
100 c a0 .3 29.0 T3 1
d 64 .1 68.5 9 |

1

As seen from tab.3.4, an essential screen overheat
during quench relative the operating temperature takes place
for all coating thicknesses at operating temperature 20 K
and at all operating temperatures for coating thickness 100
pum. Therefore, preferable parameters in this case are copper
coating thickness 20+50um at operating temperatures 50+70 K.

4, Conclusion

To summarize the conclusions made in sections 3.2+3.5,
it seems to be advantageous for a LHC beam screen at the
cross section offered in [4] to accept the following main
parameters:

- everywhere inner copper coating thickness - 20+50 um;

- operating temperature - 40+30 K.
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Appendix 1

Transverse oscillations resistive instability
growth rates

In this section, we consider transverse oscillations
growth rates for resistive instability in a round chamber
with a multilayer wall (for the cases of everywhere coating
and strip copper coating).

Resistive instability for a storage ring with a rec-
tangular cross section was studied in [9] for a beam with
arbitrary charges distribution.

The cross section geometry for our present problem dif-
fers essentially from the case considered in [9]; it is
schematically shown in the fig.4a. It seems natural to use
the model of a chamber with the round cross section of the
same transverse dimension to study resistive instability now
(fig.4b).

The second difference from [9] consists in the chamber
walls surface impedance, which is not now uniform over a
cross section circumference, because the steel chamber walls
are covered with four symmetrically placed copper strips,
which also are shown in the fig.4a,b. (The extreme cases are
everywhere copper coating and no copper coating.)

Y
CAp
; %
/
!SE,,%EIE'
&)

Moreover, projected steel and copper thicknesses are
rather small and are comparable or even less than skin depth
at minimal current spectrum frequency. Therefore, usual
Leontovich boundary conditions (for the walls much more
thick than skin depth) can be not quite correct now. This
problem will be considered in App.2, and now it is suffi-
cient for us to distinguish surface impedance of open steel
regions and those with copper coating.

 Further we will show that final expressions for growth
rates, power losses and impedances contain surface impedance
averaged over the chamber circumference. Therefore, as steel
conductivity is about 1000 times less than copper one, the
open steel regions give the main contribution into these
values.

a. The electromagnetic field induced by the beam in the
storage ring chamber with walls of finite conductivity

We will use now the same method as in [9], but for a
chamber with circular cross section and for not uniform
boundary conditions. In this paper, we will not give the
detailed deduction of obtained results, but only brief
account of the main differences from [9] and the final
results.

We suppose that the conditions at copper/steel boundary
change with a jump (neglecting the fact, that they change on
a distance of order of skin depth). Notice that copper
strips coating does not produce any image currents
redistribution over the beam screen contour, as they are
determined only by the beam magnetic field.

Following the perturbation theory, the field induced by
the beam inﬂ theﬂ chamber is a sum of a field in an ideal
waveguide E- (H) and an additional field arising due to the
finite walls conductivity EM‘:l [Hadd]. The boundary condi-

tions for fields Laplace transforms in the first approach
become

E xn = £(p,s) Hn, (Al.1)
add




where

Ec{s] for |e —[n/4+kn/2]l£qou/2,

Elg,s)=
Es{s} for q:n/zﬂrp -(n/4+kn/2) | =n/4, k=0,...,3,

(A1l.2)
f;'c and i‘;',s describe the surface impedance of the wall covered

with copper strips and of the open steel wall correspond-
ingly (App.2); ¢ 1is the angular coordinate of the polar
reference system used now for the chamber cross section; ?,

is the angular dimension of four copper strips, symmetri-
cally placed on the chamber walls (fig.4b); s is the Laplace
variable, which will be further dropped for simplicity, ex-
cept specially mentioned cases.

The additional fields can be spread over azimuthal har-
monics which can be expressed via the membrane functions tbm

and l,!fm (m is the azimuthal harmonic number), analogously to

[9] (egs.(7) - (9)). But substituting them into the boundary
conditions (Al.l) we must take into account angular depen-
dence of the surface impedance (Al.2).

For a round chamber of a radius a the waveguide eigen
functions are

5 k¢ i - 2 .
gbkr{r,qu}—-ﬁkrjkivkrr./a]e . Jk[vkr} 0, P.kr I/(verk{vkr]} '

L gy wich DR sl s s B R iRt o
qfrkr(r,tp] Aerk(vkrr/a)e . Jk{vkr} 0, Akr lX((vkr k ]Jk[vkrll,

Mies T

=y /a, g’ =v’' /a.
gr kr gkr kr

where

2ur dr = 1,

¢ (A1.3)

The equations and boundary conditions for membrane
functions have a form:
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oft) - o {8} -0 v
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¢
Bl kT
Qm{F’q}] P 2 4nR Am z ar Jkrm g
r=a k,r r=a
a%e
a E(e) kr
E—-!I'm{r,q:] "R m ): rordy S, P
r=a k,r r=a
2 2 2 : .
Here a = (m/R) +(s/c)", mz-lm/[R u:m) are functions of

the Laplace variable s; R is the storage ring radius; Jkrm

is proportional to the beam current harmonic [9]:
2y
Jk i 2 = 2 :
s ¥  +(m/R)
kr

S+imdw
krm( D] ’

2
wkr—gkr+{s/c] :

For a symmetrical beam consisting of n, equal bunches

the current
oscillations) is

density (neglecting longitudinal synchrotron

n
0

Jz(x,y,z,t}= 2nR I/nu HZIS(Z-RBn)G[rl—rln[t)}, Bn=21m/nﬂ,

7 = l-—wnRt, (Al.6)

l1- - longitudinal coordinate, B revolution frequency, I -
averaged beam current, e n-th bunch transverse position
n

in the polar system (r,¢): o =(rn, cpn}; it depends on the

time because of betatron oscillations; for vertical oscil-

lations tpn=0.

The current harmonic, according to [9], is
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2
I (s+imw )=-2nR 1/ Sir A
krm o % g
kr
n
0
X exp(-im6 )L i
HZI p(-im nJ [exp[lkqonljk{gkrrn]], (AL.7)

Searching the solution of eq.(Al.4) in a form
. a :
{,y} = Z {a'} explile) Iliu:mr'], (Al.8)
m k Im

we get the coefficients a a‘i from the boundary condi-
Im
tions (Al.5) as

{a } Am Il't':)‘:ma]I 3 i 1
) = e F g(k_l] J {l‘ }1 [Alig]
o Fo 4nR Vma { Il[’xma]ama} er ko Tk

where

. 2T
1
Elk=1) = ﬁJ' £(p)explik-1)p) do, (AL.10)
0

A 1 2T
€{0)=<€>=-2?J.ﬂ Elp) do

Thus, the membrane functions can be determined and the
additional fields due to the resistivity can be found.

b. The transverse force

The transverse force m-th azimuthal harmonic can be
written as ([9],(8))

[immu+sBZJ 8¢  (s+imw ) 8¥
m 0 m

F_=e(E -vB )=~
rm i qﬂ} E[ imwn B - S I‘Eip]' [AI.II_]

_Turning formally to the reference system of equilibrium
particle ([10], [9]) for ultrarelativistic beam (B=v/c=1) we
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change the arguments of all functions depending on s in
(Al.11): s » s-imw and get:

s m 5
+

F =-el: : (Al.12)
rm urmn{[:I ar s—meu rog

8¢ aqu]

The coefficients a , a’ for & , ¥ contain the beam
km km m m

current harmonic Ikrm{s], which for a beam with zero

transverse size has a form:

I m(5}=_2HRVnn z exp(—imanlL [!_."1 [g:r/afkr] ¢kr{rn,ﬂl],

kr
n
(Al.13)
where r depends on the time because of betatron oscilla-
n

tions. In a linear approach, for small oscillations ampli-
tudes, this time dependence is harmonic:

rn(t]=rnnsin[ﬂt+lpn],

where Q is the betatron frequency (Q=vmﬂ} and t,tun is the

phase shift for n-th bunch, for a given oscillation mode.
The approach of small amplitudes gives also that only terms
with k=+*1 must be taken into account. Linearizing these
terms, we get the opportunity to introduce the sin-dependent
on the time function qbkr[rn,ﬁ} under the operator of inverse

Laplace transform, thus L and L™ in (Al.13) abolish one
another.

But after this linearizing the series for a , a’ be-
km km

come divergent if we neglect the beam transverse size o. But
we can take it into account, for example, in a simplest way

/e, |y-y l=0/2,

6[};—}'0} %3yl = { 0 ]y-—yﬂl}mfz,

and get that the beam current harmonic I (for k=%1,

krm
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u‘»yu}, instead of
tplr(rn'o] ﬁAlrrnglr/z’ {A1'14)

contains its averaged over the beam cross section value

< a2
q&lr{r‘n,(}b ﬁlr [Jl[glrn*XZJ/[glra'/ZJ] re . (AL.15)

i He.re the term in square brackets gives convergence of
the s«zrnels]l over the subscript r with a sum not depending on
o, and the time dependent r i 1 1 i

p : S contained in a linear way,

which also leads to abolishing L and L.

Finally, we can write the transverse force m-th

harmonic (in the reference syste #
m of ot o
particle [9]) as y the equilibrium

A

F 5 m 1 L .
rmlfr,-:p] eI/nﬂ 2nR iR 2 Z f;’(il-k]exp(:kq:] Z exp(-im@ )x
na k,t n =

rﬂn[ exp[iwn] exp( -i:,an]
b4

2i| (s-iR) =~ (s+iq)

m -

{ & Ik(n:mr}a: a . Ik[ﬂcmr]
ey F— 3 , (Al.16
A k{ﬂcma} S 1mwﬂ kacr.ma]u:mr] )

and the full force is

Fr{r,{p} = Z Frm(r,-;o}exp(isz. (A1.17)
m

c. Equations of the transverse motion and growth rates

The equations of vertical motion ([9], (I18)) in the re-

f érence system of the equilibrium particle, in the variables
action - phase, have a form:

J 220 1 =F - . Y o=
. gl Fy fﬂy/c')",b.v] - 'ﬁy—ﬂ + FF-.(By/BJy] ;  (Al.18)
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y=/;J /(m ﬂ]‘sin[l,il'), y= 0 v 23 /(m Q)cos(y ),
y g v y 3 ¥

where the line over the right hand sides denotes averaging

over the time.
Writing the motion equations for beam bunches, we must

calculate the force azimuthal harmonics (Al.16) at their

transverse coordinates (small comparable with chamber
radius). Moreover, returning to the definition of « , we can

see that after the substitution s = s—immm for the
ultrarelativistic particles a« » 0. These two reasons lead to
m

the result that (Al.16) contains the nonzero terms only with
k=%]. _

Thus, after averaging over the time, the first equation
of (Al.18) for a bunch with a number p, according to [9]
(for vertical oscillations F;Fr}, we get:

b * A exp(im(e -0 )xi(y -y ))
== 0 R Zigi{ﬂj p n p = J ’
= ’ ng b, m,n,x - mv yn
(AL.19)
where
Ai F.Y . = ¢ i ' 5
§_(0)=£(0) | S=*{imwniiQ]_<§[ [1mmuilﬁ}]>—
(Al.20)

g[g;{gc-gs]z@ﬂ/n) i

s=—-(immniiﬁl’
the brackets <> denote averaging over the chamber circum-
ference.

Analogously one can write the second equation of
(A1.18), for betatron phases of bunches and to find the
growth rates for a beam with arbitrary charges of separate
bunches, as in [9]. But here we will consider the normal
oscillation modes of a symmetrical beam with equal charges
of all bunches. For such modes all the amplitudes of bunches
oscillations are equal and the phase shifts between bunches

are determined from the symmetry condition.
Finally, for a mode with phase shift between neighbour
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bunches anfnn [1=0,...,nﬂ]' the growth rate is

[ R ]BRe{ ] <€[-{i(pnu+11mﬂtim)>}.

2a pn_+l+v
0 v

1 4
F = = —
¥ m

I
o Vv
5§ ¥y p=-c0

(Al1.21)

T"he transverse resistive impedance for the chamber with
the circular cross section is given in App.3 ((A3.2)). As
it is measured in Ohm/m, It can be multiplied, for 'cnn—-
venience, by the machine beta function B=2nR/v : ;

y
ZgW)= Z, 21R/v, = <E(-iw)> an(R/a)>/(wR/c).
Thus the growth rate can be written as

1 1 I e{ i~
¢ =-— w =R <Z _((pn +l)w +iQ)>
y TR pZ-m g(Pn o : (AL.22)
Note that in this form the expression for the growth
rate has a general form, not depending on the chamber cross

section form, which det i
‘ ermines only the tran
impedance. it

d. The' comparison of the rectangular and circular cross
sections

In [9], the resistive instability was considered for a
rectangular chamber. It is natural that our present result
must be near to the results of [9] for a square cross
section of the same dimension.

The growth rates of normal modes in a chamber with the
rectangular cross section a x b are ([9], (32)):

: I 2 o E(-(ilpn_+)w *iQ))
0 o 2w, o = 7 F(bsa) z e 0
s y (ab) pe -0 pnﬁ+l+py ’
b knb 2 oo kma 2
1 [b] 1 Z kn) Z2a =Nt
—_— Fl=]=— Sin[ ] o +iz km 2b
vab \&) © ¢ gh[EF_E] a i [kna] :
k=0 a k=0 ch{=5p
F(1)=0.474. : (Al.23)
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Comparing (Al.21) and (Al.23) we can see that the
growth rates coincide for a square chamber with a wall
lengths b and a round chamber with a diameter d if

d/b=(2/(nF (1)) °~1.103,

i e. the difference of chambers dimensions is about 0.1,
rather small, which corresponds to our expectations.

Appendix 2

Surface impedance and boundary conditions
for a multilayer wall

When calculating the electromagnetic field in the
chamber with not ideal walls, the finite resistivity is
usually taken into account in a form of Leontovich boundary

conditions:
Exns=£fMxnl xn, (A2.1)

where £(s) is the surface impedance, n is the outer normal
to the surface, E(s) and H(s) are Laplace transforms of
electric and magnetic fields. For wave normal incidence on

the wall of infinite thickness

.Ej[s]:Zn\/u/a(s }=-1/s,uz’cr = Zﬂv" s/[Znu*c}, (A2.2)

ZD-v’ p.u/eﬂ - the free space impedance, & - the metal

conductivity, € and p are relative electric (complex, depen-
ding on frequency for metals) and magnetic permiabilities
correspondingly.
But our problem differs essentially from this model:
1) the wave in the chamber is propagating together with the
beam, not normally, but along the wall, with the beam’s
phase velocity;
2) the wall consists of several layers of different conduc-
tivities and thicknesses comparable or even less then the

skin depth .
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Thus, the surface imped if'i

; R pedance should be

describe correctly our groblem. e o
= The most common case considered now is shown on the
ig.5: the chamber wall consists of two layers (copper and
?teei), a vacuum gap separates the outer side of the wall
rom the surrounding screen of infinite thickness (which can

have e{s)=1, in the case of absence of this screen).

£\
bt ’
7 /ézy /%st;{e/{ ’/:_»
7
N = vacuum
4T U
NN
OH )
= vacuurm
E
0! ———————
N %
Fig. 5

Further we assume that in all regions ,u=1- and denote

w = \/u/el= »/1/si= v/s/(zﬂatcf. (A2.3)

— Consider* a wave incidence on the metal surface, with an
gle o to its normal. The case of a longitudinal propaga-

tion cor = i
responds to aﬂ—n/z. For a nonideal wall mu<n/2 be-

;zusi. the losses in the wall material mean the nonzero
3 ynting vector component normal to the surface and hence
e nonzero corresponding wave vector component,

- -
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Hi=[l-1 : exptlkzi{z—zi] )+H iexp(—lkﬂ(z—zi)] }exphkxix),

Ei={E"1 exp[ikzi{z—zl]}+E‘i’exp(-ikzl{z—zi}]}exp(ikxix).

Amplitudes of incident and reflected waves are
determined from the condition of tangential electric and
magnetic fields components persistence at the boundary.
Fields matching along the boundary at arbitrary X coordinate
requires equal phase velocity x-components and results in

k =k =k sin(a ), k =k /W A6 siile 1.
i =0 G 4] zl 0 i i 4]

X

Wave vector components being found, tangential fields
components matching condition, together with the connection
of electric and magnetic fields components normal to the
wave vector, allow to get all waves amplitudes in terms of
incident wave, for example.

For metals usually lei-:cl, hence Ikzilwlkxll‘. [t means
that for any angle of incidence o the wave in the metal is

propagating practically normally to the surface. In the va-
cuum gap the angle of the wave propagation must be equal o .

Therefore, in the case of longitudinal wave propagation
the wave turns in the metal for an angle m/2, and further in
the vacuum gap turns backward for -n/2. (In the case of nor-
mal wave incidence the wave direction remains normal).

The Maxwell equations give the connection between
electric and magnetic fields components normal to the wave
vector direction and to each other:

wE sH .
t 4%
We consider here the incident wave with H;G’ Hx=0. In

the regions with the normal wave propagation this equation
connects Hsr and E components, both tangential to the
X

surface, whereas in the regions with the longitudinal wave
propagation it connects Hyr and Ez components, the tangential
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to the surface component of the magnetic field and normal to
the surface component of the electric field.

Matching the tangential components of the magnetic and
electric field on all regions boundaries; denoting
fp;ikﬂdz, p;ikﬂda (phase shifts in z direction for second

(copper) and third (steel) regions); taking into account
that in the last region there is no reflected wave - we can
write the system of conditions of fields tangential compo-
nents matching on the regions boundaries.

The surface impedance €& describes the ratio of tan-
gential components of electric and magnetic field on the
boundary of the first region:

£=Etl[zl)XHﬂ(zl]=Et2{21]/th[21]. (A2.4)
Solving the system of boundary conditions, we get:
gilbony o 1 +th[¢;2]-f3 29 v, : l—th{@s}[wﬁcos{aﬁl/wg}]
g 2 ] e W ]

th[rpz]+,'3 3 thffpa}—[wscos(asiz’wsl]

where L describes the direction of the wave prcpagat[iig'si]n
the last region : aﬁxo for external metal wall of infinite
thickness and txﬁﬁn/Z for infinite free space, without the
outer wall).

Let’s make some remarks to (A2.5).

l. It can be easily seen that if we take into account
outer steel surrounding (region V with w5=w3), it is equi-

valent to the case of continuous steel wall of infinite
thickness. It means that the gap between the wall and outer
surrounding "is not seen" by the wave propagating along the
wall. In this case for two layer wall

1 “th{f.ﬁz}"‘i.*'.fz.u"".av.lr3
a _anz (A2.6)
th(e )-w /w
2 2 3
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and for one layer wall [¢?2=D}, naturally,
= (A2.7)
g ana'

2. The case of the thin wall without outer sun:aunding
differs essentially from one considered above. This case

corresponds to f3=w2f' (wath(qo 3) ),

1+th[¢p2]-w2f{w3th{<p3]] wath(@3]+w2th{w2}

= -Z W .
€= -Z W N )
® % thip )+w /(w_th(p ) w_thip Jthip )ew,
' (A2.8)
For the steel wall without copper coating
== (A2.9)
E= anath[goz},

For the wall with thickness ds much less than skin

depth 8=1/Re(k ), as it is in our case {qo:_:@:l},
z3 ;
- S 3 &
E~-Z w (¢, -9 /3)=Z (-ik d_+(k d )°Z 0/3K ),
=Z% K’d> (A2.10)

The ohmic losses, proportional to Re(§), are in this
case much less than if we take into account outer

surrounding. That can be seen if we compare image currents

for these two cases. .
The magnetic field inside the steel wall without outer

steel surrounding is
leanh{ikzg{z—zzl )/chtlkﬂ(zz—zz} ),

and in the case of infinite steel wall (equivalent to the
case with outer steel surrounding)

H;Hﬂexphkﬂ[z—zz] Y

where H is the magnetic field on the inner steel surface.
0
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At our parameters (::13~1 mm, Il/Re(k23)|~4 mm for fre-

quency ~8 kHz), it leads to the fact that the full current
flowing in steel in the first case makes up only about 0.03
of that for the second case, when surrounding is taken into
account:

] ~H »

~ R ,

I~H |dk |"72 = 0.03 1. (A2.11)

1 0 3 z3 2

The currents difference results in the losses analogous
difference.

3. Considering, for a comparison, a case of normal
incidence of the wave on the two layer wall (without outer
surrounding), one can get:

1 +th(ep_)B w_ w_- thig )
§ =Z w, = B= - — = . (A2.12)
th(e, )+B 3w, thlg,) -1

For a thick outer Ilayer (th[@slz-l} the surface

impedance for normal wave incidence is the same as for the
wave propagating along the wall, (A2.6). But for the thin
wall without outer surrounding or for a screen of a material
not identical with the wall outer metal (w5¢w3], the results

for normal and tangential incidence are not the same.

For numerical calculations we wused the expression
(A2.6), corresponding to the two layer wall with outer
screen of infinite thickness.

Appendix 3

Transverse resistive impedance of the round chamber

The transverse resistive impedance can be calculated in
two ways: from thé dipole longitudinal impedance, via the
Panoffski-Wenzel theorem, or averaging the change of the
transverse momentum because of the additional transverse
fields due to walls resistivity (App.2).
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Calculating the dipole longitudinal resistive impedance

7 , we consider, following [11], a round beam of a current
11 _ : §
I in a round chamber of a radius a with walls surface 1mpe

dance depending on the angle E(p):
£ forlp'- {n/4+k1r/2]|£-'pu./2,

c

(@)=

: € for tpn/zil{p - (n/4+kn/2) | =n/4, k=0,...,3.
s

The beam center is shifted relatively the chamber

center on the small value X, which leads to the surface wall
current density dipole deviation:

. i cos(g).

J =
ma

The tangential magnetic field near the wa_tll is equal to
the surface current density J. Thus, integratu}g_ the losses
in the chamber wall due to the finite conductivity, we get
that it is expressed via the averaged over the chamber

circumference surface impedance:
2

2
I x
R IE(w]Hz[a,w}/Z adp= —2 <©, (A3
1 11 P ZTI 4

where P is the resistive losses power for unit length, Zu

is the longitudinal dipole resistive impedance for unit

length. i
From the Panoffsky-Wenzel theorem the transverse resis

tive impedance for unit length is
Z = Z /(kx),
t1 11

thus, for the chamber length 2nR

s, Rl G (A3.2)
t tl B.Bk

The transverse impedance can be calculated via the
transverse momentum change for one turn for a beam current
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harmonic Imexp[-ikil-vt}]. with a shift x relatively the

chamber center. Integrating the transverse force (Al.11)
over the storage ring circumference for such current instead
of azimuthal harmonics, and dividing it by the beam current
and shift x, we can get the same result (A3.2).

Appendix 4

Power losses due to walls resistivity,
with the account of the anomalous skin-effect

The power losses due to the walls resistivity can be
calculated
P —ijtzxﬂ*l a8 2L e 6 Y exptetpn o 70D
iR 0'n napmrpuu FEAL ;

where 1 is the beam average current; n is the number of
bunches in the beam; w, is the revolution frequency;a is the
chamber cross section radius; o is the bunch length; R is
the storage ring averaged radius; <£r{-iw}> is the real part

of the surface impedance (averaged over the chamber cross
section circumference),

We suppose here, as in App.l, that the conditions at
copper/steel boundary change with a jump. It is valid be-
cause even for steel at lowest frequency nw, ~ 60 MHz skin

depth is about 20 um, much less than the curvature radius.
Calculating the power losses, we must sum up the terms

up to the frequency about w ~ mﬂRfa*b. At low temperatures
maix

the skin depth at such frequencies becomes comparable or
even less than the electron free length, and the classical
model of the skin-effect is not valid. (It does not concern
the growth rates' calculation because not the high
frequencies, but the lowest ones give the main contribution
there.) We have taken into account the anomalous skin-effect
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following to the model and interpolation formulas of Pippard

i dance.
d Chambers ([12], [13]) for copper suriZ ace impe
2 The results of losses calculations show that the

classical model gives smaller losses than the Chambers one.

Appendix 5

Beam screen mechanical stresses
and deformations analysis

A magnetic flux for unit beam screen length through a
zone of width 2x (fig.6) is

$=2x'B, (AS5.1)
and thus, a voltage induced at this screen region at quench
becomes
me e B0 (A5.2)
T dt

Because the longitudinal conductivity of a turn,
consisting of two regions ds of unit length, ‘whlch are
symmetrically placed relative the axis y, can be written as

)
S
ds dq
= - X
r_..—-v—-—
Fig. 6.
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§8 Cu

tads . A-ds .. 1 t A
dG= 5
20 2P > [p g ]ds , (A5.3)
ES u

an F-xpr‘esm:':m for an elementary force acting on the screen
contour region ds has a form:

” * 4 A dB
dQ=B-U-dG=-x +
[ P : ]B ==—1as ., (A5.4)

5s C

(I i
n expressions (AS5.3) and (AS5.4), e and p., are specific

electric ‘resistances of stainless steel and copper
correspondingly and ¢ and A are their thicknesses.)
Denoting a force normalization parameter

P P dt

g8 C

o2 t A dB
S [ * ]B——, N/m, (A5.5)
u

we get (A5.4) in a more simple form:

T
dQ»QG _é_ds' N/m. (AS.6)
r

Addressing now to a real beam screen geometry (fig.2),
we see that for a region between sections "a-a" and "b-b"

x=r-Sin«, ds=r-do

and hence,

dQ[a,b}=QDSinm- doe. (A5.6')
Analogously, it is easy to get
o 1 B V2
dQ[b,dJ—QD k?] [[l+—§-] —2—{305;3] dp (A5.6")
and
Ny i
dQ[d,e]—Qﬂ _ s —I+CDS{?G-'JJ] dy. {AS. B ]

Integrating these dependencies, one can find expres-

sions for total horizontal forces in any point of every
contour region:

Q[a,b}=QD{1—Cosm], N/m, (A5.7)
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2r 7
FER B\ V2 : ;
Q(b,d)=Qu ?'] [ kl"' —R_] T [B‘ﬁu]—SIHﬁ'i'Slﬂﬁﬂ] ’ N/m, (ﬁ53]

3\

Q{d,e}=Qu L[ L:., -1 3'+Sinafu-5in{arn-a')] , N/m. (AS.9)

K.

Considering instead of the whole beam screen contour
only its quarter, one should apply force factors substi-
tuting an influence of dropped regions - a force Aa and mo-

ments Ma and Me (fig.2).
The force A can be determined as a sum of all forces
a

dQ along the contour between the sections "a-a" and "e-e":

A =I da(s). (A5.10)
. s

The moment M is determined by the theorem of
a

Castigliano, according to which an angular displacement of a
point "a" is equal to a derivative of a deformation energy

of a considered contour region with respect to the moment
M . Taking into account that the angular displacement in the
a

point "a" must be nil because of contour symmetry, we get
[8]:

2
ary td M%(s)ds |_ 1 dM(s) , _
$=aM_~ aM [ 2EJ ]‘ EJIMIS} i e
a a -] - a
or, as _____dM(s] =I:
i dM :
a
= _._._l-s-[‘ M(s)ds=0 . [ASI].]
e £

In latter expressions E is the elastic modulus and J -
the inertia moment of the steel screen wall cross section

(neglecting a small influence of thin copper coating).
Expressions (A5.10) and (AS.11) allow to find the force

A and statically indefinable bending moment Ma, which
a

appear to be in our case

41




A= 5.436 Q, N/m and M = 43-10‘300, Nm/m. (A5.12)

As to the value of the moment M , it is found now from
-]

the equilibrium analysis of the beam screen contour quarter
under consideration and appears to be

Mﬂuao-m""‘ Q,. Nm/m. (A5.13)

Obtained results allow to find, in arbitrary screen
point, the bending moment M and tensile force S (acting
tangentially to the contour centre line in this point), and
from them - the stress in screen material:

o=t 20+ 3 N/’ (A5.14)
iz "u

(In the latter expression a sign "+" before the first term
refers to material fibres in tension, and "-" - to those in
compression at screen bending; besides, the influence of the
thin copper layer A is not accounted for.)

Notice that A, M_and M_ (and, hence, M, S and o) de-

pend on QU, which in turn , via P and Py depends on mag-
u

netic field value B, screen operating temperature T and
copper coating thickness A - see AS.5.

Beam screen deformation calculation at quench is
carried out also on the basis of the theorem of Castigliano.
In this case dummy forces are applied sequentially to the
screen - at first Pl, stretching it horizontally, and then -
P2, contracting it vertically. In both cases a derivative of
the screen deformation energy with respect to the corres-
ponding force produces a change of a given screen diameter.
Resulting, for the horizontal screen diameter we have:

e B dM(s)
ax_ﬁjaM(S)Trds . {ﬂ5.15}
and for the vertical one -
o N dM(s)
5}?— *ETJ&M[SJ —"st A (AS.IE]
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screen deformations

For considered LHC beam screen these expressions give:
3 ~5.89:10 'Q , m (A5.15")
s 70 5.16")
8 =-5.94-10 Qu’ m. (AS.
y

as in the case with the stresses, ’Ehe
are expressed via the normalization

i i netic field, operating
parameter Qu’ i. e. they vary with mag g

Once again,

temperature and copper coating thickness. The maximﬁl‘vzllg:
of the parameter Qﬁ (N/m) depending on the copper thic

A and operating temperature T at magnetic field varying
between B=10 T and B=0 T are given in a tab.AS.l:

Table AS5.1
Operating temperature, K
i B B 70
20 1205 633 350
50 2940 1504 800
100 5832 2958 1547

By applying the expressions (A5.15°) and (AS.IGI'] aré;
the data of the tab.5.1, it is r:-':asy to get the va ules *
a horizontal screen diameter increase and ‘ vertical o :
decrease for different copper coating thicknesses an

operating temperatures.
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