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ABSTRACT

The expression for the first recoil correction to the Dirac-Coulomb
spectrum is obtained employing the gauge invariance.
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Relativistic two-body problem in quantum electrodynamics has been ex-
actly solved in the only limiting case m/M—0, a—0 at fixed Za (here M
and m are masses of the constituents, Z|e| and e are their electric charges,
a = e?[hc is the fine structure constant, i = ¢ = 1). In this limit, an
infinitely heavy nucleus holds still being the source of the constant in time
Coulomb field. A wavefunction of the system reduces to that of the light
particle, the electron, and obeys the Dirac equation in the Coulomb field,

(@F+ Bm+ Ve — E) ¢ = 0. (1)

Expressions for the first (linear in m/M) recoil corrections to energies of
the Dirac-Coulomb bound states were obtained several years ago by V.M.
Shabaev [1, 2]. He used the perturbation theory in Za, summing up contri-
butions of a given order in Za, linear in m/M. The present note is devoted
to a simple derivation of the Shabaev’s result, with only minor reference to
the perturbation theory.

As a guiding principle we will use the gauge invariance of QED. To begin
with, let us generalize the equation (1) to an arbitrary gauge. Since Vo =
ZaDgo', and an infinitely heavy particle at rest can emit (or absorb) only
zero component of the vector potential, we have:

{au(py — ZaDyo) + fm} v =0, (2)

where a, = 1 by definition, p, = E. The Dirac-Coulomb spectrum, that is
the mutual arrangement of the Green’s function singularities at the complex
E plane?, is certainly gauge-invariant.

1Duv's make up the photon propagator.
?We consider only gauges with D,y constant in time, so that E is the integral of motion.
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an. let us take into account the motion and interaction of the nucleus to
first order in 1/M. They are described by the term

=

in the Hamiltonian of the system3. Here P is the operator of a nucleus

momentum, while A is the vector potentla.l operator acting at the nucleus
site. Due to M in the denominator, A can be taken to act at the origin.

In order to find the first recoil correction to an energy of the electron we
need to average the above expression over the corresponding Dirac-Coulomb
eigenfunction. There is no problem with the vector potential operator — it
emits (absorbs) photons which are absorbed (emitted) by the electron. Dif-
ficulties emerge when one tries to determine how the operator P acts on the
electron wavefunction. In fact, the simple relation P = —p holds in the non-
relativistic limit only, when the problem is truly two-body. The relativistic
electron can propagate in both time directions so that at a fixed time slice
one has a number of electrons and positrons with the total momentum equal
to —P.

To get rid of the problem we will start with the operator

(Ze;i') ¢

4
R (4)

whose expectation value can be easily expressed in terms of the known so-
lution to the Dirac-Coulomb problem. Being only the part of the nucleus
Hamiltonian (3), the operator (4) is by no means gauge-invariant. This is
also true for its expectation value. The basic idea is to reconstruct a gauge-
invariant expression for the total energy correction from its known noninvari-
ant part.

Taking the expectatmn value of (4) over fluctuations of the electromag-
netic field we are left with :

_ (Za)? [idw T
ABg =2 . e (@xDuC(E=)Dn(=w)m). @

#

Diagrammatically the right-hand side of this equation is shown in Fig.1.

3The interaction of the electron with a nucleus proper magnetic moment, formally of
the order 1/M, is taken into account straightforwardly, so we do not discuss it here.
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Fig.1. “Seagull” contribution to the recoil.

The solid line depicts G, the Green’s function for the Dirac equation in the
Coulomb field, wiggly lines represent photon propagators D,y and Dy,. As
far as a gauge is not fixed, it is convenient to make difference between Lorentz
indices corresponding to a nucleus interaction vertex (upper case) and those
corresponding to an electron vertex (lower case). Overall factor 1/M allows
us to take the limit M—oo everywhere else. In particular, the remaining
photon propagators connecting the electron line with the nucleus one and
not shown explicitly in Fig.1, have the upper case index equal to zero (see
(2)). As usual, Latin indices run from 1 to 3, Greek ones run from 0 to 3.
For the sake of brevity and later convenience, only the integral over energy
flowing along the loop is written down explicitly. £ in (5) is the energy of a
Dirac-Coulomb eigenstate we average over.

Turn now to the gauge transformation properties of (5). The above discus-
sion of the Dirac equation in the Coulomb field shows that AF 3, is invariant
with respect to a gauge transformation at the electron site,

6Dpﬁ s v,ulpi'u (6)

where @, are arbitrary (linear in time) functions. Hence, it remains to recover
the invariance with respect to the transfarmatmn at the opposite ‘end’ of D,
attached to the nucleus line, namely

6D, = Vip,. (7)

Trying to do this we cannot use components of D with a spatial upper case
index. Actually, those components of D) emerge in an expression for the
energy correctmn due to the operator A acting at the nucleus site. Since the
quadratic in A effect is alread}r taken into account by (5), the only thing that
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can help us reads
HHDFB = Dn,g} -t {I]Dm. (8)

It does not spoil the invariance with respect to (6). On the other hand, its
gauge variation with respect to the evident extension of (7),

does compensate that of a,D,; in the linear combination
A
epDys(w) + o okt [V, Dyo(w)] - (10)

By this means the gauge-invariant expression for the recoil correction
takes the form:

ap = B [2 (o, (Dur() + £i19, D))

6(E -w) (Dan(-w) = 2ilVs, Do)l ), ). (11)

Recall that ap = 1. Unfortunately, this expression is meaningless until we
define how to treat the new singularity at w = 0.

As soon as the gauge invariance is maintained we can choose the mostly
convenient gauge. Without question this is the Coulomb one. Then the total
energy shift (11) is naturally broken up into four terms:

AE = AEcc+ AEcym + AEye + AEuuM, (12}

the last of which is nothing but the Coulomb gauge version of AE ;, (see (5)
and Fig.1), i. e. the double magnetic exchange contribution to the energy
shift. The third and the second terms comprise the correction arising due
to a single magnetic exchange. Their origin at (3) is the term —Z|e|[(PA +
AP)/2M. Finally, the pure Coulomb contribution AEcc is just the mean
value of the nucleus ‘kinetic energy’ P2/2M.

To find a prescription according to which the 1/w-singularity should be
passed by one can exploit its independence of Za and analyze the corre-

sponding expression perturbatively in Za, to the lowest nontrivial order.
Very natural result for the single-magnetic exchange reads

11 1 1
w 2 (u—iﬂ+w+i{])' )
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For example, the third term in (12) can be represented diagrammatically
by the sum of two graphs shown in Fig.2. There the thick line depicts the
propagator (fw + i0)~! of the infinitely heavy nucleus having the energy
M + w, while the_dashed line shows the interaction through the Coulomb
electric field Z|e|[V, Doo].
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Fig.2. Single magnetic exchange.

Simple perturbative analysis of the pure Coulomb contribution AEcc
suggests that corresponding prescription has the form:

P 1 1
w? 2 ((w e R 50)2) ' i

Actually, here we have the sum of the nucleus propagator derwa.twes resulting
from the expansion of (P2/2M + w + i0)~!. To obtain Feynman diagrams
for the pure Coulomb contribution, one need only substitute wiggly lines in
Fig.2 for dashed ones as well as the nucleus propagator for its square.

Now, when the integral in (11) is completely defined one can easily check
that this expression equals the sum of recoil corrections found by Shabaev in
the more straightforward way [1, 2] (in [2], the overall sign of the expression
for AFEprpr is corrected).

Recall that our starting pomt was the expectation value (5). Its perturba-
tive expansion can be readily appreciated to begin with (Za)®. To be certain
that the corresponding expansion for the total correction (11) begins with
(Za)?, let us consider in greater detail the pure Coulomb contribution which
alone survives the transition to the nonrelativistic limit. As a byproduct we

will see how the expectation value (Is 2/19M > looks in terms of the solution
to the Dirac-Coulomb problem.




Evaluating the integral with respect to w in AEc¢ according to the pre-
scription (14) together with the standard rules for the Dirac-Coulomb Green’s
function one readily obtains

ABcc = 5= (7(A+ - A1) ), (15)

where Ay are the projection operators to sets of positive- and negative-energy
Dirac-Coulomb eigenstates correspondingly. Passing from (11) to (15) we
used the Dirac equation (1). In the nonrelativistic limit Ay —1, A_—0 and
(15) reduces to the well-known result,

ﬁE—»(%). (16)

Acknowledgements.

I thank I.B. Khriplovich, A.L. Milstein and M.E. Pospelov for stimulating
discussions. The partial support from the program “Universities of Russia”
1s gratefully acknowledged.

References

[1] V.M. Shabaev, Theor. Math. Phys. 63 (1985) 588.

(2] V.M. Shabaev, in: The First Soviet-British Symposium on Spec-
troscopy of Multicharged Ions, Programme and Abstracts, Troitsk (USSR
Academy of Sciences, Spectroscopic Council, 1986) p. 238.

A.S5. Yelkhovsky

] | Recoil Correction in the Dirac-Coulomb Problem
= : A.C. Fazoscxuil
ITonmpanka Ha oTmavy
B KyJIOHOBCKOM 3amade Hupaka

BudkerINP 94-27

_*“'Eu
Orsercrrennii 3a Beinyck C.I'. Ilonos

s Pa6ora nocrynuaa 16 mapra 1994 r.

Cnano B nabop 18.03. 1994 r.
[Honnucano B neuars 22 mapta 1994 r.
dopmat bymaru 60x90 1/16 O6vem 0,7 new.i., 0,6 ya.-uzn.m.
Tupax 170 sx3. BecnnatHo. 3akaz N 27

O6paborano na IBM PC un orneyaraso Ha
poranpunTe AP nm. I''U. Byakepa CO PAH,
Hosocubupex, 630090, np. axademuxa JTaspenmvesa, 11.




