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Abstract

The first results on the statistical properties of the quantum quaside-
generacy are presented. A physical interpretation of the Shnirelman
theorem predicted the bulk quasidegeneracy is given. The conditions
for the strong impact of the degeneracy on the quantum level statistics
are formulated which allows to extend the application of the Shnirelman
theorem onto a broad class of quantum systems.
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The energy level statistics is one of the most important and well studied
characteristics of quantum systems. Particularly, it is commonly assumed by
now [1] that in the limit of classically completely integrable systems the distri-
bution of nearest-neighbor level spacings is Poissonian (independent levels)[2].
In the opposite limit of classically chaotic systems this distribution is charac-
terized by level repulsion and, for ergodic eigenfunctions, is generally given
by the Wigner-Dyson law [3]. In the intermediate nearly integrable (KAM)
region various expressions were suggested to describe a smooth transition
between the above statistics [4, 5]. Such behaviour was well confirmed by
many numerical experiments with various dynamical models (see, e.g., [6]
and references therein).

However, this picture seems to be in a sharp contradiction with an old the-
orem due to Shnirelman [7]. This theorem states that for a classically nearly
integrable system at least each second level spacing in the corresponding
quantum system becomes exponentially small in the quasiclassical domain.
This would imply a big narrow peak in the distribution of nearest-neighbor
level spacings (level clustering) as conjectured in [11]. This result is espe-
cially surprising as no special symmetry was assumed in a particular model
considered by Shnirelman (geodesic flow on a two-dimensional torus). How-
ever, the time reversal symmetry holds in such a model. To the best of our
knowledge no physical interpretation of this theorem has been given as yet.

In this Letter we present the first numerical results on this new phe-
nomenon which allows us to give a plausible interpretation of the theorem
and to extend its implications onto a broad class of quantum systems. Our
interpretation is based on the conception of quasiclassical degeneracy de-



stroyed by tunneling. Similar phenomena in presence of spatial symmetry
were studied in many papers (see, e.g., [8]) but the effect of time reversibility
on the level statistics was not considered to our knowledge. In some sense
the degeneracy between the states connected by time reversal symmetry is
destroyed by tunneling between the fulure and the past.

As a simple model we use the kicked rotator on a torus [9] described by
the following unitary matrix:

o = -;-r- exp (— %((n +a)+ (m+ &)2)) X

N,
X E exp [—iV (8;) — i(n — m)b;) (1)
j=-N
Here V(0;) = k(cos0; — vsin 26;), k is the perturbation strength of the kick,
T is the period of the perturbation, N = 2N; +1 is the total number of states
and 0; = 2xj/N (h = 1).
The quasiclassical region we are interested in corresponds to big quantum

parameters k and N and small quantum parameter T'. The classical param-

eter K = kT determines the type of classical motion, K < 1 corresponding
to nearly integrable motion while K 3> 1 describing chaotic motion. The
second classical parameter, integer r = TN/2x determines the number of
primary classical resonances on a torus. The parameter o has the meaning
of magnetic field violating the time reversal symmetry. Another parameter -y
controls the spatial symmetry which is completely destroyed for v ~ 1 [10].
Usually we consider the cases with @ = 0 and ¥ = 1/2 when only time reversal
symmetry remains. To analyze the properties of the level spacing statistics
p(s) we diagonalized the matrix Uy, for different values of parameter k from
a fixed interval, so that the total spacing statistics was always equal to 10000.
The normalized level spacing s was defined as a difference between nearest
- quasienergies divided by the average spacing for all levels 2w [N.

Our results for the level spacing statistics in the classical KAM region
are presented in Figs. 1 and 2. A huge peak in the first bin of the his-
togram (Fig.1) clearly demonstrates the existence of global quasidegeneracy
in a qualitative accordance with the Shnirelman theorem [7]. We empha-
size that such a peak appears only when one considers all the level spacings
without fixing any symmetry of eigenfunctions, including time reversal one,
as was proposed in [11]. The separation of levels by symmetry is the usual
practice in the studies of level statistics which was apparently the main cause
of missing this peak in previous numerical studies. It is important to distin-
guish two qualitatively different situations. If there is exact level degeneracy

due to some continuous symmetry then such a peak has a trivial shape of
delta function. However, as is well known an exact discrete symmetry does
not imply generally the exact degeneracy but only a quasidegeneracy. In this
case the peak has a finite width and contains important information about
the structure of the quantum system.
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Fig. 1. Level spacing distribution p(s) in model (1) with @ = 0 and 5 = 1/2:
points, connected by dashed line, are for k = 6 — 10, T = 4x/N ~ 0.025, r = 2,
N=501, solid line gives Poisson distribution with 62% fraction of all spacings; circles
are for k = 25 — 30, T = 40x/N, N = 501, D/N = 1.5, full line shows Wigner
distribution. Total spacing statistics is 10000. '

The distribution out of the peak can be fitted by a renormalized Poisson
distribution p(s) = o* exp(—cs). The quantity 1 — ¢ has the meaning of the
fraction of degenerate levels which form the Shnirelman peak while o gives
the fraction of the states in the Poissonian tail. For the case in Fig.1 o ~ 0.62,
so that the total fraction of levels in the peak is approximately 0.38. This
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leads to the increase of the average level spacing in 1/¢ times, hence, ¢ in
the exponent. :

A visible difference of the total probability in the peak from 50% predicted
by the Shnirelman theorem can be understood on the following grounds. The
origin of this difference, as far as we understand it, is due to the fact that
the theorem was proved for a particular geodesic flow where all trajectories
are actually rotating even though this was not explicitly formulated. In our
model (1) in addition there are also oscillating trajectories within the main
resonance. In the quasiclassical case the splitting between the different di-
rections of rotation is exponentially small because of the tunneling between
these two classically separated trajectories as was shown in [8] for the time
and spatial symmetry case. However, for oscillating trajectories both di-
rections of motion are coupled classically and therefore the corresponding
level splitting is big. Hence, the oscillating states in the main resonances at
n = 0, N/2 do not contribute to the peak. The fraction of such states in the
quasiclassical case is determined by the relative phase space area of the main
resonances which is equal to p = 6.64,/K/2/x* for the case in Fig.1 with
r = 2. The averaging of v/K over the interval of K variation in Fig.1 gives
< VK > 0.45, so that the fraction of the oscillating states is p ~ 0.21.
Then, the expected fraction in the peak is 1 — o = (1 — p)/2 & 0.40 that is
in good agreement with the numerical value 0.38.

The resolution of the peak is presented in Fig.2 where the spacing integral
probability P(s) is normalized to the full number of levels in each matrix
(I{(s) = NP(s)). Three different regions are clearly seen. The rightmost
steep increase of I(s) corresponds to the Poissonian tail in Fig.1. The leftmost
steep drop 1s apparently due to numerical errors. The most interesting for us
is the middle region which represents the structure of the Shnirelman peak.
Approximately, the dependence of I on In s is linear here which corresponds
to the exponential splitting of the levels [11]:

s~ Aexp (— 2—“) (2)

I"P

where 2n is the distance in momentum between the two states —n, +n related
by the time reversal. This is a usual rough estimate for the tunneling (see
also below). The maximal distance on the torus is 2n = N/2 that determines
the minimal value of s. The splitting 1s characterized by the parameter
l;p which in this case has the meaning of tunneling length, and A is some
constant. With such a definition of I, the slope is dI/dIns =~ [, since the

integral probability P =~ 1/2 — 2rn/N. As is seen from Fig.2 the slope for

the fixed classical structure (K = const, r = 2) is approximately independent
on quantum parameters N, k,T. The tunneling length is measured in the
number of quantum states and is equal to I,, ~ 1.8.
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Fig. 2. Normalized integral level spacing distribution I(s) = N P(s): full lines
arefora=0; N=5601, k=6—-10; N=251, k=3-5 N =127, k = 1.5 ~ 2.5;
dashed lines are for o = 1.41-107° (left) and 1.41 - 107° (right), N=251. In all

cases r = 2.

Parameter [,; can be roughly estimated from the splitting AFE as a single-
kick effect due to the coupling matrix element U, _,, ~ J,,(k/2). This gives
lsp = 2/In(167n/eK N). Notice that [,, slowly depends on classical param-
eters only, including n/N. For the parameters in Fig.2 and n/N = 1/8 we
obtain I,;, = 0.8 which gives a correct order of magnitude. The dependence
lsp on n ~ Ins (2) implies very slow variation I,,(s) as Inlns.



The differential distribution of level spacings is given by

lsp
p(s) 22 3)
whence the average spacing in the peak < s >= lspSmaz [N where 5,4, ~
1/N corresponds to the crossover of the distribution (3) with the Poissonian
one (p(s) ~ 1). Notice that the average spacing in the peak decreases only as
a power law of the quantum parameter N in spite of exponential tunneling
(2).

The high sensitivity of the Shnirelman peak to the violation of time rever-
sal symmetry is demonstrated in Fig.2. A small « produces a sharp cutoff of
the distribution on a small spacing s. while for larger s the distribution I(s)
remains practically unchanged. The estimate for s. can be obtained from the
comparison of the unperturbed level splitting AE ~ TaN/2 (see eq. (1))
with the critical level splitting 2xs./N that gives s, ~ aTN2%/47 in a good
agreement with the data in Fig.2.

In the KAM region the motion is integrable for most initial conditions.
This means that the Shnirelman peak is essentially determined by the quaside-
generacy of integrable motion. Hence, the effect must generally persist in a
completely integrable system as well. Indeed, such quasidegeneracy occurs,
for example, in the simple (not kicked) pendulum as is clear from the well
known solutions to the Mathieu equation. In this system there are both spa-
tial and time reversal symmetries. However, the peak is produced only by
time reversal symmetry since the states of the opposite spatial symmetry are
not separated in the phase space. Also in our model (1) the peak disappears
if only spatial symmetry remains (y = 0, a # 0).

Much more interesting is the opposite limit of classically chaotic motion.
In this case the quasidegeneracy depends on the structure of eigenfunctions.
If they are ergodic like in the classical limit [12] then the states with the
opposite angular momentum (—n,+n) are directly related by the diffusion
and hence the splitting is comparable with the average level spacing. This
case is demonstrated in Fig.1 (open circles). The peak is absent in spite
of the time reversal symmetry. However, if the quantum eigenstates are
strongly localized (the localization length I < N) the exponential degeneracy
reappears [13] (see also [11] and references therein). An example of level
statistics in this case is given in Fig. 3. Again, the dependence of I on ln s
is approximately linear in the region of the peak but the splitting parameter
lsp 1s now much bigger and is related to the localization length (Isp ~1). The
latter is determined by the classical diffusion rate D ~ I [14]. In our model

#

for 4 = 1/2 the diffusion rate D ~ k? so that according to the data in Fig.3
the ratio I,, /D ~ 1.8.

Our results allow to formulate more general conditions for the appear-
ance of the Shnirelman peak in the level spacing distribution. First, the
quantum system must have a discrete symmetry. Second (a new condition),
the states with opposite symmetry must be separated in the phase space ei-
ther classically (as in the KAM region in our example in Fig.2) or quantum
mechanically (as for strongly localized chaotic eigenfunctions in Fig.3). The
second condition was not explicitly formulated in the Shnirelman theorem
[7] but was discussed in detail in [8]. On the one hand, the latter condition
restricts the applicability of the Shnirelman theorem. On the other hand,
our results show that the effect itself can be extended on both completely
integrable and chaotic systems (the latter case was also conjectured in [11]).
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Fig. 3. Integral level spacing distribution for N = 501, k = 2.5 — 3, T =
320w /N, D/N = 0.015 (full line); Poisson distribution is shown by dashed line.




In usual random matrix models the Shnirelman peak is absent in spite
of the time reversal symmetry of the corresponding Hamiltonian. This can
be understood in the following way. For full matrices the second condition
is violated due to ergodicity of the eigenfunctions. For band matrices with
localization the time symmetry is usually fixed. To recover the effect in the
latter case one needs to introduce explicitly the symmetry by the condition
Hym = H_.m,—n in addition to usual condition Hym = Hy n. An interest-
ing related example is the Anderson localization in a random but spatially
symmetric potential: V(z) = V(—z). On the other hand, the time rever-
sal symmetry in this example does not help due to violation of the second
condition: the states with opposite momenta are strongly coupled by the
backscattering in a random potential,

An interesting direction of further studies of the Shnirelman effect is re-
lated to many-dimensional systems where we would expect a much more rich
structure of quasidegeneracy.
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