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ABSTRACT

Schwinger operator method is applied for studying CP-odd pure
gluonic effective Lagrangian in the Standard Model at three-loop level.
The induced @-term vanishes by the same reasons as EDMs of quark
and W-boson to two-loop approximation. A simple way is found to
demonstrate these cancellations. All other terms of the effective La-
grangian acquire non-vanishing contributions. The effective operator
of dimension six, Weinberg operator, is calculated explicitly. The cor-
responding contribution to the EDM of neutron is much smaller than
that comes from large distances.

© Budker Institute of Nuclear Physics, Russia

1 Introduction

The Kobayashi-Maskawa (KM) model looks now as the most natural de-
scription of CP-violation. It describes properly CP-odd phenomena in the
decays of neutral K-mesons and predicts extremely tiny CP-odd effects in the
flavour-conserving processes. Though its predictions for the electric dipole
moments (EDM) of elementary particles are far beyond the present exper-
imental facilities, the corresponding theoretical investigations are of certain
methodological interest.

The subject of this work is the calculation of the CP-odd effective gluonic
Lagrangian which appears in the Standard Model as a result of integration
over quark and W-boson modes. This Lagrangian can be naturally expanded
in the series of gluon field operators of increasing dimension:

Sess = /d4rﬁsff(z) = fd4~"f (GISF?GLG;U + 29 f*°GopGp,Gra + )

| ;s (1)
where ¢ is the chromoelectric charge, G5 = 1/2G} €4vap. It is assumed that
the characteristic loop momenta are much larger than the inverse scale on
which field fluctuations occur. The first term in (1) represents the induced
#-term, perturbative contribution to the total #-term of the theory. The
next operator of dimension 6 was introduced originally by Weinberg [1]. In
different classes of models violating CP-symmetry this operator may give an
important contribution to the neutron electric dipole moment [2, 3].

The violation of CP-symmetry in Standard Model originates from the
complexity of the KM matrix. To lowest, quadratic order in the weak inter-
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action all CP-odd flavour-conserving amplitudes turn to zero trivially. The
point is that in this approximation those amplitudes depend only on the
moduli squared of elements of the KM matrix, so the result cannot contain
the CP-violating phase.

CP-odd objects may arise in the Standard Model in the fourth order in
semi-week constant. However, the cancellation of EDMs of a quark and W-

boson in this approximation is firmly established now [4, 5]. The only known

non-vanishing formfactor to this approximation is the magnetic quadrupole
moment of W-boson [6]. The finite EDMs can be obtained only after hard
gluon radiative corrections are taken into account. We shall prove that in
the absence of QCD radiative corrections the same mechanism leads to the
cancellation of induced @-term. In contrary to the recent claim that the
Weinberg operat.ar is zero to this approximation [7], we find that all c-pera.t.ors
of dim>6 acquire non-vanishing values.

2 Schwinger operator method for calculating
CP-odd Lagrangian

We are going over now to the direct calculation of a few first terms of CP-odd
effective gluonic Lagrangian in the Standard Model to three-loop approxima-
tion. The general structure of the diagrams which could contribute to the
effect in that approximation is shown on Fig.1, where the solid line represents
a quark loop, waved lines - W-bosons.

The CP-odd part of the loop flavour structure reads as:

2i6[d(c(b — s)t — t(b — s)c + t(b — s)u — u(b — s)t

+u(b — s)c — c(b — s)u)

+s(e(d — b)t — t(b— s)e + t(d — b)u — u(d — b)t

+u(d — b)c — c(d — b)u)

+b(c(s —d)t —t(s — d)c+t(s — d)u — u(s — d)t +
+u(s — d)c — e(s — d)u)]. (2)

For the KM matrix we use the standard parameterization of Ref.[8] where
the CP-odd invariant is

6 = sinbcycacysisosy. (3)

The letters u, d, s, ¢, b, t denote here the Green’s functions of the corre-
sponding quarks. Each product of four quark propagators allows for cyclic
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permutations of the kind
udes = desu = esud = sude.

Further considerations are based on the operator Schwinger method [9]
successfully extended on the QCD case by Novicov, Shifman, Vainshtein and
Zhakharov [10]. It allows one to minimize the set of calculations in introduc-
ing the operator P:

(#1P10) = (D) = (i + 975 A58z - (4)

where Af(z) is the external gluonic field. Then the quark propagator taken
in the background gluonic field reads as:

{vac|T¢® ()7’ ()|vac)

P? 4+ ig/2(Go) — m? v, (5)

= (z,ali(P — m)~"|y,8) = (&,al(P — m)

The external field strength appears as a result of commutation of two P:

c

Wiy :
[Py, P] = iG3, £3 = igGuy. (6)

We assume also that the field has no source and satisfies classical equations
of motion®: "y
DGy =0; DyGuy = 0. (7)

The general outline of our calculation is following. Using the specific
property of the flavour summation (2), namely the antisymmetrization in
the masses of opposite fermionic lines, we rewrite the general expression
for the CP-odd amplitude in KM model via some commutators of functions
depending on P. It gives us some powers of external field and its derivatives
in the nominator. If the explicit dimension of this part of expression is equal
to the dimension of operator of interest, we can forget about further non-
commutativity of Ps in other parts and put A = 0.

The generic formula for the effective action up to some renormalization
terms which will be discussed later looks as

P+m 1475 P+m l+
Sp==i 3 M| gp s Pmi) St g bm)—E L @)

flavour

1 As far as we are interested in pure gluonic operators we can omit quark currents in
the r.h.s. of (7)




where the sum over quark’s masses mj, mg and ms, my should be performed
according (2). The Tr operation in this equation means the trace in colour,
Lorentz and coordinate spaces: '

o o Ve / Pate] ey (9)

[' denotes the mass operator of a quark in the external field:

~

2 4 - 7
Egrogee . L d'q 145 ¢=-F
) f(zfr)ﬂ"‘ 2 (¢—P)+ig/2Go) —m]

1475 Quv — QH'?H/ME
2 q? — M? :

XYy (10)

where M is the mass of the W-boson, g, - semiweak charge. This mass
operator I' allows for the expansion in series of external field operators of
increasing dimension with some invariant functions depending on P? as co-
efficients. It will be shown later that for the calculation of the Weinberg

operator 1t i1s sufficient to keep in this expansion only three first terms of
explicit dimension 0, 2 and 3.:

Fm?) = ({P, Fi(P?)} + L (H:(P), {P, Go})
1+?’5

+9Ji(P*)DoG v PaPuvy + ...) (11)
Here {...} denotes anticommutator. Some comments should be added at this
point. As far as we do not fix the concrete view of invariant functions, two
last terms in (11) could be presented in the other form. The term of dimen-
sion 2, for instance, could be written as {P, { H;(P?),Go}}. The difference
between these two forms, however, is an operator of dimension 4 and it can
be absorbed to the next term of this expansion. From the same reasons we
do not care about the antisymmetrization in the last term in (11). The only
thing which should be checked is the absence of operators { H;(P?),{P, Go}}
and DGy PaP,vy. This could be made from the expression (10) or in the
framework of the usual perturbative expansion.

The V - A structure of I' cancels m; and m3 in nominators of (8).
The only problem arises with renormalization terms which violate pure left-
handedness. Now we shall argue that renormalization never contributes to
the CP-odd effective Lagrangian to this approximation.

In the absence of external field the first term in (11) reduces to the usual
unrenormalized mass operator in the V-A theory:

1+ 1+
= (a0 = PSP . (12)

-{P F(P*)}

The renormalization with respect to quark 1 from the left and quark 3 from
the right introduces into the mass operator the dependence of external masses
[4, 5]:

, e e 1+
P—% f(p*) — fialp e my 275—'”13—2&]: (13)

where fi3 and f are expressed via the function f and masses m;, mg as
follows:

o mi fi — mj
f(p2) 4o f(pﬂ) 5 ::% = E§f3 ;
mlm:;(fl i f3)j fi = f(p2 — mf), P TS (14)

m? — m3

fia=

It is clear how to adopt this scheme for the formalism of the external field.
Now the first term of (11) should be written in the following form:

(P, F(pr) - PRA T LT _
m1 m3
o [P(l = 5) = m1(1 = 75) — ma(1 + 7s)], o

where constants fi, f3 and fi3 are determined in (14). The zeroth-order
term of the perturbative expansion of this expression in A reproduces (13);
the first-order term corresponds to the vertex part renormalized in complying
with the Ward identity. Other terms appear to be free of renormalization.

Let us start our consideration of renormalization effects from the countert-
erms of the ”wrong” handedness, proportional to f;3. From flavour structure
(2) of the fermionic loop it follows, in particular, that any amplitude should
be antisymmetrized in the masses m; and mg of the opposite quark’s lines.
The cyclic permutation allowed under the trace symbol simultaneously leads
to the antisymmetry with respect to interchange of m-s and my4. The last
property automatically means the vanishing of the amplitude proportional
to fis(ma)fis(ms). Thus, one of mass operators at least possesses V - A
structure. Then the contribution of counterterms, proportional to fi3 can be
easily evaluated to the form:




(P(l —75) — mi(l —7s)

Tr[ P+m fls

PP — ml
P+ m3 - 1495
— 1+ —I(m
ma( Tﬁ)) P—m% ( 4) 5 ]
ﬁ 2 34
& , T'(m3; 16
i - (p? +i/2Go — mi)(p? +i/2Go — m3) (m3) 18)

This expression is explicitly symmetric under the permutation m; < mg
and drops out from the answer. Therefore, only V - A structures left in both
operators I' and our master formula reduces to

Sett = =i Z Tr

fHavour

A i ) ]-f"jr“a
b I'(m;
PP—ml ( E)PP—md (m3) 2

(17)

The procedure of the antisymmetrization in m; < mg implied at this point
significantly simplifies the set of further calculations. Indeed, the mj,ms-
dependent part of the amplitude can be easily transformed as follows:

P e
= I'= 7 —(m1 = mgj
PP—m% PP —m;
e T .
:,‘np f‘{’f’ minnP — (m1 ~ m3)
PP—m} PP—miPP-mi
z A p
=1-7-1~3-—§[F,PP] = N DD 3 —(mli—"mﬂ]
PP — my (PP —m{)(PP— m3)
— (m% — m%)ﬁgm[f', PP].@';EP, (18)
where we have introduced the operator 813 = ( — m3)~ (ﬁfj - m3)~1.

[t is easy to see that the antisymmetrization in my «— mgs performed in (18)
leads to the antisymmetry of the amplitude with respect to interchange of
indices 2 and 4. Indeed, using the cyclic permutation we get:

14+
(m} — m3)Tx (PSIB[FhPP]SmPT‘4 2‘?’5) —

1+
_(ﬂll --'IT.'3)T (PSlg[I‘4,PP]513PI‘2 275) (19)
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The calculation of the commutator in the expression (18) is quite straight-
forward. For instance, this commutator with the rest of the first term of the
mass operator can be calculated in the following manner:

[( (P, F(P?)} — pTiLSL = msf3y ﬁp] 1+ %
ﬂl.l—m3

1+'}’5

= {8, [F(P?), P* - L 60

i .f-g_‘f'({pa{F’{Pﬂ, DﬁGaﬁ}}}

14+
2

"%‘?‘{F;{Pmﬂaﬁﬂcﬂﬁ}])_fﬁ s C}(diﬂl P 5) (20)

This formula is obtained using the relation from the general operator calculus:
]
]' rrr .
+={F(4), [4,14,[A, B]} ~ +.... (21)
The result of the commutation (20) brings some important consequences:

First, it cancels the rest of renormalization counterterms. This completes the
prove of the statement that the renormalization never contributes to the CP-
odd flavor diagonal amplitudes to the fourth order in semi-weak constant.

Second, the minimal explicit dimension of the operator [I, I:‘,f’] 1s 3 and it puts
the limit on the number of terms in [’ that we have to take into account. For
the calculation of the Weinberg operator we can restrict our considerations
on the operators of explicit dimension 3 or less and it justifies, in particular,
the choice of T in the form (11).

Third, we have found the shortest way to demonstrate the absence of EDMs
of the quark and W-boson to this approximation. There is no doubt that all
considerations presented above can be extended on the case of the external
electromagnetic field.

Now we are in the right position for the calculation of the Weinberg
operator in KM model. It is convenient to classify all contributions by the
combination of invariant functions from the expansion of I's. There are five
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of them: J-H, J-F, H-H, H-F, F-F. For the induced f-term the only possible
contribution may arise from F-F.

The simplest cases are J-H and F-H because they already possess dim=6.
Therefore, the further non-commutativity may only influence on the effective
operators of higher dimension. Thus, it is reasonable to make the substitu-
tions:

. 1
P—p; § 22
S g oy =
Then the trace over spacial variables is easily computable:
Sers =46 [ Tecl(D,Gap)(DGip)
/ d‘*p (mi — m3)papupupap®[Ja(F3 — Ha) — Ja(Fi — Ha) (23)
or (7 — M~ mi)? ’

flavour

The trivial average over the direction of p produces three different field op-
erators of the dimension 6. By virtue of equations of motion for the external
field (7) they can be transformed to the standard form of Weinberg operator.
Finally, we get J-H and J-F contributions to the Weinberg operator in the
form:

/ d4p (mf — ma)Pﬁ[Jd(Fz Hy) < dalFy = Ho) (24)
(27

il (7 — m)2(p? — m3)?

The analysis of the H-H contribution is quite transparent. The corre-
sponding amplitude contains ficld operators of dimension 5 and 6. It means
that we can neglect the non-commutativity of Ho, H4 with operators P and
5,3 because it Would bring an additiona] dimension 2. Then the amplitude
of interest could be transformed to the form:

T‘r({HEr[O: PP]}{H%O})
= STx({H2,[0, PPIH{Ha, 0}) - {Hy, [0, PPI}{H2,0)), (25)

where O = ig/4{P,Ge}. It is the matter of simple exercise to check that the
expression (25) vanishes identically.

We left with the F-F and H-F groups of contributions which minimal
dimension is 3. The straightforward calculation is quite tedious because we
have to take into account Ge-dependence of Sy3, the non-commutativity of
different P, etc. However, we have found a simple argument to show these
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groups do not contribute to the Weinberg operator at all. In the amplitude
of interest (F-F case)

Te(PS13[{ P, F2(P?)}, PP)S13P{P, F4(P?)}), (26)

we perform the formal expansion in ig/2Go of Fi(P?) = F;(P? + ig/2Go -
ig/2Gc) around the ”point” P%+ig/2Ge = PP. 1t is clear that only zeroth
and first order terms of that expansion could be taken into account when cal-
culating Weinberg operator. This expansion can be performed using another
formula of the general operator calculus. Up to terms linear in B, function
F(A 4 B) could be expanded in the following manner:

1

2F(A+ B) = 2F(A)+ {F'(A), B} + {F”(fi) (4, B]] + ... (27)

In our case this expansion takes the form:

F(PP —ig/2Go)
= F(PP) - %{F'(f’ﬁ‘), ig/2Go} + %[F”(PP), [PP,—ig/2Ga]] + ... (28)

Only second term of this expansion is relevant in our consideration. Indeed,
the third term and other denoted here as ... have the dimension higher
than 3 and will not contribute to the Weinberg operator. First terms of the
expansion of F» and F4 drop out because they give a vanishing commutator
with PP. So, we left with the second terms only but their contribution
literally coincides with H-H case. Thus, the vanishing of H-F and F-F groups

of contributions follows from the simple substitution H; — H1 F} in
equation (25). Another basis of invariant functions depending on PP in the

expansion of [’

= (4P (")} + 2(PY), (P, Go})
1+ 75
.3

+9J:(P")DaG iy PaPyy + .. (29)

would simplify our analysis. It reduces the number of possible combinations
for the caleulation of the Weinberg operator to H — H and H — J.

We have shown that the KM-model does not induce #-term to three-
loop approximation. To the same accuracy the Weinberg operator acquires
nonvanishing contributions of the form (24).
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3 Weinberg operator in the KM model

After convincing ourselves in the absence of the exact cancellation of the
Weinberg operator 1n three-loop approximation, we are going to find its value.
It 1s natural to consider all quark masses but m, small as compared to the
W-boson one M. Together with the quark mass hierarchy it allows one to
simplify the calculations considerably, restricting to those contributions to
the operator of interest which are of lowest order in the light quark masses.
Besides, it is also natural to single out the contributions with logarithms of
large mass ratios, e.g., log(m;/m.), log(m/m,), log(M/my) etc.

All diagrams can be split into two types, depending on which quarks,
U (u, ¢, t) or D (d, s, b), flow inside the mass operators. 1t is convenient to
sum first of all over the flavours of the quarks masses of which were denoted
up to now as m; and mg. For the two types mentioned we get respectively:

4.2

Z (m1 — ma} ; —mym;
(p® — mji p —m%)2 pi(p? — m)?(p? — m?)?

4 2
—im, mg
x y * LF] o (3‘0}
pi(p? = mi)*(p? — mZ)?

In expression (30) we put my, = mg = 0. We can determine now the char-
acteristic momenta p. When quarks are arranged according to the first line
of formula (30), integral (24) is infrared divergent if one neglects the masses
m, and my in the denominator. It means that the typical loop momenta
contributing to the effect are p ~ my and it cancels two powers of my in the
nominator of (30). In the opposite case when D-quarks are inside the mass,
operators, the typical momenta range is large: p ~ M.

The main problem arising at this point is the calculation of invariant
functions F', H and J. This could be done by means of usual perturbative
expansion of formulae (10) and (11). Using the fixed point gauge

(z —2)uApu(z) =0 (31)
Ay fr)= -é—(:: + %—(z — 2)o(2 — 2), DGy p(z) +

after straightforward calculations we get the following set of equations:

dtq —24 — 5=(Pdp + 4G — 2¢°p)
(27)t (¢ —m?)[(p— ¢q)* — M?]

— )y Gypu(2)

F(p*)p = F(p*)p = f"w (32)

ff(ﬁz)éﬁypp'}’p = (Er 2 2 F)(pz)éﬂvpﬂ'fv
12

¥

o glzu d4q (Tﬂqi" =y ﬁﬁép#q”)é#” (33)
= (27)* (¢? — m2)[(p — ¢)° — M?] |

J(p2 }Da Gv,uPuPan

. & 4 = "
_ bw d q (fu o M2qp;i}f}'u'?c:rﬂ G;w F D C ,
o / Gr) (¢ —m)Rlp— )7~ M7 ouboPatu-  (34)

The cubic divergence of integral in the expression for F is irrelevant for us
because the combination F'(m?) — F'(m7) presenting in our equations is
obviously finite.

Before taking the integrals in (32) - (34) it is reasonable to determine the
light quark mass dependence of F', ¥, H and J and sum over flavours left.
Clearly, the summation Y _[J4(F3 — H3) — Ja(F4 — Hy)] brings an additional
factor m? for U-quarks, so the total degree of suppression for this type of di-
agrams is O(mimZm?). For the D-type of quark’s arrangement it is essential
that functions F’ and F" could be expanded as follows:

dF"’
d(mz)

F'(p*,m?) = F'(p?,m?* = 0) + m? + ..., (35)

m=0

whereas H and J contain pieces proportional to m? log m? (see the Ref.[6]
for the details). In the sum over D-flavours these logarithms prevent the
cancellation of terms ~ mim? which means that the group of diagrams with
D-quarks inside mass operators contribute to the Weinberg operator at the
same order (m?m2m?). Moreover, these logarithmic factors enhance the
contribution came from D-type of quark arrangement in comparison with
that from U-type. Up to the last integral over p? the corresponding contri-

bution to the Weinberg operator to double logarithmic accuracy reads as:

ib G : mim2m? 5 7i# 4
Co = — (32) '_—EEE——ngﬁﬂb/nh)
4 i Mﬂ
X/ ffi? (P* + M*)m{ - log p° § 1
(27)4 (p? — M2)5(p* — m}) m;

Performing trivial integration we get the final formula for the Weinberg op-
erator in the Kobayashi-Maskawa model:

(36)

3 B Dt d

e e i 212\ 1ol M2 o2 2 1 1h2
153676 —a—50G T~ log(mi /m) log(M* /my) I(mi /M7),  (37)

13



where the function I is

7= 12 10
)= G (34 207+ o)

z 13 5 10 :
“'G:TT)E(“z—l*(m—l)“(x—l)ﬂ)' St

The Fermi constant is introduced in (37) accordmg the standard notation

Gr = V2¢*/(8M?).

4 Discussion

We have shown that the Kobayashi-Maskawa model generates CP-odd ef-
fective gluonic Lagrangian to three-loop approximation starting from the
operator of dimension 6. The expression for the Weinberg operator (37)
parametrically coincides with the effective magnetic quadrupole moment of
W-boson [6] appearing in this model in the same fourth order in semi-weak
constant. The attempt to prove the exact cancellation of the Weinberg oper-
ator using the external field technic [7] seems to be incorrect. The author of
this work believes that antisymmetrizations of the amplitude (8) in m;, mg
and ms, my should be imposed independently and both procedures increase
the effective dimension. In contrary, we have shown they are connected and
the amplitude antisymmetrized in one pair is automatically antisymmetric in
another one.

There is nothing surprising in the fact that the contribution to the electric

dipole moment of neutron came from (37) is tremendously small. For m; ~
2M we get

cg ~ 10727(1 Gev)™? (39)

Using the result of the work [11] we can estimate the corresponding contribu-
tion to the NEDM as 10~*! e cm. It is far beyond both current experimental
limit and theoretically predicted NEDM came from large distances [12] as
well. The extreme smallness of (39) reflects not only usual parametric sup-
pression of the effect but amazingly small numerical coefficient as well.
Finally, we would like to discuss a possible value of the Weinberg oper-
ator at four-loop level. One additional hard gluon loop brings a factor like
a,/(37) ~ 1072 but now tlie operator of interest appears in another order in
light quark masses. As a result we could expect the corresponding coefficient
¢ being much larger than its three-loop value [2]. To obtain an estimation
for the Weinberg operator we use the approach developed in the work [13].
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Believing that all quark masses are much smaller than the mass of W-boson
one can use four-fermion contact limit restricting on the contributions to the
effective Lagrangian of order M~%. The only possible structure of diagrams
is presented on the Fig.2. (Dashed line here is the gluon pmpagatnr) The
induced O-term appears from this graph in the order O(a,G%m?m?) [13].
The heaviest masses enters only under logarithms here. The estimation for
the Weinberg operator quoted in [2], C](H,Gpm") looks strange now because
the ratio ca/c; is of order 1/m2. If it is true it makes questionable the valid-
ity of the expansion (1) at the four-loop level. Performing the same analysis
we came, however, to the another estimation of the effect. The typical ex-
pression for the corresponding amplitude before the last integral over gluon
momentum k? looks as:

0sGh [ AR og(m? /17) log K" m) T log(mi /), (40)

where the infrared divergence should be cut off at the scale of m,: Corre-
spondingly, the four-loop contribution to the Weinberg operator is of order
O(as;G%m3) which is two order of magnitude smaller than the estimation
cited above. |

I would like to thank I.B. Khriplovich for helpful discussions.

Fig. 1 Fig. 2
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