NMHCTUTYT SSOIEPHON ®U3UKHN
uMm. [''I. Bynkepa CO PAH

R.N. Lee, A.I. Milstein

FINITE SIZE OF NUCLEUS AND VACUUM
POLARIZATION IN HEAVY ATOMS

BUDKERINP 94-19

=

HOBOCHUBHUPCK




distinction at small distances of a potential from the Coulomb one should
be taken into account, The influence of the finite size of the nucleus on the
induced-charge deusity has been investigated analytically in [7] at distances
R < r < A, (R is the nuclear radius, A, = 1/m is the Compton wavelength
of electron, m is the electron mass). At arbitrary distances but only for some
concrete nuclei this problem has been investigated numerically in the papers
cited above. Recently the influence of nuclear finite size on the contribution
of self-energy diagram has been studied in [15]. '

In the present paper we consider analytically the change of induced-charge
density 8p;,(r), arising from the nuclear finite size, at distances much larger
than R. We restrict ourself by the case Za < 1. A simple expression for
6pys(r) is obtained. The consideration is based on the use of the integral
representation for the electron Green function in a Coulomb field. The ex-
pression obtained is very convenient for numerical calculations.

2 Green function and the induced-charge den-
sity

Let us pass to the calculations. According to the rules of the diagram tech-
nique the expression for the density of induced charge is of the form

i
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where G(7,7"|¢) is the electron Green function which we present as follows:
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Here v, are the Dirac matrices and V (r) is the potential energy of an electron
in the field of a nucleus. For Za < 1 the contour of integration over the energy
¢ in (1) goes from —oco to +00 below the real axis in the left half-plane of the
variable ¢ and above it in the right one. The Green function has cuts along
the real axis of € from —oo to —m and from m to +o0, corresponding to a
contiriuous spectrum. It also has simple poles, corresponding to a discrete
spectrum, in the interval (0, m). Using the analytical properties of the Green
function we deform the contour of iﬁtegratinn over ¢ in (1) so that it coincides
finally with the imaginary axis.

Let us represent the potential energy V(r) in the form

Yivi= —%E + U(r). (3)

bp(r) = —ie Try"G(7, 7lc), (1)
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The function U(r) is the difference between the potential energy of an electron
in the real field of a nucleus and in a Coulomb field. So it differs from zero
at the same distances as the nuclear-charge density p(r). !

Let us introduce the notation P = v%(¢ + Za/r) — Jp. It is easy to check
using the expansion over U(r) that the following relation is fulfilled:
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We represent 6p(r) as follows:

8p(r) = bpe(r) + 8pss(r) - (5)

where ép.(r) is the induced-charge density in the Coulomb field. Substituting
(4) in (2) and then in (1), we obtain the following expression for ép;,(r):

bpys(r) =€ f ;ﬁ f / d#'di"Try G (7, F'|££)[’}’“U(r"]6{f~" — M) +
i

+Tﬂu(f-’)c(fff,F"h‘e)-ﬁv(r’f)‘ Ge(i™, #lic), (6)

where G(F,7"|ic) is the electron Green function in the Coulomb field. It
easy to see that at least one of the arguments of the Green functions in (6) is
small because of the presence of functions U(r). Therefore, at the calculation
of the Green functions in (6) only the angular moment j = 1/2 is significant.
In Ref. [16] the convenient integral representation is derived for G, that is
valid in the whole complex ¢ plane. With the help of formulae (19) and (20)
of [16] we find the contribution of angular moment j = 1/2 to the Coulomb
Green function at imaginary energy (for simplicity, in the following we also
use the notation G. for this contribution):
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Mere Is,(y) is modified Bessel function of the first kind, ii = #/r, i1’ = P
y = 2kv/rr'[sinhs, v = /1 - (Za)?, k = vmZ+e2 If A, ~r > v, then
the region € ~ 1/r gives the main contribution to the integral over ¢ in the
expression for 8p;,(r). In this case in (7) s ~ 1, the argument of Bessel
function y ~ (#'/r)/? « 1 and we can use the asymptotics
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Ifr > A > ¢, then € ~ (A /M2, k =~ m, e ~ (rfA) and y ~
(r'/A)M? < 1. So, we can use the asymptotics of Bessel function again.
Besides, it is convenient to perform in (7) the integration by parts over s in
term proportional to (r — r').

Let us use a trick substantially simplifying the calculations. In the present
paper we consider spherically symmetric nuclear-charge distribution. It is
obvious that the induced-charge density is also spherically symmetric function
of r. So, we can multiply both sides of (6) by dii/(47) and take the integral
over the angles of unit vector 7i. Making these transformations we obtain for

6pss(r):
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"1t is taken into account in (10) that in (9) € € 1/t (R is the nuclear radius)
gives the main contribution to the integral over energy. The arguiments of

the Green function G in (10) satisfies the inequalities ', 7" < R <« A.. So
one can set in (10) the energy ¢ to be equal to zero. In addition, at distances
# ~ R the function G does not depend on the electron mass. Thus, we
can see that the factor I in (9) doesn’t depend on r and on the parameter
of integration €. On the other hand, all dependence on the nuclear-charge
distribution is contained in the factor F'. Therefore, the contributions to
§pys(r) of large distances and small distances are factorized. The integrals
in (9) are convergent and our expression docsn’t require the renormalisation.

3 Calculation of the factor F

Let us pass to the calculation of F. Quite similarly to (4) we obtain the
relation
1 1 1
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or
G(F, 7 |ie) = G(F, ]ie) + / &7 G.(F, 7|ie)y°U (#")G (", 7' ie) (12)

We must find the asymptotics of Green function at kr ~ kr! € 1 (k =
vm? + f-i). At these distances s ~ kr <€ 1 gives the main contribution to
the integral in (7). Replacing 1/sinhs and coths by 1/s in (7) and using
([17], p.303)
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we obtain the asymptotics of the Coulomb Green function at small distances:
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This asymptotics doesn’t depend on € and m. It is seen from (12) that the
asymptotics of the function G is also independent of these quantities. Lel us




represent the solution of the equation (12) in the form

G 7€) m 11 = GAYFANAr(r, ') + 1°1L + (GA)FA)] As(r, 1) +

+(F, 7A=Y iZaAs(r,?') + (F, A+ 0")iZaAg(r, ), (15)

where A,_4 are some functions. Substituting (15) in (12) we obtain a simple
system of equations for A;_4. Using (15) and (10) we get the following
expression for F':

- / drr* U(r) + 4:1'/ dr dr' (e ) U (YU (r') x
0 0 .
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It follows from (16) that it is sufficient for us to find the functions

a;(r) = dar’H! / dr' (W)U (") Ai(r, ), (i=1-4). (17)
0

Let us multiply both sides of the equations for A;(r, ') by 4= (rr')**1U(2”)
and then take the integral over dr'. As a result we obtain the system of
equations for a;. It is convenient to represent this system in the form

ay(r) F vas(r) + (Za)*as(r) =
- Zcr/ﬂ dzU(z)04 [{12(1') + vag(z) — u4(':r)] , (18)
aj (’.') + 113(?"} o Uﬂ4(?’) =
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the following relations:

= —(r/2)?*O(z —r). From (18) and (16) we obtain

F = 2vZaag(o0),
ai(00) + vaa(oo) = —(Za)az(c0), aj(o0) + az(o0) = vas(oo).  (19)

Actually, due to the rapid convergence of integrals we can use an arbitrary
distance larger than nuclear radius as upper limits of integration in (18) and
(19). Let us consider the functions

L(r) = vay(r) + aa(r) + (Za) aq(r),
M(r) = Zalas(r) + vas(r) + as(r)]. (20)

From (18) by simple differentiation we obtain for this functions:

V%ﬂ’f(?) -~ U(I‘)[L(r) fgip™ -
d

b"a;? EU.L 7") U(T‘

ZaM(r)] (21)

~[Za(L(r) + vr? — M(r)].
Using (19), we get M(co) =

F , L(co) = 0. Therefore, to calculate F' it is
sufficient to find f(r): '

vr¥ M(r)
L(r) + vr2v’

Hr) =
since F = f(co). From (21) we obtain for f(r) the following closed equation:
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It is convenient to make the substitution: f(r) = vr?”H(r). It is necessary
to get the boundary condition for H(r) at r = 0. In order to do that let us
return to (21) and find the asymptotics of functions M(r) and L(r) at r — 0.
At small » we can leave in U(r) only its singular part Za/r. It allows us
to search the solution of (21) in the form M(r) = br?, L(r) = er? — vr?,
where b and c are some constants. From (21) we find y = v+ 1. However, the
solution with ¥ = » — 1 .doesn’t satisfy the system for M(r) and L(r) written
in the integral form because of the divergence of the integral over r at lower
limit. So, finally we obtain: vy = v+ 1 and H(0) = b/c = Zaf(1+v) .

Solving the equation (23) at Za < 1 by the iteration over U(r), we obtain
in the first approximation

F iy = fur U(z)e® dz. (24)

At small 7 the function f}(r) is equal to Zar®’/2v and is in agreement
with the asymptotics f(r) & Zavr®” /(1 + v), following from the boundary
condition for H(0), at Za — 0 only.

Flg 1 shows the dependence of F/ < r® >¥ on Za, where < rt o=
(Zle])=! [ p(r)r®d7 is the mean squared radius of the nuclear charge-density,
for the case of homogeneously charged sphere. For the othere nuclear charge
distributions p(r) (the charged spherical shell and the distribution used in [7]
and consistent with the experimentally obtained) the corresponding curves
coincides practically with that shown in Fig. 1. For all these distributions




both total charge Z|e| and mean squared radius < r? > are equal. With the
accuracy of a few percent all the curves are described by the formula

Zav

i 14 v

[ = 131" (25)

For comparison the dependence of quantity F'/ < r? >¥ on Za (F' =
f1(00), see (24) ) is also shown in Fig. 1. It is seen that at Za ~ 1 the value
of F essentially differ from that of F'! obtained to the first order in U(r).
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Fig. 1. a)—TFactor F as a function of the nuclear charge Z; b)—Factor
F!, obtained to the first order in U(r), as a function of Z.

In Ref. [7] the analytical expression has been obtained for §ps,(r) being
valid at R € r € A.. The method of calculations in [7] essentially distin-
guished from that of ours. At small distances we can get the asymptotics of
formula (9) and compare it with the result of [7]. Taking into account the
factorization of large and small distance contributions, the function F should
coincide with the corresponding factor of Ref. [7]. It is indeed so if we take
into account the missed factor +*¥ in the right hand side of equation (30)
from [7] (eq.(31) for the asymptotics contains this factor).
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4 Asymptotics

Let us consider the behaviour of 8pre(r) at large and small distances in
comparison with the Compton wavelength of an electron. At r > A, Za ~ 1
the main contribution to the integral in (9) is made by the region 515 ~
In(mr) > 1, |e|/m ~ (mr)~1/2 < 1. Making the corresponding expansion
and taking the elementary integrals at mr > 1, we obtain:

5 b e ?”3-}-2HF evimr
p1s(r) = T 1 172) ()2

oo
/ dzz exp[-vz — z?[dmr]. (26)
0

If ¥2 5> 1/mr then the integral in (26) is equal to 1/»°. If ¥* & 1/mr, then
it 1s equal to 2mr.

At small distances R € r < A, the main contribution to the integral
over ¢ is made by the range of integration |¢] ~ 1/r > m. Replacing k in
(9) by ||, taking the integral with respect to ¢ and introducing the variables
T=251+8 T=8 — 52, we get

eF [(4v +1)
bprs(r) = (T2v+3) 7222 12(2v+ 1) X

oo T ¢ Y . r 2y
cos(2ZaT) cosh 7 (coshT — cosh 1)
i /n dT/G e (sinh T")4v+1

(27)

It is convenient to take the integral in (27) by the following way. First
we pass from the variable r to the variable & by the substitution sinh 7 =
sinh z sinh T /(cosh z + cosh T') and take the integral over T'. This integral

: : — 2= 12
is expressed via the Legendre function of the first kind Pﬁzya_‘iﬂ(msh )

and its derivative (see. [18], eq. (8.713(3))). Then we take the integral over
z with the help of eq. (7.132(2)) from [18]. Finally we obtain the following
result for the asymptolics at small distances:

eFF \ 2vT'(4v +1)
r2v+3 | 7?2 (20 + 1)

M(v+iZa)l|’

I'(2v+1)

6pys(r) = (28)

This result is in agreement with that of [7].

. Let us consider now the limit case Za — 0. Setting Za = 0 in the
integral in (9) and taking the integral first over s1, s3 and than over ¢, we.
obtain after the simple calculations:

(0),,2
6\ (r) = 268 M [ Ko(2mr) + (mr + Umr)a(2mr)] ,  (29)

T
2 pd
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where Ko 1(z) — are the modified Bessel function of the third kind, FO) =
: fﬂm r2U(r)dr. The result (29) coincides with that obtained in the first or-
der of perturbation theory from the usual relation in the momentum rep-

-

resentation between the induced-charge density ép(k) and the renormalized

polarization operator P(--f) (see [19], section 114):

6p(k) = — V(F)P(-F ), (30)

where V(i) 1s the nuclear potential in the momentum representation. Let
us replace ﬁp(E) and V(E) in (30) by {5p_;,(i:) and U(k) respectively and
perform the inverse Fourier transform. Since U(r) is not equal to zero only
at small distances of the order of the nuclear radius, we can substitute U(k)
in the integral over k by U(k = 0). As a result we obtain (29).

5 Conclusion

Simple analytical expression (9) for the indused-charge density, obtained ex-
actly in Za, is valid for the distances much larger than the nuclear size R,
This expression is very c-.uvenient for numerical calculations. The compari-
son of our results with the numerical results from [9] shows that formula (9)
is applicable starting from r ~ 10R . Fig. 2 shows the dependence of éps,(r)
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Fig. 2. The dependence of
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on r for various Za. It is seen that the dependence on Zu is very essential.
Since the total induced charge is equal to zero, we can write the expression
for the induced potential é¢;,(r) as follows:

8dps(r) = 4m fm r'(1 =r'[r)bpss(r') dr’ . (31)

Fig. 3 shows the dependence of the potential é¢s,(r) on Za. Emphasize
again that all dependence on the nuclear charge density p(r) is contained in
the factor F (10). Moreover, for the realistic distributions p(r) this factor is
determined by the value of mean squared radius < r? > (see (25)).
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