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ABSTRACT

A method is considered to induce surfaces in the three dimensional
(pseudo) Euclidean space via the solutions of the two dimensional linear
problems 2D LPs and their integrable dynamics (deformations) via the
241-dimensional nonlinear integrable equations associated with these
2D LPs. Coordinates X* of the induced surfaces are defined as the
integrals over certain bilinear combinations of the wavefunctiones ¢
of these 2D LPs. General formulation as well as the three concrete
examples are considered. Some properties and features of such inducing
are discussed. Three-dimensional Riemann spaces associated with the
2+1-dimensional nonlinear integrable equations are considered too.
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1 Introduction

Dynamics of surfaces, interfaces, fronts is a key ingredient in a number of
interesting phenomena in physics. They are, in particular, surfaces waves,
propagation of flame fronts, growth of crystals, dynamics of vortex sheets,
deformation of membranes, formation of Saffman-Taylor fingers, many prob-
lems of hydrodynamics connected with motion of boundaries between regions
of differing densities and viscosities (see e.g. [1-3]). Such a dynamics can be
modelled by the nonlinear partial differential equations (PDEs) which de-
scribe the evolution of surfaces in time (see [1-3] and recent papers [4,5]).
Solvable cases when the corresponding PDEs can be integrated analytically
are, of course, of the great interest.

In mathematics the differential geometry of surfaces has been completed,
in essence, at the end of XIX and the beginning of this century (see e.g.
[6-10]). Basic differential equations (Gauss equations) which describe sur-
faces in the three-dimentional space have been studied in details from var-
ious points of view. One of the classical problems of the differential geom-
etry was the study of the connection between differential geometry of sub-
manifolds and nonlinear partial differential equations (PDEs). The Liouville
and sine-Gordon equations which describe minimal and pseudospherical sur-
faces, respectively, are the best known examples. In particular, Liouville has
found [11] the general solution of the equation ¢-y = expé. Bianchi [7] and
Bicklund [12] introduced symmetry transformation of new type (now known
as the Bicklund transformation) for the sine-Gordon equation ¢y = sin¢
which allows to construct new pseudospherical surfaces from a given one.

3



Less known example is given by the equation ¢y = exp ¢ — exp(—2¢) which
describes surfaces with the so-called Tzitzeica property [13] (see e.g. [14]).
A new tool to solve nonlinear PDEs was discovered in 1967 by Gardaer,
Green, Kruskal and Miura [15]. This method (inverse spectral transform
(IST) method) allows effectively solve a number of nonlinear PDEs with two
and three independent. variables which appear in various fields of physics and
applied mathematics (see e.g. [16-18] and for multidimentional integrable
PDEs [20-22]) A key element of the IST method is the representation of
the nonlinear PDE as the compatibility condition of certain system of linear

equations for so-called eigen (wave) function. Nonlinear PDEs integrable by

the IST method possess a number of remarkable properties: soliton solutions,
infinite number of conservation laws, infinite symmetry groups, Backlund and
Darboux transformations, special Hamiltonian structures and so on (see [16-
21]). In particular, it was shown that the Liouville and sine-Gordon equations
are integrable by the IST method.

The sine-Gordon and Liouville equations were the first nonlinear PDEs
which revealed a deep connection between the differential geometry and soli-
ton equations. After that such a connection has been discussed many tirnes.
It was observed in [23] that the Gauss—Weingarten equations of the sur-
face created by a special motion of a relativistic string can be viewed as a
pair of spectral problems whose compatibility condition gives the so-called
Lund-Regge system. A geometric interpretation of the 2 x 2 matrix spectral
problem in terms of pseudospherical surfaces has been given in [24]. The for-
mulations of the 1+1-dimensional soliton equations in terms of vector bundles
has been discussed in [25]. The characterisation of the modified Korteweg-de
Vries equation as the relation between local invariants of certain foliation
on a surface of constant nonzero Gaussian curvature has been proposed in
[26]. The detailed study of the nonlinear integrable equations which describe
pseudospherical surfaces was given in the series of papers [27-30). An ex-
tension of the sine-Gordon equation and Bicklund transformation for the
negative constant sectional curvature submanifolds in the Euclidean space
R2"=1 has been considered in [31,32]. The IST method has been applied
to suck generalisation in [33,34]. Multidimensional Gauss—Codazzi equations
and corresponding nonlinear equations have been considered in [35]. The
Darboux and Lame systems which describe, respectively, the triply conju-
gate and triply orthogonal systems of surfaces [9], their exact solutions and
transformation properties have been discussed recently in [36,37,22].

A different approach which uses the powerful tool of the IST method
to construct explicitly surfaces has been proposed in [38,39]. Within such
soliton surfaces approach” one starts with the system of 1+41-dimensional
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linear problems ¥, = P, ¢y = Qv and then construct explicit formulas for
the immersions of one-parameter families of surfaces labeled by the spectral
parameter. Emphasize that in this approach a surface is associated with the
given solution of the 141-dimensional integrable PDE which arises as the
compatibility condition of the above linear system. Interesting results in this
direction have been obtained recently in [40].

In the present paper we consider the method of inducing surfaces in the
three-dimensional Euclidean (and pseudo-Euclidean) space via the solutions
of the two-dimensional linear problems (2D LPs). Given 2D LP, one defines
the variable coordinates X* (i = 1,2,3) of a surface as some integrals over
certain bilinear combinations of solutions ¥ of the 2D LP and solutions ¢* of
the adjoint 2D LP. This approach is not completely new. Particular examples
of such construction were known already in the XIX century. They are the
Weierstrass—Enneper formulas for minimal surfaces (see e.g. [6-8]) and the
formulas of Lelieuvre [41] for surfaces refered to their asymptotic lines. Here
we consider both the case of general 2D LP and particular cases including the
generalization of the Weierstrass—-Enneper formulas. 2D LPs on the whole
plane induce the unbounded surfaces while periodic 2D LPs induce compact
surfaces. Using the exact explicit solutions of 2D LP, which can be found, in
particular, by the dressing method, one constructs the corresponding induced
surface by explicit formulas. Emphasize that our approach is essentially
different from that proposed by A. Sym in [38,39]: here a surface is induced
by a single 2D LP and there is no nonlinear PDE associated with this surface.

 Another our aim is to present a method to construct integrable dynamics
of induced surfaces. Given 2D LP we consider the time evolution which is de-
scribed by the LP of the type ¥; = A and which is compatible with the 2D
LP. The compatibility of the time evolution with the 2D LP first guarantees
the preservation in time of the formulas for inducing surfaces. Second, it gives
rise, as typically to the IST method, to the 2+1-dimensional nonlinear inte-
grable PDE both for the coefficients of the 2D LP and for the wave-function
1. This nonlinear evolution equation induces the corresponding evolution
of the induced surface. Such a time dynamics of surface is integrable one.
Standard IST procedure for the solution of the initial value problems allows
us to solve (linearize) the initial value problem for the induced dynamics of
surfaces. Exact explicit solutions of the inducing linear problems give rise to
the time evolutions of the induced surfaces given by the exact explicit formu-
Jas. As far as concerning the differential geometry of surfaces our approach
provides a method to construct integrable deformations of induced surfaces.

In the paper we consider several concrete integrable evolutions of sur-
faces which are induced by the well-known 2+1-dimensional integrable non-
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linear PDEs. Resonantly interacting waves equations, the Nizhnik—Veselov-
Novikov (NVN) equation, the modified NVN equation, the Kadomtsev— Petvi-
ashvili (KP) and Davey-Stewartson (DS) equations are among them. We
consider some general and particular features of the proposed method of in-
ducing surfaces and their integrable dynamics. The one-dimensional limit of
the above constructions is also discussed. It reproduces the known results on
the integrable dynamics of curves.

Three-dimensional Riemann spaces associated with the 2+1- dimensional
integrable nonlinear PDEs are considered too.

The paper is organized as follows. In section 2 we remind the basic no-
tions and equations of the differential geometry of surfaces. The Weierstrass-
Enneper and Lelieuvre formulas are presented in section 3. General method
of inducing surfaces and their integrable dynamics is discussed in section 4.
Dynamics of surfaces induced by the NVN hierarchy of equations via the
Lelieuvre formula is considered in section 5. The generalised Weierstrass—
Enneper inducing and the corresponding dynamics is presented in section 6.
Inducing the surfaces by the general matrix 2D LP and their dynamics in
considered in section 7. Different particular cases are discussed in the next
section 8. The one-dimensional limit of the above constructions is analyzed in
section 9. The interralation between the 2+41-dimensional integrable PDEs
and three-dimensional Riemann spaces is considered in section 10.. Some
properties and features of the induced surfaces and their integrable dynamics
are discussed in the Conclusion.

2 Surfaces in R®

Here we will remind briefly some basic elements of the theory of surfaces.

So we consider a surface in the three-dimensional Euclidean space R3. We
will denote the local coordinates of the surface by u!, u®. The surface can be
defined by the formulae (see e.g. [6-8])

Xt =zi(u,0?), i=1,2,3, (2.1)

where X* (i = 1,2, 3) are the coordinates of the variable point of the surface
and z° (u!,u?) are scalar functions. The basic characteristics of the surface
are given by the first Q; and second Q3 fundamental forms

Q1 = ds® = gogdu®du’® | Qy = dapdu®dv® (2.2)

where gag and dop are symmetric tensors, «, 8 take values 1,2 and here and
below the summation over repearted indices is assumed. The quantities gqp
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and dopg are calculated by the formulas [6-8]
X' ox* X

— . e — 8 —
Job = Jus " JuP dap = du® fuP ¥ An L (2:3)
where N* are the components of normal vector:
: ke OXF 8XT
N = (det _lﬁs'h—q—-—" b3
(detg) o (1=1,2,9), (24)
and g'*¢ is totally antisymmetric tensor, €123 = 1.

The metric gop completely defines the intristic properties of the surface.
The Gaussian curvature K and mean curvature K,, of the surface are cal-
culated by the formulae K = Rj31a2(detg)~" where Rapys is the Riemann
tensor and K,, = ¢%# dap. We will considered here mainly the real surfaces..
Embedding of the surface into R? is described both by g.s and d,s and it is
governed by the Gauss—Codazzi equations

Bxi . opxh

Fusdip ~ Yap. gy ~GeslV =1, (2.5)
ON* X’ _
oa T’ 5 =0 (i=1,2,30,0=1,2), (2.6)

where F’;ﬁ are the Christofel symbols.
Among the global characteristic of surfaces we mention the integral cur-
vature (see e.g. [6-8])

==
~ 2n
F]

X K (detg)'/*du'du? | (2.7)

where K is the Gaussian curvature and the integration in (2.7) is performed
all over the surface. For compact oriented surfaces

x=2(1-n), (2.8)

where n is a genus of the surface,

Families of parametric curves on the surface form the systems of curvilin-
ear local coordinates on the surface. It is often very convenient to use special
types of parametric curves on surfaces as coordinates. The following types
of special parametric curves are the basic one (see e.g. [6-10]):

1. Orthogonal curves. The first fundamental form looks like (3; = gndula-i-

2 & " - ; s
g22du®” and the corresponding coordinates are the curvilinear orthogonal co-
ordinates.




9. Minimal lines (curves of zero length). In this case g11 = g22 = 0, 1.€.

Q] = 25}'12 dulduz . (2.9)

For real surfaces minimal lines are complex and 0y = 2\(z, 7)dzdz where bar
means the complex conjugation and A is a real function. The Gauss—Codazzi
equation for a surface referred to its minimal lines are reduced to the Liouville

equation

8%¢
e = —Ke?, (2.10)

where ¢ = log g12.
3. Conjugate lines. They are the curves orthogonal with respect to the
second fundamental form. So in this case dj2 =0 and

1y = dud‘uln -+ dgzdﬂEz. (211)

The coordinates X* of a surface referred to its parametric conjugate lines
obey, as it follows from (2.5), the Laplace equation

oy 5 WX
Bulgw 29wt 12 ou?

The Laplace transformation for equations (2.12) gives rise to the 2D Toda
lattice equations [6]. The Laplace equation (2.12) is also the basic equation
of the so-called theory of conjugate nets (see e.g. [42])

4. Asymptotic lines. In this case dyy = dys = 0 and

=1 (2.12)

Q, = 2dyodutdu®. (2.13)

In particular, for the surfaces of constant negative curvature —u? one has
g11 = g22 = 1, g12 = cosw, di2 = psinw and the function w obeys the
sine-Gordon equation
d%w
Juldu?

5. Lines of curvature (orthogonal and conjugate) and geodesics. These
types of curves play a fundamental role in the theory of surfaces. But we
shall not discuss them here.

As we see from the formulas (2.10)-(2.14) these special types of local
coordinates are very useful for the revealing the role of nonlinear PDEs in the
theory of surfaces. They will be also convenient for our purpose of inducing
the surfaces and their integrable dynamics.

8

= plsinw. (2.14)

3 The old Weierstrass—Enneper and Lelieuvie
formulas ' |

In connection with the study of minimal surfaces, for which mean curvative
K,, = 0, Weierstrass and independently Enneper (see e.g. [6-10]) discovered
the following formulas.

Let 9(z) and ¢(2) are arbitrary holomorphic functions. Then let us in-
troduce the functions Wy, Ws and Wj via

3W1 g 9 '3W2 e o 8W3
=i ), 5t = -8t R =t (3)
We define
X1 =ReW; =Re/z'(v,b2 + ¢?)dz
XE = Re Wg = RE/(@E')E —qﬁz)dz, (3.2)

X3 =ReWs = —RefE:,bqﬁdz :

Then the functions X"(z', z) (i = 1,2,3) define a minimal surface. The para-
metric lines z=const, Z=const’ are the minimal lines. Note that the functions
¢ and v are defined by the Cauchy-Riemann equations
0 _, 2 _
AR T o
The Lelieuvre formula [41] is our second example. One starts with the per-
tubed string equation

0. (3.3)

8%y
dul du?
where p and 1 are scalar functions. Let (1), () (3) are the three linearly

independent solutions of equation (3.4) with given p(u',u?). We define X
(i = 1,2,3) by the formulas [41]

+p(ut,u?)y =0, (3.4)

ox’ =Eik¢¢{k§8¢(E} ox — _gike (k) yle)

d :
Jul Sul ' Buto Bu? (i, k,e=123). (3.5)

Then the functions X(u!,u?) (i=1,2,3) defines a surface referred to its
asymptotic lines which are the parametric lines u'=const, u? = const' [41].
The Gaussian curvature of this surface is K = — (9 ()=,
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One more example of similar type is contained as an exercise in [8] (p.82).
Let 6; and 0, are the two linearly independent solutions of the equation

k)
OulOu?

where A(u!,u?) is a scalar real function. Then the functions X (u?,u?) are
given by the quadratures |

1 7861\?
Xt 4ix? =f(a§d,u1+ﬁ (m%) duz) ,

2 i
X' —ix?= f (9§du1 g (592) duﬁ) : (3.7)

X2 \§u?
: i 100 B0 . o
XE-T-’I/ (ﬂlﬂzdu +ﬁmmdu

define a surface referred to its minimal lines [8].
The generalization of the basic idea of these three examples of the inducing
‘surfaces by the solutions of linear PDEs is the first main goal of our paper.

a a8
S grplienl): oo — M(e 00, (36)

4 General method of inducing surfaces and
their integrable dynamics

So we start with the linear PDE with two independent variables u', u? and,
in general, with matrix-valued coefficients

L(Bu1, Bu2)¥ =0, (4.1)

where L is the linear operator and v is a matrix-valued function. We shall

refer to (4.1) as the two-dimentional linear problem (2D LP). The 2D LP for-

mally adjoint to (4.1) with respect to the standard bilinear form < ¢, ¢ s=

[ duldu?tr(¢+) will be denoted as

L*(0ul,0u®)yp" = 0. (4.2)
It is well-known that
1.- e aPi an
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where P; and P, are certain bilinear combinations of ¥ and ¥*. So if P

and ¥*(*) are the solutions of (4.1) and (4.2), then one has

oP  gpg

Oul Ou? )
This equation implies the existence of the quantities w(*) such that
| ; & (ik) ; d (ik) :
PR N T (4.5)

Ju? '’ S e

In virtue of (4.4) the quantities Xt = yike(ke) given by the quadratures
Xi = ke f (P dut + PEdu?) (4.6)
I’

do not depend on the choice of the curve of integration I'. Here ~*ke are
arbitrary constants.

A basic step is now to treat u’, u? as the local coordinates on the surface
and three quantities X* (i = 1,2,3) of the type (4.6) as the coordinates of
the variable point of the surface in the three-dimentional Euclidean space R®.
So given 2D LP (4.1) (and its adjoint (4.2)), one induces a surface by the
formulae of the type (4.6). :

Any three linearly independent solutions () of (4.1) and , respectively,
of (4.2) induce a surface. Linear PDEs (4.1), (4.2) have infinitely many
linearly independent solutions. Hence 2D LP (4.1) with the fixed coefficients
{p(u!,u?)} generates an infinite family of surfaces in R®>. A variation of p
gives rise to the various surfaces too. Finally, different 2D LPs induce the
surface of different types. '

In the case of coordinates u!, u? varying all over the plane we have un-
bounded surfaces in R3. The periodic 2D LPs (4.1) induce the compact
surfaces. There are several powerful methods to solve linear PDEs with vari-
ables coefficients: method of the operators of transformations (see e.g. [43]),
dressing method (see e.g. [16,20-22]) and others. Exact explicit solutions of
the 2D LP (4.1) define by the explicit quadratures (4.6) the induced surfaces.
So the method under consideration provides us the diverse possibilities to
study various properties of surfaces in R>.

A principal advantage in this approach consists in the possibility to for-
mulate for such induced surfaces the time evolutions (deformations) which
are integrable in certain sence. So let us assume that all quantities in the
2D LP (4.1) depend on the new time variable {. Time evolution of these
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quantities can be defined in the different ways. We shall consider such time
evolutions which preserve in time the formulas of inducing (4.6). For the
invariance of (4.6) in time it is sufficient to consider the deformations which
preserve 2D LP (4.1) in time. Following the main idea of IST method (see
e.g. [15-22]) we shall fix the time evolution by the linear PDE of the type

M(8y, 842, 0u2) =0, (4.7)

where 8; = %, Oy = -éﬂ—;, and M is some linear operator. In the cases which
we shall consider M = 8; + A where A is some linear operator.

The compatibility of 2D LP (4.1) and LP (4.7) guarantees the invari- '-

ance of the inducing (4.6) in time ¢. On the other hand, this compatibility
condition, as it is well known, is equivalent to the nonlinear PDE for the
coefficients {p(u!, u?,t} of the problem (4.1)

Pt = F{F;Pﬁ;pulspuﬂs ]' 3 (48)

where F' is some nonlinear function. Equation (4.8) is just the nonlinear PDE
integrable by the IST metod with the help of the auxiliary linear problems
(4.1) and (4.7). The IST method allows us to study such an integrable
nonlinear PDEs in great details. In particular, it allows to solve (linearize)
the initial-value problem for the integrable equation (4.8) p(u',u? ¢ = 0) —
p(u', u?,t) and to construct very wide classes of its exact explicit solutions
[16-22]. The corresponding formulas, with the use of the inducing (4.6),
provide us the solution of the initial-value problem for the evolution of the
induced surfaces:

Xi(ut,ud,t = 0) — Xi(u!,u,t) (i=1,2,3). (4.9)

It gives us also the explicit exact formulas which describe the continuous
deformations of surfaces in time .

Thus, the 2+1-dimensional integrable equations (4.8) induce via (4.6) the
integrable evolutions (dynamics or deformations) of the induced surfaces.

It is well-known that there exists infinite hierarchies of integrable equa-
tions associated with the given 2D LP (4.1). For them the operator M in
(4.7) is of the form M, = 8;+ A, where A, is an n-order differential operator
(n =1,2,3,...). Each member of the hierarchy induces the corresponding dy-
namics of surfaces. So one has the infinite hierarchies of integrable dynamics
of the induced surfaces.

To caleulate the compatibility condition for the system (4.1), (4.7) explic-

itly one needs to fix the properties of the coordinate ul, 2. In the present
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paper we shall consider the case when the local coordinates u!, u? of a surface
are not affected by the time evolution, i.e.

a ad a 4
_gi- Juc = Juc *5; & = 1,2) . (410)
The condition (4.10) implies certain constraints of the admissable deforma-
tions of surfaces. Namely, we assume that the points of the surface taken in
the two different values of time are always in one-to-one correspondence. In
such a case the coordinate curves on the surface can be choosen so that u!
and u? will have the same values on the two surfaces at corresponding points
(see e.g. [6-8])

Now let us compare our approach with that proposed in [39]. ”Soliton
surfaces approach” of [39] is the method of inducing surfaces too. But it
starts with the set of the one-dimensional problems

9
.55‘_ = gl e 13 (4.11)

where g,(u;)) are matrix-valued functions and A is a spectral parameter.
The variable coordinates X* of a surface are induced by the formula

9X _ 41 99 _ '
Buk _¢, ﬁﬂb, ”—1121“* (412)

where X belong to some matrix algebra.

Each of the LP (4.11) is the one-dimensional one, has finite number of
linearly independent solutions, and the compatibility condition of the sys-

‘tem (4.11) is equivalent to the nonlinear integrable equation. In the 1+1-

dimensional case it is one of the well-known 1+1-dimensional integrable equa-
tions. So in the ”soliton surfaces approach” a surface is induced by the sys-
tem of the one-dimensional LPs or, equivalently, by the nonlinear integrable
equation.

In our approach, in contrast, a surface is induced by a single 2D LP (4.1).
So our inducing procedure does not contain any nonlinear PDE within it.
In our approach the 2+1-dimensional nonlinear PDEs induce the integrable
dynamics (deformations) of the induced surfaces. '
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5 Lelieuvre’s mducmg and NVN integrable
dynamics

In this and next sections we shall consider concrete examples of the general

scheme of inducing proposed in the previous section.
We start with the LP

2 :
o+ p(ut u)p =0, 6.1)

where p and 1 are scalar real functions. The Lelieuvre formulas (3.5) define
the coordinates X* of a surface by the quadratures [41]

i) Hyle)

ke (B) X" dud — olk)  dy? ;

]./(¢ Oul i ahs du? ot & (5:3)
r

where the integration in.(5.2) is performed along an arbitrary curve I'. In
virtue of (3.5) and (5.1) the integral (5.2) does not depend on the choice
of I'. Note that the LP (5.1) is self-adjoint. As a result the formula (5 2)
is quadratic in 1. In the Lelieuvre inducing the local coordinates ul, u? of
the surface are the asymptotic lines. For the negative Gaussian curvature
K asymptotic lines are real and distinct. For positive Gaussian curvature K
asymptotics lines are complex and complex conjugate to each other.

So the 2D LP (5.1) with real u’, u? induces via (5.2) surfaces with K < 0.
The 2D LP (5.1) with u* = #t! induces the surfaces with K > 0.

Using (5.2), one, in particular, gets the metric gag:

By 9yl Hyp*)\ 2
o = 090 22 B (o S0’

oyle) fyle) (k) oy 09p(®)
g2 =~ T T 1 (W0 D) (v ), (69)

oy(e) gyle) Suplk)\ 2
= (k) (k) ST 17 L Tk S
o Ju? Ou? (¢ du? )

In modern terminology equation (5. 1) with the real ul, u
usually as the perturbed string equations (if p — 0 as ul” + u?” — o0) or as

the perturbed telegraph equation (if p — const # 0 as u!’ +u?’ = o0). In
the case u? = @! it is the two-dimensional stationary Schrodinger equation
with the potential p. Equation (5.1) is well studied in both cases by different

2 is referred
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methods (see e.g. [43-53]). Exact solutions of (5.1) obtained by all these
methods induce via (5.2) the corresponding surfaces in R>.

Evolutions of the potential p and wavefunction 1 in time { which preserve
the LP (5.1} are defined as the compatibility condition of (5.1) with the LPs

e+ AnYp =0, (5.4)

where the operators A,, are of the form

An = (gn(u, )83 + ra(u,1)8251") (5.5)
=0

and ¢,, r, are scalar functions.
The simplest case n = 1 corresponds to the equation

P+ apyrutyt +Bpururur +3a(pWyt )ur +38(pWy2 )u2 = 0, Wiyry2 = p, (5.6)

where a and 3 are arbitrary constants and p,i = Fa&' The corresponding
problem (5.4) is of the form

Yo + (003, + B0% + 38Wurus O + 36Woz2 8,3} = 0.  (5.7)

In the case of real u!, u® equation (5.6) has been derived for the first
time in [54]. In the case u® = @' it was discovered independently in [46]. We
shall refer to equation (5.6) as the Nizhnik-Veselov-Novikov (NVN) equation:
NVN-I and NVN-II equations respectively for real and complex (u? = u!)
coordinates.

So the NVN-I equation induces the integrable dynamics of the surfaces
with negative Gaussian curvature referred to their asymptotic lines while
integrable dynamics of induced surfaces with positive Gaussian curvature is
induced by the NVN-II equation. _

Eliminating the potential p from the system (5.1), (5.7), one gets the
following equation for the wavefunction

+ athyryiygr + Brhyaya,a + 3ﬁWu1u1¢u’ + 3aWya,2¢p,2 =0,
Wytys = '""1{’-11;"5111113 (58)

Since the Lelieuvre formulas (5.2) contain only the wavefunctions %(¥) the
wavefunction equation (5.8) is of the principal importance in the whole method
of induced dynamics of surfaces.
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The IST method allows us to find wide classes of exact explicit solu-
tions of the NVN equation and solve (linearize) the initial-value problem
p(u,t = 0) — p(u,t) [54,43,52] and correspondingly $(u,t = 0) — ¥(u,1).
Consequently, the formula (5.2) induces the solution of the initial-value prob-
lem for the induced dynamics of surfaces:

Xi(u,t = 0) = X*(u,t),

gap(u,t = 0) = gopl(u,t) . : (5.9)

The compatibility conditions of (5.1) and the problems (5.4) with n =
2,3,4,... give rise to the NVN hierarchy of nonlinear PDEs. All of them
are integrable by the IST method. They induce the infinite hierarchy of the
integrable dynamies of the surfaces referred to their asymptotic lines.

6 Generalized Weierstrass—Enneper inducing

Our second example is concerned to the integrable dynamics of surfaces re-
ferred to their minimal lines. The generating LP is of the form

- LdJE(a‘ G‘) ¢+(U _P) v=0, (6.1) |

0 35 pU'

where p(z, Z) is a real scalar function and ¥ is 2 x 2 matrix.
It is not difficult to check that 1* obeys the same equation as PT (script
T denotes the transposition of matrix). So one can identify ¢* = T, Sec-

ond, the LP (6.1) admits the constraint (involution) crggbargl = 1t where
gy = (__Ul é) Thus a solution 9% of (6.1) can be choosen of the form

Y= (i; _'ff ‘). With the use of these properties it is not difficult to show

that the requirements of reality of X* (i = 1,2,3) and off-diagonality of gag
(9ap = 0,0 = f) give '

axL .. e IR 73y
= = 1(;{53 + ¢f) TR = "1('#'"% 5 '1"3%) 3
X2 - - ax? ]
SV -v, S =vi-d (6.2)
dX3 z o 0D a g

Equations (6.2) are compatible due to (6.1).
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One has

ax* X’ . : ' |
mE= g ar e 211 + Y2p2)? = 2det’y . (6.3)

and

“dya = 2pdetep . (6.4)

Thus, the LP (6.1) with the real p(z,Z) induces the surfaces referred to
its minimal lines via

XX =91 / (Y¥d2' — P2d7'),
r

X=X =2i f (Y2d2' — ¢2dz'), ' (6.5)
r

X = —2/(%151@' + Y1 ¢2d7’)
J :

where I' is an arbitrary curve on the complex plane ending at the point z.
The corresponding first fundamental form is

Qy = 4det’*¢dzdz (6.6)
and the Gaussian anci mean curvatures are given by |
K = —2det ™%y - (log det ¥),z ,
K, = 2p(det 9)~". | (6.7)

The integral curvature y is

1 %
e ﬁ// % Jiaidr A== _*f/ ds hde dobb) s - (68

T

Using the Gauss—Green formula, one gets

s % / / dz(log det 1), . (6.9)
oC '
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Thus, the integral curvature of the induced surface is defined by the asymp-
totics of ¥ and 5. 3
In terms of ¥, and 5 the LP (6.1) is

1:{)1.2 o P‘U’)E ’

Y2z = —p¥i . (6.10)

Let p — 0 as 2| — co. So ¥ — a(Z) 3 — b(z) as |z| = oo where a and b’

are arbitrary functions. For the solutions ¥y, ¥ of (6.10) defined by
[$1]* = |2]", $2—0 _ (6.11)

as |z| — oo, one gets
- X=-2n. (6.12)

Minimal surfaces (K, = 0) correspond to the case p = 0. At p = 0 one
has 3
Y1=0, ¥a:=0. (6.13)

With the identification ¢ = J=ts, ¢ = J=4y the formulas (6.5) at p = 0'
coincide with the Weierstrass—Enneper formulas (32). So the formulas (6.5)
represent the generalization of the Weierstrass—Enneper formulas to the case

of nonminimal surfaces.
Surfaces of constant mean curvature K, is an another interesting partic-
ular case. They are induced by the LP (6.1) under the constraint

1

B3 Km(¥191 + t2t2) (6.14)

where K, is a constant. The LP (6.1) or (6.10) in this case is equivalent to
the nonlinear system

Y1z — %ﬂl (W11 + tatha)pa = 0,
R ool
Yoz + N (Y191 + Yatha)th1 = 0. (6.15)

Minimal surfaces and surfaces of constant mean curvature have a number of
interesting applications in physics (see [1-3]).

The LP (6.1) is amenable to the dressing method (see e.g. [21,22]. It
provides the infinite class of solvable cases for (6.1). They induce via (6.5)
the infinite class of surfaces referred to their minimal lines.
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The integrable dynamics of the constructed surfaces is induced by the
integrable evolutions of the potential p and wavefunctions % in (6.1). The
latter are equivalent to the compatibility condition of (6.1) with the LPs
of the type (4.7) with u! = z, v = z. The simplest nontrivial example
corresponds to the second linear problem of the form

(a¢+3§'+3§+3 (g i) 8, +3 (E’ O) s+

pr 0
3 QE ’ zpw s
The associated nonlinear integrable equation for p is of the form
e bE Do
Pt+Pazs +Prss + 30,0 +3ps0 + S pEr+ 5w, =0, wr = (p)). . (6.17)

Equation (6.17) is the first higher equation associated with the Davey—Stewar-
tson (DS) system for two functions p, ¢ under the constraint ¢ = —p (see
e.g. [8-22]). It was shown in {55] that equation (6.17) is connected via (de-
generated) Miura type transformation with the Veselov-Novikov (NVN-II)
equation. So one can refer to equation (6.17) as the modified VN (mVN)
equation. The hierarchy of integrable PDEs associated with the LP (6.1)
arises as the compatibility condition of (6.1) with the LPs of the form (5.4)
with odd n. All members of this mVN hierarchy commute to each other and
are integrable by the IST method. The time evolutions of the wavefunction
% also is governed by the hierarchy of nonlinear integrable equations.

Thus the integrable dynamics of surfaces referred to their minimal lines
is induced by the mVN hierarchy via (6.5). For such dynamics one is able to
solve the initial value problem for the surface (gag(z,2,t = 0),dqp(z, 2,1 =
0)) — (gap(z,%,t)),dap(z,2,t)) and construct the infinite family of explicit
exact evolutions, using the corresponding results for the equations from mVN
hierarchy. This integrable dynamics of surfaces inherits all properties of the
mVN hierarchy. Note that the minimal surfaces (p = 0) are invariant under
such dynamics.

7 General matrix 2D LP as the inducing prob-
lem

In the previous two examples we considered the particular 2D LPs which
induce the surfaces referred to the certain particular local coordinate systems.
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Hereawe shall discuss the general 2D LP which shall induce generic surfaces
in R°.
So let we have the matrix LP

A28t — A1dyay + P(ul,uP)y = 0. (7.1)

Ty a . .
where 8, = 3=, ¥, P are the matrix-valued functions on u!, u? and A;,

t{ﬁlg are the constant diagonal matrices. LP formally adjoint to (7.1) is of the
orm

O v* Ay — 3,,:1;3"- A —y¥"P=0. (72)
It follows from (7.1) and (7.2) that
Bu1 (V" Ag¥) — Bua(¥* A1) = 0. (7.3)

Equation (7.3) implies that
¢-A2¢ - auﬂ"'"’ 3%"*-’{11'!’ - 3!1”"’ ’ (?4)

where w(u!, u'z) is a matrix-valued function. Introducing three linearly inde-
pendent matrices H* (i = 1,2,3) and denoting X* = tr (H'w), one rewrites
(7.4) in the form |

BXII i [ r :
Jus — U (H'V Aay), i=1,23; a=1,2. (7.5)

A mext step of the approach is to treat the three functions X as the
coordinates of the variable point of the surface. So, starting with the LP
(7.1), we define the surface in R® by the formulas

{“liuz)
Xt = / du® tr (H'¢* A¥), (1=1,2,3), {18
K.

where I is a contour on the plane u', u?. In virtue of (7.5), the integral (7.6)
does not depend on the contour I'. Using (2.3), (2.4) and (7.5), one finds the
tensors go and dgg. In particular

Jap = tr (H'Y* Ag¥p) tr (Hi9* Ag9p), (a,8=1,2).

To construct the surface explicitly one has to have explicit solutions of
(7:1) a_md (7.2). It is sufficient to take real A;, A, p and ¥ to get real surface.
The simplest choice p = 0 give rises apparently to the metric g,g, in general,
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4

with the exponential dependence on u' and u®. Less trivial explicit solutions
of (7.1) and (7.2) can be constructed by the IST method. In particular,
using the so-called &-dressing method (see e.g. reviews in [18,20-22]), one
gets the infinite classes of exact explicit solutions of (7.1) and (7.2) with
functional parameters, rational solutions and so on. All these solutions induce
the corresponding surfaces. If the order of the matrices in (7.1) is higher
than two then the procedure described above give rises to the surfaces with
functionally independent g,5.

Now let us consider the dynamics of the surfaces constructed. The inte-
grable dynamics of surface is induced obviously by the integrable evolutions
of the LP (7.1). Integrable evolutions of the potential P arise as compatibility
condition of the LP (7.1) with another LP the type

k+e=n

Y, = O Bre(u,)05:059, (7.8)

e k=0

which defines the time evolution of ¥ in time. Here Bj. are matrix-valued
functions. In the simplest case n = 1 the compatibility condition of (7.1)
and (7.8) is equivalent to the nonlinear equation (A; = 1, A; = A, Bio =0,
By = B, Boo =Q, Di; =0)

Py, + Qu — AQu2— BP:+[P,Q]=0, (7.9)

where (B, P] = [@Q, A] and f,: = 'gf;. Equation (7.9) describes the resonantly
interacting waves .on the plane. It is integrable by the IST method ([56-57]
and e.g. [16-22]). The time evolution of #* is described by the equation
adjoint to (7.9) the compatibility condition of which with (7.2) give rises to
the same equation (7.9). :

Equation (7.9) is the first member of infinite family of integrable equa-
tions associated with the LP (7.1). Considering the second LPs (7.8) for
n = 2,3,4,..., one constructs so-called higher equations (7.9). All the mem-
bers of such hierarchy commute to each other. All of them are amenable to
the IST method [16-22]. If ¢ evolves in time according to (7.8) and (7.9)
then the formulas (7.6) induce the time evolution of the surface. So we have
the infinite hierarchy of integrable evolutions of surfaces. The IST method
allows us to solve (linearise) the initial value problem (P(u®,t = 0),¥(u®,t =
0)) — (P(u®,t),¥(u%,1)) for equation (14) and all higher equations via cer-
tain set of linear problems. This procedure apparently generates the solu-
tion of the initial value problem (gqp(ul,u?,t = 0),dap(u?,u?,t = 0)) —
(gap(ul,u?,t),dap(u?, u?,t)) for the induced surfaces. The IST method pro-
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vides also the infinite class of exact explicit solutions with functional pa-
rameters, multisoliton solutions, rational solutions for equation (7.9) and its

higher equations. These solutions give rise to the corresponding explicit exact
dynamics of the surfaces.

8 Particular inducings

The general LP (7.1) contains several interesting special cases. First, we shall
consider the 2 x 2 LPs (N = 2).

1. First example N = 2: Ay =1, 41 = - ({1] _ﬂl), where 02 = +1. One
has the LP ” 0 ;

W_I_J(O —1)W+(p g)vﬁ:ﬂ, (8.1)
where p and ¢ are scalar functions. LP problem (8.1) is known as the two-
dimensional ZS-AKNS or Davey-Stewartson (DS) LP. Following the general
approach of section 5 one can induce a surface in R®, using LP (8.1). Such
surface is not a generic one since LP (8.1) contains only the two functional
parameters p and q. :

The dynamics of the induced surfaces is generated by the nonlinear PDEs
which are equivalent to the compatibility conditions of the LP (8.1) and LPs

(7.8). This is the well-known DS hierarchy (see e.g. [16-22]). Thus we have
the dynamics of surfaces induced by the DS hierarchy.

2.N=2. 4>=1, Aj = -0 (é _Dl) and ¢ = —p, i.e. the LP

&Y 1 0\ 8y 0 —p\
artoo 5)ar (G T)v=0 e

Introducing the characteristic variables £ and n via 8; = 8,1 + 08,2, 0, =

Gur — 00yz, one gets
65 0 ; 0 i e

In the case 6 = —1, (¢ = i) one has the LP (6.1). Hence, one has the
induced surfaces referred to their minimal lines and their dynamics induced
by the mVN-hierarchy. At ¢ = 1 the variables £ and 5 are real. The LP (8.3)

dgain induces a surface referred to its minimal lines. But now such a surface
1S a complex one.
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3. N=2. Ay =1, A1 = —a(é _”1), g=—1, the LP is

Y 1 0Y) 9y (” ‘1) b 8.4
W+J(O—1)8u2+PU ’ oo

In the characteristic variables £ and 7, one has for 15 the LP (5.1)

< iyl R (8.5)
7

So in this case one has the NVN induced surfaces and the dynamics induced
by the NVN hierarchy (section 3). :
: 4. 1\1T=2. Ay =1 A3 = -0 (1 g), g = —1. Under this reduction the LP

(7.1) is equivalent to the following scalar LP for 4,
oYy | Pt

e g

It is the well-known LP associated with the Kadomtsev-Petviashvili (KP]
equation [16-22]. So one can construct surt:aces induced by the‘KP_ linear
problem (8.6). Their integrable dynamics is mt'iuced I:Zy the I_(P lnerarch;,r of
equations. These surfaces are not generic: their metric gqp 18 parametrized
by the single function p(u', u?,1). _ |
5. The simplest nontrivial generic case corresponds to the LP (7.1) with
N = 3 and the skew-symmetric potential P, i.e to the problem
79 a¢ Py 8.7
Bul + .4 Pl + Py =0, (8.7)
where A“; = ﬂigiks P.,'i = ﬂ, i = - Py (t,k - 1,2, 3) For the problem (8?)
¢T obeys the same equation as ¥*. So one can put * = ¥T. The surfaces
which are induced by the formulas (7.6) are now generic one. '
The nonlinear PDE (7.9) in this case is the system of the thref? nn_nlm:aar
PDEs for the components of P;; and they describe the resonant mteractmin
of the three ways. Thus, the simplest integrable dynamics of the generic
surfaces is induced by ‘the three resonantly interacting waves equations.
Considering other 241-dimensional integrable PDEs one can construct
induced surfaces and their integrable dynamics of the other types.

+po1 =0. (86)
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9 Integrable dynamics of curves as the one-
dimensional limit of the mtegrable dynamics
of surfaces

Now let us study the one-dimensional limit of our construction. For de-
finetiness we shall consider the inducing described in section 6. The one-
dimensional limit means that the function p is the LP (6.1) depends only
on the one variable. The constraints on p and ¥ which corresponds to the

one-dimensional limit and which are typical for the IST method are of the
form

(83 Ly BE)P i 01 (a}’ o 6,,)1;5, — 21}‘¢ ’ (91)

where ) is a real parameter. The matrix ¥ obeys the same constraint as .
As a result, the constraint for the coordinates X* is of the form -

(0: — 8,)X* = 4idX* (k=1,2,3). (9.2)

In the terms of real isometric coordinates s and o defined via z = %(3—:'&')
the above constraints imply p = p(s, t), ¥ = exp(Ao) - x(s,1) and

X' =exp(200)X* (s,1) (i=1,2,3). (9.3)

Then the formulae (6.7) gives K = 0 and K,;, = 2pexp(—2Xs). These for-
mulae show us that in the one-dimensional limit (9.1) our surface is the cone
type surface generated by the curve with coordinates )?i(s,t] (=123
i.e. it is reduced, effectively, to a curve with the curvature p(s,t). Under the
constraint (9.1) the LP (6.1) is reduced to the one-dimensional AKNS type
LP for x with the spectral parameter A (see e.g. [16-22])

d,x = (i’\ 2 ) X (9.4)

p —iA

and equation (6.17) is converted into the modified Korteweg-de Vries (mKdV)
equation

Pt + 2Psss + 120°p, = 0. (9.5)

The higher mVN equations are reduced to the higher mKdV equations.
Thus, in the one-dimensional limit (6.1) our approach provides the in-
duced curves in R® and their integrable dynamics induced by the mKdV
hierarchy. As far as concerned to the integrable dynamics of curves via the
mKdV hierarchy we reproduce here the results of the papers [58-62].

24

Further the formula (9. 2) implies (07 — 0 ;)X - (0: -0, JXi = =16A2 X X",
Taking into account that 3,,X‘ 9, X* = 8:X* - 8;X* = 0 and using (6.5),
one gets (QA)?X‘X‘ det?®. In virtue of (9.3) and ¢ = exp(Aa)x(s, ), one
has (2))2X! X* = det’y. For the one-dimensional problem (9.4) detx=const.
Let dety = 1. So one finally gets

XX =022 ' (9.6)

Thus, the curve the points of which have coordinates X'(s,t) lies on the
sphere of radius 1/2). The entire dynamics of the curve takes place on
the sphere S?. Integrable motions of curves on spheres have been discussed
recently in [62]. In our approach such motions appears naturally as the one-
dimensional limit (9.1) with A # 0 of integrable motions of surfaces. At A =0
one has the integrable motions of curves on the plane described in [58-61].

In similar manner one can consider the one-dimensional limit for the dy-
namics induced by the other LPs.

10 Integrable evolutions of surfaces and three-
- dimensional Riemann spaces

First, we note that all the above constructions can be, obviously, used to
induce surfaces in the pseudo-Euclidean space with the metric h; = €;6;;

(i,k = 1,2,3) &; = £1. The only difference is that the usual summation over

indices i, k, e should by substituted by the summation xixi & xie (XL

Secnnd since the 2D LPs have infinite number of linearly independent
solutions one can introduce any number of the coordinates X* of the type
(4.6). So one can induce surfaces in the pseudo-Euclidean space E™ of any
dimension. In this case the induces i, k,e take the values 1,2,3,...,n in all
above formulas.

Of course, any surface can be immersed in E°. But to consider the ge-
ometrical objects which are obtained by the evolutions (deformations) of
surfaces it is convenient to embed surfaces in the higher dimensional spaces
D

The geometrical object which is the collection of the induced surfaces
taken at all values of time t is a three-dimensional manifold. It is, in fact,
the three-dimensional Riemann space. We shall consider three examples to
demonstrate this fact.

General 2D LP (7.1) and their integrable dynamics is the first example.

Let now ¢ in (7.1) is the column with m components. Correspondingly #*
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is the row. The coordinate X of the surface in E™ are defined via

oxX? : :
sl aE) () g
T YA =
F':rh;;e ¥® and ¢*0) are linearly independent solutions of the LPs (7.1) and
Let the evolution of such induced surface is 1
generated by the nonlinear
PDE (7.9). The corresponding LP (7.8) is of the form

Yus = Asthy2 + QY (10.2)

wh'e1:e [4s, P]=[Q, A] and we denote ¢; = u3, B = As. The problem formally
adjoint to (10.2) is of the form

o a=1,2, (10.1)

Yus = Yr2ds — ¥°Q. (10.3)
Equations (10.2) and (10.3) imply that
a #(5), (3 d *(f 1
=< (" Oy = 5 (¢ (=}A3,;,(*}) _ (10.4)

]?qua,ti_on (10.4) together with (7.4) shows us that one can define the quanti-
ties X* via ; '

ox:

du®
where now a = 1,2,3. Equations (10.5) are compati

& { X patible due to (7.1), (7.2
(10.2), (10.3). ' fabi
~ Now one can treat u', u?, u® as the local coordinates of the three-

dimensional manifold and X* given by integrals

g
Xiszf D dutyr a4, i=1, . .n
I a=1

as thle jr:oordir_lates of this manifold embedded into E®. We introduce the
metric into this three-dimensional manifold by the formula

=¢* DD i=1,..n, (10.5)

(10.6)-

axt . 8x’

9ap = 3 2 55 = %ﬁ*[’]ﬁ.a%D{i}sftb*{i}flﬁi,b':” ,

(10.7)

i

where £; = +1.
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Thus, the 2+1-dimensional resonantly interacting waves equations (7.9)
induce the three-dimensional Riemann space via (10.6). Since any three-
dimensional Riemann space can be embeded into E° (see e.g. [63]) then it is
sufficient to take n = 6 in the formulas (10.6).

Second example is given by the Lelieuvre’s inducing (section 5). Let the
evolution of the induced surfaces is generated by the NVN equation (5.6)
with @« = # = 1 and t = u®. It is not difficult to show that the LP (5.7)

together with (3.4) implies that

ax: _gike (ﬂ;(:;)aa'i’(e] _p® 8y 9 82 pk) gyl

Ju’ i dul du? + dul  Jul

) ., (10.8)

£= 1,111,”,

where ¥(¥) (k = 1,..., n) are linearly independent solutions of the LP (3.4).
An infinite family of the induced surfaces, taken at all values of the time ¢

form the three-dimensional manifold. It is the Riemann space with the local

coordinates u!, u?, u® which is embeded into the pseudo-Euclidean space E™

by the formula

_ ; (e] . (e)
r

a3yl yle) 82(k) Gyle)
k k 3
(¢[ ) Jul = du? e Jul  QJul ) o } : S
The metric gop of this Riemann space 1s
oAt - QX (10.10)

9ob = Bue i 5uP

where 2% are given by (3.5) and (10.8).
In similar manner one can construct the three-dimensional Riemann spaces
associated with the integrable dynamics of the other induced surfaces dis-
cussed above.
Instead we shall consider the three-dimensional Riemann space which is

induced by the nonlinear integrable system which contains all independent
variables u!, 4%, u® in a very symmetric manner. This is the Darboux system

1 0Hy 0Ha
H, 0uf Juv’

82 H, 18Hs 8H,

JuPOu’  HpOu' OuP i
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where o, 8,7 =1,2,3; a0 #£ 8 # 7 # a; Ho(u', v?, v®) are scalar functions and
there is no summation over repeated indices in this and next formulas. The
system (10.11) have appeared within the description of the triply conjugate
systems of surfaces in R® [9]. The applicability of the IST method to the
system (10.11) has been discovered in [64]. Wide classes of exact solutions of
this system have been found in [36,22].

The Darboux system (10.11) can be reformulated as the system of the
first order PDEs [9]. Indeed, introducing the quantities

def 1 OHp
Pap = Ha- Hu® ’ (1{].12)
one rewrites (10.1) in the equivalent form [9]
Oap _ =193 B 10.13)
ou? = Pa~y P48 » atﬁsT— pLy ety nf'_lé -',":‘}"#Ct‘. ( -

The system (10.13) is equivalent to the compatibility condition for the LP
[9]
s

s =Peptp, 0,f=123. (10.14)
The LP adjoint to (10.14) is of the form [9,37,65]

oY, :

o il a0

- Equations (10.14) and (10.16) imply the existence of the function M such
that [9,37,65]
M
Y a1y (10.16)
du®
Considering the n linearly independent solutions gﬁg}, ;(i) of the LPs (10.14),
(10.15), one can introduce n quantities X* via

4x =yl =1 ..,n a=1,23. (10.17)
Juc ;
Then the formula |
- 3 * -
ko =///Zduw;f=l¢g:), =1 .80 (10.18)
a=1
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defines the embeding of the three-dimensional manifold with the 8local coor-
dinates u!, u?, u® into the pseudo-Euclidean space E™. The corresponding
Riemann metric gog is given by

I 5 g = ax?
: due ' OuP

Jap =

=

n ; z :
:Z¢;(f]¢g)5i¢gf‘]¢§} (e,8=1,2,3), (10.19)
i=]

where ¢; = +1. It is apparently sufficient to take n = 6. The metrif:: (10.19)
is not the generic one since one has, in fact, only three [reg: functional pa-
rameters H? (a = 1,2,3) (see (10.12)). . _ .

The inducing the three-dimensional Riemann spaces via the 2-1-. lndpnen—
sional integrable PDEs described here is, to'some extent, a generalization of
the 1+41-dimensional ”soliton surface approach” of [39].

- ]
11 Conclusion

The integrable dynamics of induced surfaces inherits all remarkatble proper-
ties and features of the 2+1-dimensional integrable PDEs: special, soliton-
like, exact solutions, infinite number of conserved quantities, infinite symme-
try groups, bilocal and hamiltonian structures, r-function, vertex operators,
Darboux-Backlund transformations (see e.g. [16-22]). The study of the cor-
responding induced properties of 8surface dynamics is of a g_ieat intere:st.

In particular, the fact that the quantities of the type w'* appear in the
theory of the Darboux transformations [65] indicates a strong relevance of
the induced Darboux transformations in the theory of the induced surfaces.

The 2-+1-dimensional integrable PDEs with constraints cons_'lderﬂ.i, for
instance, in [66-68], can be used for inducing the integrable dynamics of
surfaces which preserve certain geometrical structures.

The method described in this paper demonstrates also the imp?r};ance
of the wavefunctions v of the LPs. First, they are the basic qua,ntn:,lf:s to
induce surfaces: tangent vectors on the surfaces (see (4.5)) are the blllﬂﬁi!.l‘
combinations of the wavefunctions ¥, ¥*. Then, the dynamics of surfaces 1s
induced, in fact, by the time dynamics of the wavefunctions 1,b The corre-
sponding wavefunction equations (see e.g. (5.8)) are the IST integrable and
have a number of interesting properties [69].

The method of the inducing the surfaces via 2D LPs and their integr?ble
dynamies via the 2+1-dimensional integrable PDEs may have ;?,pplic:?:tmns
both in physics and mathematics. In physics it may lead to the invention of
the exactly solvable models of the time dynamics of interfaces, fronts. It may
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be an effective tool to treat some old and new problems of the differential 18. M.J.Ablowitz and H.Segur, Solitons and inverse scattering transform,

geéorpetry of surfaces. It will be particularly useful in the theory of defor- SIAM, Philadelphia, 1981.

mations of surfaces. ?hen-:: are a number of open problems connected with 19. A.C.Newell, Solitons in mathematics and physics, SIAM, Philadelphia,
the Ilnetl:u}d proposed in this paper. We shall discuss some of them in future 1985.

publications. - 20. M.J.Ablowitz and P.A.Clarkson, Solitons, nonlinear evolution equa-

=" tions and inverse scattering, Cambridge Univ. Press, 1991.
21. B.G.Konopelchenko, Introduction to multidimensional integrable equa-
‘tions, Plenum press, New York 1992.
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