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The Impedance of a Toroidal Chamber
with Walls of Finite Conductivity.

Waveguide Model.
M.M.Karliner, N.V. Mityanina, V.P. Yakovlev.

Abstract

'Using the waveguide model, we study the longitudinal
Ct':u'plmg impedance in a toroidal chamber with walls of
f‘ inite conductivity. At high frequencies the beam can excite
in the chamber resonant modes with the phase velocity equal
to the particle velocity due to a delay because of curvature
and resistance. The longitudinal impedance, as a function of
the ‘azirnuthai harmonic number, has relatively broad peaks.
Admitting that the excited fields damp during one turn, that
usu.ally takes place even in the mashines with small
r:acilus, we propose to spread the excited field over the
eigen functions of the curved waveguide instead of azimuthal
harmonics, as -:vhen applying the cavity model. It enables us
to get the expression for impedance in the form, which can
be easy compared with the straight waveguide; to describe
every resonance with the only term of the expansion; to get
the contribution due to the curvature summing up
comparatively small number of terms. We have got the
accurate results separately for finite conductivity of
vertical and horizontal walls; in the resonant region, we
can take into account simultaneously the finite conductivity
of all four walls. The results are generalized on the case
of non-circular storage ring, for which the impedance can be
calculated separately for every segment with constant
curvature. The finite radial dimension of the electron beam
also can be easy taken into account. The estimation formulae
for parameters of resonances are given at the conclusion.

E

1. INTRODUCTION

We study the fields produced by an arbitrary particle
beam in a toroidal chamber with walls of finite conductivity
and rectangular cross section.

Some authors paid attention to this problem ([11 - [3])
calculating a coupling impedance Z(n,w) (n Iis azimuthal
harmonic number). The common feature of these works is using
the resonator base for derivations of electromagnetic field
in the chamber; the field and a beam current being spread
over azimuthal harmonics.

The longitudinal impedance Z{n,nwﬂ]/n {wu- a revolution

frequency), as a function of the azimuthal harmonic number
n, has relatively broad peaks. Therefore, calculating the
impedance in the resonant region, one should sum up a great
number of terms with harmonic numbers within the resonant
band.

Unlike this way, we prefer to use the waveguide base
when studying the resistive impedance of a toroidal chamber.
We can use this base, when the fields excited by the beam
damp to zero in one turn due to the chamber walls finite
conductivity, that usually takes place even in the mashines
with small radius. Being more natural for such cases, it
appears to produce more convenient expression for the
impedance in a form analogous to the straight waveguide,
which has some advantages. So, near the resonances, the
impedance is described by the only main term. Further, if we
would take into account the radial dimension of the beam, we
can average over the cross section only the resonant factor
having a simple form. :

As we pretend on an accurate solution, we take into
account the coupling of TE and TM modes due to the
Leontovich boundary conditions on the walls of finite
conductivity. The conditions on vertical and horizontal
walls cannot be satisfied simultaneously for the coupled
modes, that’'s why we consider at first these conditions
separately. However, in the resonant region, the main



contribution is made by the "delayed" modes, which are
practically uncoupled, thus, the impedance in the resonant
regions can be calculated correctly, with the account of
finite conductivity of all four walls. The results obtained
for the last case are similar to the results of [1].

It seems also possible to use our derivations for
non-circular storage rings with sufficient difference of the
average ring radius and the local orbit radius in the
bending magnets: the impedance can be calculated here
separately for every segment with constant curvature.

The estimation formulas for parameters of resonances
(resonant frequency, resonant band and shunt resistance) are
given at the conclusion.

2. EIGEN FUNCTIONS FOR A CURVED WAVEGUIDE

In this section, we introduce main denotations and
consider the functions to be applied further as a basis for
expanding the field excited in the chamber by the beam
current. :

Z2.1. Denotations.

We consider a toroid of a rectangular cross-section
(fig.1), with the inner (outer) radius a (b) and a height
h=2g. We use the cylindrical coordinates r=(r,e,z).

Discussing the chamber with walls of finite
conductivity, we will sometimes compare the results for
curved and straight waveguide with the same cross section.
We will wuse for a straight waveguide the Cartesian
coordinates (x, y, z), corresponding to (r, O, z) for the
curved waveguide (x and r determine the transverse
horizontal direction; y and 8 - longitudinal; z - vertical).

The eigen modes of the electromagnetic field with a
time dependence exp(-iwt) have a form:

H (r,t}=z H (r,v,w)sin(k (z+g)) exp(ive-iwt), (2.1)
z = zpl zZp

E (r,t)= z E (r,v,w)cos(k (z+g)) explive-iwt), (2.2)
z B zpl zZp

where k =np/2g is the wave number in z-direction, v is the
zp

wave number in 6-direction. The other field components can
be expressed via z-components as, for example, [6]:
=k = = -+ 23 - ? -+ e SR | 23
=i i +k¥ , Z H =-ik rot¥ +Vdiv¢ +k ¢
Epl ik rct@PiH?dW‘I'pl k ol e " = il

(2.3)
-2 -+ 2 - 2
= =L H e/ (2.4)
qul Ezplezf?p 2 wpl 0 zpl z Ta’p
k=w/c, ¥ 2=11:2— k 2.
P Zp

2.2. Bessel functions cross-products as eigen functions
of the problem.

From the Maxwell equations, we get the equations for

= Vg
] + ['g:— %]{H} =0. (2.5)
r zpl

The general solution of (2.5) is a linear combination
6f ) ly ) and X Ly vl
VvV p vV p

The boundary conditions (for the infinite walls

conductivity) at r=a,b are:

d

st = 0, 26
5 i lvaab =P

z|r=a,b =

_ Thus, if we use the Bessel functions -cross-products
(according to [4]):

pv(x,}'} = Jv{x) Yv(y} - JU(}'J Yv[x},
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qv(x,y] apu(x,y)/ay, rv(x,}r] = ﬁpp[x,y]/ax,

sv(x,y] - azpv{x,y]/(Bxay]=6qv[x,y)/5x, (2.7)

then the solutions E =p (y r,y 2a) and H =q (y r,y a) satisfy
z ¥ p p . ¥R P

the zero boundary conditions at the inner radius a; the
conditions at the outer radius b determine the eigen value
v, the order of Bessel functions:

p (¥ b,y a)=0 (for E, or TM, modes),
Y - p p z

s (¥ b,y a)=0 (for H, or TE, modes).
vV p P z

The eigen values, gotten from the boundary conditions
for E',z and H, due to the curvature of the waveguide, do not
p

coincide, thus the set of eigen modes splits on the set of
TE modes, with Ez= 0, H;t 0, and the set of TM modes, with

E #0, H =0.
z z

The order of Bessel functions, being the eigen value of
the problem, unlike the way of expansion over azimuthal
harmonics([11-[31), is not integer, and moreover, in the
case of the finite walls conductivity, is a complex number
with a small imaginary part. The Bessel function Zv[x] of a

complex order v=v1+iu2, V& v, will be calculated via the

function of real order and their order-derivatives as

» T
Zv(x}—zul{x} v, —Eﬁ?zvltx.}l. (2.8)

In [4], the order derivatives of Bessel functions are
given as infinite series, not quite convenient for
calculations. But as for Bessel functions of great order we
will use further the appruximate formulas, we will derive
these formulas instead of summing the series.

Consider some typical features of the eigen f‘unctmns
As we can see, the arguments and the order of functions

ather great numbers; depending on
pv{xl,le, qv[xl,xz} are T g p g

the order v, these functions differ essentially in two

cascs:
a) v<x <x_.

The functions pv(}:,xz], qp(x,xz] [xl':x{xz) resemble the

ordinary eigen functions of straight waveguide sine and
cosine; the less v and the more the arguments, the nearer
these functions to the trigonometric.

b) X V<X,

i X, with x <wv<x in the
The functions pv{x.xz], q u[ le', . %
interval xfx*:xz look rather unsymmetrically: at x1<x<v the

functions behavior is approximately exponential, and at
P<x<xX, - sine-shaped (with uniformly changing amplitude).
Fig.2 shows the typical of the functions P 4, 5, for
the second case. Note that the amplitude of P, decreases,
and the amplitude of S, increases when the first argument

increases. That leads to the opposite signs of the
contribution to the impedance due to the curvature for TE
and TM modes, as will be seen further.

3. DERIVATIONS OF THE IMPEDANCE

3.1. A field induced by a beam.

3

A field induced by a beam current with a density ‘jm

([6]) can be written as
E=E+ Ez, (3.1)

- = =3 = 1 .
[CEE * 0K ], E'z_ e % (3.2)



N=2 j [ExHldr . (3.3)
g =

Here the index #s denotes the modes expanding in the
positive or negative propagation direction, 1 is the current

- . - = - -} - -
coordinate in this direction; Idr means integration over the

_p,
space; Idrl means integration over the cross section of the

waveguide; Eig are the eigen fields of the waveguide.

By the way, we must note that at calculating I\!g for a
toroidal chamber there appear the integrals of pi, qz and

p,4, over this chamber cross section. The expressions of

these integrals via the order-derivatives of the Bessel
functions is given in App.l.

The second term in (3.1) gives the purely imaginary not
resonant contribution into the impedance and is not changed
when we take into account the finite wall conductivity. As
our main interest in this paper is the real part of the
impedance and the resonant behavior of the impedance, we
will not mention this term further (but if one is interested
in the imaginary part of the impedance, he must add the
second term).

3.2. A beam model.

We consider now the beam current analogously to [1], a
beam with finite width in 2z-direction and delta-function
distribution in r-direction (in the last section we will
discuss a possibility to take into account the finite
r-dimension of the beam). The charge density of the current
is

plr,0,z,t) = q htﬁ—mut)H[z}W(r]; (3.4)

.-—--.-1

2T g b
IA[B)dEl T J' Hizidz = 1; I Witk dr = 1. (3.5)
(4] = - a

We consider now a rectangular z-distribution and
delta-function r-distribution (the beam with nonzero radial
dimension will be discussed further):

W(r)=38(r-R)/R; (3.6)

1 : 4 Iz—zﬂliﬁhfz ]
H[ZI':_STI— {3.7)
0, Iz—znl‘}ahx’z ;

Here R is the radial position of the beam; z, is
z-position of the beam center; &8h is its z-dimension; mﬂ is

the frequency of the beam revolution:
e Bc/R = Bckﬂ, B=v/c, v - the beam velocity.

The longitudinal component of the current density is

jE(r,B,z,t} = Bcq p(r,ﬂ,z,t}—;, (3.8)

with a Fourier transformation

i (r.,0,z)= e = (r,0,z t}e_imdt =
Jw yuly T 2“: JB 3l gy

-00

= -iBw/wu
=qr H(zlwtr‘]h(wfmu] e : (3.9)
~ = -ive

where A(v) =I A(@) e de. (3.10)

—-00
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3.3. The impedance derivation.
Denoting

H =iJ-H[z}sin[k z+np/2) dz=sin(k z )sin(k &8h/2)/(k g),
p = zp ; zp O zp zZp

(3.11)
we can write
1 = exp(-i [mz’woiu}el
e N+sq a(mmeJHpg (w7, %v) R Eig’e{R,w), (3.12)

where the index s denotes the eigen mode number. Note that
in (3.12) we have omitted the dependence of the longitudinal
wave number v on the frequency w and the mode number s.

Now we can write the longitudinal field induced by the
beam:

qi(w/wﬂ)H gR 2v —iﬂw/wn
E _(r,0,z,w) = = g e X
16 iN - g
s s (w/w )" -v
0
E (R E _(r,w) sinlk z+np/2). (3.13)
,8 s,0 zp

Averaging the longitudinal field over the cross section
of the beam, we determine the impedance as

—an«cEl’e;v = Z(w) IB[o], (3.14)

o = —iBw/wG
where Ie[w] = IderJ_ = q Mu/mﬂ]o
Putting (3.13) into (3.14), we get

21

h
Z (0) -~2nRZ N - 2558

(R)sin’(k z + %}, (3.15)
g s [w/‘w ] = "

or, introducing the azimuthal harmonic number n=k/kn, k=w/c,

10

- Z in o - B(R]sinz[k zﬂq»“_g). (3.16)
s 5 {mfw ] S Zp
o

Here we have denoted

sin(e 8h/2))2

= P
ﬂp- mpahxz . (3.17)

3.4. Comparison with the straight waveguide.

As can be easy shown, for the straight waveguide we
have the analogous expression:

Z;(w} Z k
= ; (E’ [R]sm[k z Pl }J (3.18)
n k 1I‘~Js [kx’.G} 2 ; s,V 0

#

where the axis y denotes the longitudinal direction, and
marks the modes of a straight waveguide.

3.5. Remarks.
We must make here two remarks concerning the impedance
Z (w).
1

1) Z(w} represents only one term of the full

impedance; the full impedance we can get taking into account
the second term of the induced electric field, E (3.2). For

the straight waveguide with infi émte walls conductivity it
leads to the well known factor 1/y

1 1
=k +E = E - E —_— e F
y o Ly 2.y 1,y Ly B 272 1,y

11




2) We will consider further only the term ZI[m] because

a) we are interested mainly in the real part of the
impedance, and the second term is purely imaginary (the
imaginary part of the impedance can be determined, if the
frequency dependence of the real part is known), and

b) we are interested the contribution to the real part of
the impedance due to the curvature, that is the difference
between Z and Z’.

As, at increasing the vertical and radial modes number,
this difference tends to zero, we can limit the number of
modes to be calculated, and moreover, the non-spreading
modes with imaginary longitudinal wave number also can be
omitted. It saves us from the necessity to calculate the
Bessel functions of imaginary order and of small real order.
Thus, at calculations, we can use the only approximation of
Bessel functions for big order and arguments.

4. EIGEN VECTORS FOR FINITE CONDUCTIVITY WALLS

In this section, we will derive the electromagnetic
field eigen modes for the chamber with walls of finite
conductivity.

4.1. The boundary conditions.

The Leontovich boundary conditions on the walls of
finite conductivity have a form:

Ey= $inZﬂHz ) (4.1)
E = *inZ H_ b xed 0 (orr=b, a) (4.2)
LR
Ey= iinzZUHx b 3 | (4.3)
ST [T Wk (4.4)
x Z D }rl‘ ¥,

12

where 1 = (14iWk/(¢Z ); m = (1+iWk/(c Z ); ¢ and ¢ are
0 z z 0 iy

the conductivities of the vertical and horizontal walls.
In the case of a straight waveguide, these conditions
lead to the splitting of the degenerated eigen modes on Ex

and H modes (i.e. the modes with E #0, H =0 and E =0, H #0
= x X x X

correspondingly) for finite conductivity of vertical walls
or on E and Hz modes (analogously) for finite conductivity
=

of horizontal walls.

When we try to find the eigen modes of a waveguide with
all four walls of finite conductivity, it appears that all
boundary conditions cannot be satisfied simultaneously,
because they are not persistent. Thus, we can get the
accurate solution only for a couple of walls of finite
conductivity - horizontal or vertical.

For a straight waveguide, the boundary conditions on
the vertical walls (4.1) and (4.2) .lead to the dispersion
relation

*1
tg(k d/2}=-n[—1§~] for E (H ) modes. (4.5)
x X X

=

Analogously, the boundary conditions on the horizontal
walls (4.3) and (4.4) lead to the dispersion relation
+1
s 4 -
tg{kzg}— -nz[ "k_} for E‘,z {Hz] modes. (4.6)

z

As for the curved waveguide, the curvature without
finite conductivity splits the eigen modes on Ez and Hz

modes. The boundary conditions (4.3) and (4.4) retain this
splitting and lead to the dispersion relation (4.6). But in
the case of finite conductivity of vertical, curved walls,
the counteraction of two effects can lead to different

results.
If the curvature effect is weak as compared with the

13




conductivity, the modes Ez and Hz are coupled and form the
modes analogous to Ex and Hx of the straight waveguide. (Due
to the curvature, in the mode analogous to E:: {Hx], the
field component Hr (Er} is not exactly zero, so, it is not
"pure" Er {Hr] mode. )

In the opposite case, if the curvature effect prevails,
coupling of Ez and I-lz modes is weak, and the eigen modes of

the curved waveguide differ essentially from modes of the
straight one. Note that a measure of curvature is a
comparison of orders and arguments of Bessel functions
describing the toroidal waveguide eigen modes: small orders
(as compared with arguments) correspond to the modes
slightly distinguishing from the straight waveguide modes;
and contrary, the modes with orders near to the arguments
can have essential differences.

4.2. The vertical walls of finite conductivity.

Now we will calculate the eigen modes of the toroidal

waveguide with the vertical walls of finite conductivity.

The boundary conditions (4.1) and (4.2) instead of (2.6)
lead to the necessity to search the eigen modes in a form:

Ezp1= A pv{?pr,qpa) + B qp('a'p:,arpa}, 45
Hzpl= G pp[a*pr,arpa] + D qp{'arpr,'arpa}. (4.8)
Denoting

— - = 2 L] = 2 - —_— 2 L]
£ = k/"arp, .ﬁﬂ kzpv/{a‘pa), gb kzpv/[:{pb], Ba‘b_[1+§a’b]/g,
P = b,y a)/ b, S =5 b, T4 b, -
pv{'a'p *a'p qv[a'p zrpa] t‘,('arp *a*pa} qv(arp a*pal
= - b, / b,y a); 4.9
P ru[arp arpa} qv(a'p‘ 7 ) (4.9)

we can write the boundary conditions neglecting the terms of

14

D[na) in a form:

r 0 ea -£ _,n “\r A 1 4
ne 1 0 —ni_,-'a B
£ P (€ -p€) O eS-n(1+p) £

| P-ne(p+l) O 0 n[§a+§b} Iy Bl

Dispersion equation has a form:

(P-ne(pﬂ]){S—n{Bwan}}-nzp[€a+-‘;’b]2= 0. (4.11)

Eigen values of the problem v must be found from the
eq.(4.11), where a dependence on v is contained in P, S, p,
g. If n=0, we get }3z modes (when P=0, i.e. pv{wpb,g'pa}=0},

and H modes (when S=0, i.e. sv[a'pb,*ypall:()]. If n is not
=

zero but small, we can solve (4.11) in the first approach,

using linear approximation of Bessel functions and their
derivatives near the roots of pv{wpb,?pahf}:

3
pv{arpa,arpb)«vpvn(*arpa,arpb}+[v—vDJ§,pv(a'pa,arpb) — (4.12)

and so on.
The components of the eigen vector can be written as

§ o P-ne(p+l) AT n(5a+gb] :
cL MR e ) S-n(B_+pB ) ’
B= T]{-'EA'FEaD];
C = n[-gah+BaD]. ' (4.13)

These eigen values and eigen vectors must be used at
calculating the impedance (3.15) ( in v, E and N ).

15
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4.3. The horizontal walls of finite conductivity.

In the case of horizontal walls of finite conductivity
the eq. (4.6) gives us the new value of k

zp
kzD= v'*-nzk/g --far Hz mode with p=0;
n *1

WP . =lERE 2 ;

i e [np ] for Hz iEZ] modes with p=0. (4.14)
New values of kzp determine new values of ¢, as

” ; p
gp+kz§=k2. Thus, when we find v, the roots of the dispersion

equations for zero boundary conditions (2.6) at r=a,b, we
must deal with complex arguments. The shift of the eigen
value due to the finite conductivity of horizontal walls can
be found in the first approach as

e i A
By=v-v mAY, "*pﬂ] 5t75v| .

Gl

(4.15)

0
where f=p (y b,y a) for E modes and f=s_(y b,y a) for H
v p p z v p p z
modes; the index "0" denotes the values at n =0.
Note once more that in this case E and H modes are
= =
not coupled.

4.4. All four walls of finite conductivity (for not
degenerated modes).

If we consider the case, when the shift of the eigen
value due to the walls finite conductivity is much less then
the distance between neighbour eigen values, i. e. when the
modes E:z and Hz in the curved waveguide are practically not

coupled due to the vertical walls finite conductivity, we
can get the solution satisfying the Leontovich conditions on

16

all four walls in the first order of 7m {nz}.

If the modes l-:z and Hz are not coupled, the roots of
p (¥ b,y a)=0 and s (¥ b,y a)=0 are separated, i. e. the
V. p ' P Ll R
roots of eq. (4.11) are such that

0

b, ~n and s (y b,y a)>n, A/D ~q; or 4.16

llpv{'.rp arpa] n AR A )~n 7 (4.16)

2 b,y a)~n and b,y a)~n_, D/A ~. (4.17)
]sv{arp 'arp )~n pl,(:rp ?’p ~n n

The first case is Hz mode with a small contribution of

E, and the second - oppositewise. To take into account the
Zz

finite conductivity of the horizontal walls, .we can solve
the eq. (4.14) and find new values of kzp and :rp for E,z and

H modes, and then substitute the gotten kzp

(4.10) and (4.11) and chose the solution corresponding to
(4.16) for H mode and (4.17) for Ez mode. The eigen vector

and a'p into

can be determined as in (4.13) with the proper values of
5. APPROXIMATE EIGEN VALUES v

In this section, we want, at first, to adduce the
dispersion functions, a dependence of the longitudinal wave
number v on the frequency; then we will compare the shift of
the longitudinal wave number due to the walls (finite
conductivity for straight and curve waveguide; and finally,
we will compare the eigen modes delay due to the curvature
and finite conductivity.

5.1. Dispersion equation solutions for the ideal
waveguide.

The approximate eigen values of the dispersion
equations are derived in App.3. Here we adduce the final
approximation for small 8.

17




a) v<x<y.
1+5ctg2Bn
BUG 51nBD

pp{y,x]=0 at vE=vu+

3+7ctg260
(5.1)

sv[}',x)=0 ** 5 e SVD sinﬁﬂ :

where

v0=[§2—(nn/3) . 8in Bﬂ=nn/6;{, x=(x+y)/2, &=(y-x)/x, n is

z] 1/2
integer.
We can see that {vE-vH] is a very small value, of order

1/x , that means that splitting due to the curvature
decreases when the frequency increases, and the eigen modes
become practically the eigen modes of the straight
waveguide. Thus the mode coupling due to the finite
conductivity of the vertical walls can lead to the

separation not on the E and H modes (as because of the
Z Z

curvature), but rather on Er and Hr modes (because of the

finite conductivity).

b) x<v<y.
i) i Y 2,3)
p,(¥,x)=0 gy L~1-~‘;‘ kCIE/?J )
s | ) 2/3)
sv{y,x]-o e h1—5:3 LCIE/yJ ) (5.2)

2/3

where £ = 37 7/2 = 1.04; C.. H=n(l—1/2ﬂx’4], 1=1.

;]

c) Zero Hz mode.

18

v myall+ _2(1+[ai]3/[30§]}], where (6x)/(30x)">«1. (5.3)

The distance between nearest " and Ve in this case is
practically half of the distance between neighbour v . (or

vH], this distance can be estimated as

1/3

.t AC, = %E(ra/cl]lmﬁ{a’a/t:l} .

nearest 3

1/3

Av E{wa/cg

Thus the modes E and H are not coupled even at the
z A

finite walls conductivity (if the shift of v due to the

finite conductivity remains much less than Av :
nearest

5.2. Dispersion equation solutions for the (finite
conductivity of vertical walls.

For the longitudinal wavenumber shifts estimation we
can use the Bessel function approximation given in App.2. A
Debye approximation is sufficient for the "waveguide" modes
with wv<ya; for the "delayed" modes we can wuse the
approximation (A2.4).

At first, we consider a case with finite conductivity

of vertical walls.
If |Jv-ya|»|>ya-ybl, then in the eq. (4.11) we can put:

Pmtg{qol-tpzlfsin[ml; Sﬁtg(gol-qoz}sin[a]; pl1;
B =B ; £ ®E ; cosa =v/ya; cosa._=p/yb; COSaRV/<r>,
a. b a b 1 2
<r>=(a+b)/2¢ qpl’z = lﬂ'[tgm:h2 - txhzl-n/-fl. (5.4)

The eq. (4.11) transforms into the equation for a
straight waveguide, and it’s solution can be written as

9




" - | 3 4 1/2
tglg ~¢ )=2n| —| , where k =y -(v/<r>)"|. = 7 sin(a).
172 kx x
(5.5)

The order derivatives of P and S at their zeros are
(App.2)

8P/8v =3cosa/sin’«, (5.6)
8S/8v~8P/8v sin’(a)= Scosa. (5.7)
The shift of v can be determined as
R aP,F:au - asiau =tglp,-p, telx)/s,
ﬂvE = 27 m} = —%—g—kr = Zﬂ[k/kx}{kx/u)/a,
. 2
Av, = 27 Egégsig (5.8)
For a straight waveguide
sin(tx]=l(x/'x; cbs(&]=ky/'gr;
s
M;-&xam;zﬁij T tela). (5.9)

Comparing (5.8) and (5.9), we see that in the limit »20
the shifts of the longitudinal wavenumber for curve and
straight waveguide coincide.

As for "delayed" modes, we can sclve the dispersion
equation assuming that the modes Elz and Hz are not coupled.

In this case the eq.(4.11) separates on two equations:

P-ne(p+l) = O for E modes, (5.10)

z

20

S-n(Bb+pBa) = 0 for HZ modes.

These equations lead to

pelptl)
&VE_ arP/8y '’
: “ﬂiﬁbwﬁal
YR aRlow

Approximation formulas (A2.4) give for E.‘z modes:

P%EQEB ezwx-l (for y>1), 8P/8v ~ p/cosp,

_mnel(p+l)
ﬂvE-—-a—ﬁ?—a?n« necosf = 7ne. (5.14)

As for H modes, we have:
r

p= 4:;2‘8 e-zw«.'l (for y>1), 85/8v ~sin’B/cosB,

(5.15)

Hhad
™

n(Bh+pf3al nB_cosf 'ﬁBa
ﬂp = ] :

H as/ov sinZB Sinzﬁ

Note that both for delayed modes and for "waveguide”

ones the shift of H modes is much more than of E modes.
= b

5.3. Dispersion equation solutions for the finite
conductivity of horizontal walls.

In the case of finite conductivity of horizontal walls,
the dispersion equation solution is

21




Av =-A

apv(g'b,;-ralfaar K k app[:rb,ara)/aq
E Vg ap, (¥b,y2)/dv _nz[ K )
=

YE pr{a’b, ya)/dv '

oy 3s_(ab,7a)/8v

Bsp[‘a'b,ara)/aar . kz k st(a'b,ara]/{n‘gr
"nz[ k ] YE asv(a'b,aralfav
(5.16)

At the assumptions of App.2 (for the formula A2.6 and
further), for the "waveguide" modes with wv<ya and for
"delayed" modes with ya<v<yb, the result are similar to the
straight waveguide ones:

ra + qvb . k
- = - o S, .
ﬂvE ﬁa’E ~ YT ﬂgrEvX'g' nz[ k] = i il
i’ v z
a 8s _/8(ya) + b ds /3(yb)
Av =-Ay 4 L -
H K -(a st/a[a'a] + b stfa[fgb}ia’/v
k k
- s Gt (S
= ﬂa’Hw’a' nz[ = ] ?gv/zr. (5.18)

For the straight waveguide

Ak =-Ak k /k =7 [—k ]l (E modes); (5.19)
v A IR z| k Jg z
y
k kz
=
ﬂky— nz{ " ] kyg (Hz modes). fekl]

Note that in the case of finite conductivity of
horizontal walls, the shift of E modes is much more than
A
of H2 modes.
Our analysis shows that the vertical walls with finite
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conductivity damp mainly Hz modes (i. e. Ex or Er modes in

the case of modes coupling), and the horizontal walls with

finite conductivity damp Ez modes. In reality both four

walls have finite conductivity, and all modes damp, due to
horizontal or vertical walls. A reasonable method to
describe simultaneously damping due all four walls for the
uncoupled modes was discussed in the section 4. For
estimations, we can sum the shifts if the longitudinal
wavenumber due to both couples of walls.

The parameters of the resonances are estimated in
App.4. The resulting estimations for the resonant
frequencies, bands and shunt resistances for a beam placed
in the center of the chamber at R=(a+b)/2, for modes with
p#0, 1#0, are given in section 9.

5.4. Comparison of resonant frequencies for straight
and curve waveguide.

The modes of a straight waveguide are also somewhat
delayed due to the finite conductivity of chamber walls. It
is interest to =see, if in the straight waveguide the
resonances can appear due resistive delaying, and compare
them with the curve waveguide resonances. To avoid
repeating, we will consider only the case of (finite
conductivity of vertical walls; the results for vertical
walls are the same with replacement of the indexes x-»z and
Z5X.

The resonant factor for a straight waveguide has a form
(see (3.18)):

- 2k
z Yl - Z o7 (5.21)
(k/B) -k k +k"+k /(7 -1)
Vv g =2

where transverse components of the wave vector k , k have a
Rl

complex addition due to the finite conductivity. If the
dispersion equations (4.5) or (4.6) have the solution, which

o




turns the real part of the resonant factor denominator into
zero at some frequency, then we have a resonance at this
frequency. At B=1 (for simplicity) and »=0:

- S G e
k -kyt}h(kxﬂ-*kzﬂ}_klﬂ’
A resonance appears if
Re[kz-ki]=Re(ki]=0. (5.22)
The solution of equations (4.5) and (4.6) in the

approach ﬂkxd<<1 gives a result not consisting with this

approach, thus, the equations require more accurate

solution. _
Separating eq.(4.5) for Hx modes on real and imaginary

parts, we get a system three equations (together with the
resonant condition (5.22)):

; th(Y) i3
cos(X)/ch(Y)+1)(X+Y) H’
1 sin(X) = &L shey) (5.23)
\ Y%=X%+4a?® |

where
Z=k d=X+iY, a=k d/2 (real), 0 =(RoZ ) "2,
4 z 0

5=d/R, a =(kR)™“sn__

For E:x modes the system slightly differs:
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th(Y) (X Yy
(cos(X)/ch(YV)+1) (X-v) |~ %

) R :
sin(X) = +— sh(Y), (5.24)

G a7

i

—1!2={kRJ3/26’

3.2
n:E—[k d /U'ZUJ
but the difference is not essential.

Substituting ‘fut’=t[Xzﬂr-ﬂﬂs\z}lfz into the second equation of

(5.23), we get one independent equation for X, which can be
solved by iterations, with the zero approach Xunkn. The
number of resonant modes is determined by 1 b s A ¢

max max max
at which this equation still has the real root. This number
can be estimated via the condition

Ish(Y)(X-Y)/(X+Y)| ~ 1.
For X, Y » 2a and Y»l it gives memln{aZ/sz.

The resonant frequencies for 0 < | < lmu, Y»1, 2a«X

can be estimated as
[kR}res=(ﬂﬂf’312{ln+/( Im)°+4a” Jzﬁ(nnxa}ztzmjz for H_ modes,

s - T 2. % i
(kR}m;l/’[EﬂD) ((2(1m)"+4a ]/E(lnﬂ/(ln:) +4a- )" Tx

2/3
~ (lm’anﬂ) for E modes. (5.25)

X

One can see that if the walls conductivity increases,
resonant frequencies of Hx modes tend to zero, and can not

have any comparison with the resonances in the curve




waveguide. The resonant frequencies of Ex modes, however,

tend to infinity with increasing the walls conductivity,
therefore, we can compare the effects of curvature and
finite conductivity for these modes.

The estimation expressions (5.25) were gotten under
assumptions corresponding to the following expressions for
resonant frequencies (App.4):

2
p#0, 120 A»l = (kb]2=x3+[kzb]2= (3(:1]2xfzar}3 + (mp/25 )

A>l = (kb]xtacl)xtzaf’ A (5.26)

Comparing (5.25) and (5.26), we can see that the
resistive resonance in the straight waveguide appears at the
same frequency as in the curve waveguide with the same cross

section, if
o~ (1n/dzu}/53" ¢

Taking parameters of Berkley storage ring (see next
section), we find that
1) for equal radial camera dimension d and given curvature
of Berkley storage ring the resonant frequency of the
straight waveguide first resonance (l=1) due to the
finite conductity will be equal to the resonant frequency
due to the curvature in the storage ring, if o=
2.5:10°0'm™, four orders less than the copper

conductivity; i

2)for given conductivity o 3.54¢10Q m the resonant
frequencies of straight and curve w§geguides are equals if
the storage ring curvature is 8x3-10 , about three orders
less than the Berkley storage ring curvature.

The parameters at which the resonances due to the
finite conductivity in the straight waveguide and due to the
curvature in the toroidal waveguide appear at equal
frequencies are far behind the region of parameters to be
considered (section 6, tab.l1). Moreover, the resistive
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resonances in the straight waveguide appear at such strong
damping, that all the consideration, when we dropped the
higher order terms in spreading all functions over powers of
n, becomes not correct. Therefore, we can say that for the
parameters under consideration the resonances only due to
the finite conductivity do not appear.

6. THE RESULTS OF CALCULATIONS
6.1. The computation code.

A code was written calculating the impedance at the
formula (3.16), summing up a given number of terms for next
problems:

1. a finite conductivity of vertical walls;

2. a finite conductivity of horizontal walls;

3. a finite conductivity of all four walls (summing up only
"delayed", uncoupled modes).

The impedance can be scanned over the frequency (i. e.
over the harmonic number) and over the transverse beam
position (r and z). In the case of finite conductivity of
one couple walls a difference of the impedances for the
curve and straight waveguide; in the case of the finite
conductivity of all four walls only the impedance of the
curve waveguide is calculated, the results are reliable in
the resonant regions.

6.2. The parameters of the considered storage rings.

The calculations were made for Berkley storage ring (to
compare the results with [I]) and for the project of the
Novosibirsk phi-factory as an example of a rather
non-circular machine with big curvature.

In the table 1, the necessary parameters of
considered accelerators are given:

27



Tab.1
Parameters Berkley Novosibirsk
storage ring|phi-factory
Radius of the ring
R = 1 /2n 30 m 32:87 m
ring ring
Vertical camera dimen- g s
tion 28. =2 h/R 0.833-10 0.122+ 140
z ring
Horizontal camera
dimention % S5
d = d /R 1.667-10 0.122-10
ring
Bending magnets radius
R "R 1 0.0085
mag ring
Bending magnets length
1 r 2nR 1 18
mag mag
Beam vert. dimention
T .1 .1
z
Camera walls conducti- S
vity o 3.54-10 0 =W
Curvature 5
- WP S 1.667-10 5§08 s
mag

6.3. The comparison of results of calculations for
Berkley storage ring with results of Warnock (1].

Consider at first the Berkley storage ring, the case of
vertical walls with finite conductivity.
The fig.3 shows r- and z-dependence of the real part of

the impedance at the frequency f‘=2-104'fﬂ, lower than the
first resonance fﬁl-IUE-fD. Fig.3a and 3b represent the

impedances of the straight and curve waveguides; fig.3c and
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3d represent the difference of the impedances of - the
straight and curve waveguide. A number of summed modes is
10x10. The calculations show that increasing the number of
summed modes does not contribute essentially into the
difference of the impedances of the curve and straight
waveguide.

It is obvious that the contribution to the impedance
due to the curvature, at scanning in 2z-direction, Iis
symmetrical relatively z=o. But if you scan in r-direction,
the curvature contribution is positive near the outer wall
and negative at the inner wall of a toroidal chamber.

Fig.4 shows the same pictures in the case of the
horizontal walls finite conductivity. Note that the
curvature contribution has the opposite sign in comparison
with the case of the vertical walls with finite
conductivity. The reason is the next. In the case of
horizontal walls with finite conductivity the eigen modes
split on EZ and Hz modes, the main contribution to the

impedance gives Ez mode with the longitudinal field
described by a function P, representing a sine with

increasing in the positive r-direction amplitude. In the
case of vertical walls with finite conductivity the eigen

modes split on E and Hx modes, the main contribution to the
A

impedance gives Hx mode with the longitudinal field
described by a function su, representing a sine with

decreasing in the positive r-direction amplitude. It leads
to the different sign of the eigen modes contribution to the
resistive impedance in these two cases.

In the resonant region the picture changes. The radial
dependence of the curvature -contribution tc the resistive

impedance at the more high frequency (f=2-105-fu} is shown

in fig.5 for the cases of vertical (a) and horizontal (b)
walls with finite conductivity. We can see that the narrow
and wide resonances exchange their positions in these two
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cases. The estimation formulas for Ar - radial widths of
resonances agree with numerical calculations. Thus, for the
first resonance (Hz mode with p=1,1=0) placed at r =

a+0.754(b-a), the numerical calculations give the same
radial width of the resonance as the estimation:

Arrd= 3.2 07"

If r-dimension of the beam is of the same order as the
radial width of the resonance or more, we must average the
obtained impedance over the beam cross section (it will be
made in the next section). -

Finally, we adduce the frequency dependence of the
impedance (fig.6) co compare our results with [1]. They
appear to be in good agreement. It confirms that our
waveguide consideration is admissible. As this paper, as
[1], is mainly turned to the problem of the resonances, we
must emphasize that in the resonant regions the impedance is
described by the only term of the series (3.15), with the
resonant factor having a very simple form (see above). That
is why we propose our work.

6.4. The results of calculations for a non-circular
storage ring with big curvature.

As an example of the machine with big curvature we
consider a project of the Novosibirsk phi-factory (a
curvature of the bent segments is ~ 100 times more than the
curvature of the Berkley storage ring, see tab.l). A cross
section of the machine is round with a diameter d given in
tab.l; for our estimations, we consider a square cross
section of the same dimension.

For the phi-factory, the bending magnets’ radius R

mag

and length 1 differ essentially from the radius R and
: mag ring

perimeter lrh'm=2*.'tRHng of the machine, that's why the

impedance at the n-th harmonic of the revolution frequency
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w=nw_ must be calculated by the formula (3.15) for the same

frequency w and the ring of the radius Rmag. i. e. instead

of the revolution frequency B, . ~we must  substitute

w’ =w (1 .' /2nR  ); the beam radial position R must be
0 O ring mag

taken also relatively the ring of the radius R . The

mag

result must be multiplied by 1 /2nR {as in (3.15) the
mag mag

impedance was calculated per one turn, and now we must take
into account the real angular length of the magnets.

Fig.7 represents frequency dependence of the impedance
of the camera with all four walls with finite conductivity
(taking into account only resonant terms). The resonances
appear at the harmonic numbers approximately ten times less

than in Berkley storage ring.
Fig.8 represents a radial dependence of the impedance

in the resonant region (at frequency 1"=1-104-~f‘{:l and
f=2.5-104'fu}. These calculations were made for a beam with

delta-function radial density distri’gution. The radial width
of the resonances is here Ar/d~10 ', the peak value of the
impedance

Re(Z/n) ~200 Chm.
max

The tab.2 contains parameters of some first resonances
for two considered storage rings (modes number, resonant
harmonic number, a width of a resonance in n and r variables
and shunt resistance).

We can see that the resonant frequencies and the shunt
impedances for Berkley storage ring are in good agreement
with the simulations of Warnock [1].

Comparing the radial width of the resonances with the
phy-factory beam radial dimension g 0.5mm, or n‘r/d=0.012,

we see that the resonances are much narrower than the real
beam radial dimension. Therefore, the impedance must be
averaged over the beam cross section. For a rough estimation
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Tab. 2

p nE,H[n,10%|f,GHz | an/n Ar/d,| R_/n,Ohm
10
Berkley storage ring:
1 O(H)|{11.89|189.33 1000 2.96 2.52
1 1{E})|17.22{274.20 2500 3.9 1 .25
1 11H)|22.589359. 71 1000 1.02 4.84
1 2(E)|28.45|453.03 4500 3 .03 0.59
1 2(H)|34.69|552.39 1300 5 0 £ Sl
1 3(E)|40.94(651.91 5500 2.53 2.49
Phy-factory:
1 O(H)|1.108}16.103| 4.5(220) {0.126{212.5(6.57)
1 1{E)|2.032129.531110.8(660) [0.112128.2(0.805)
3 0(H)|2.668|38.775| 9.6(440) |0.145|1.73(0.063)
1 11H)12,972143. 193] 7.2(1060)[0.045[72,2(0.82)
3 1(E)|3.498|50.837(10.4(760) (0.087|4.2(0.095)
1 2(E)|4.023|58.467|17.9(1480)|0.079(4.34(0.091)
3 1(H)|4.272|62.086| 8.2(1080){0.049(10.58(0.24)

of the shunt i_mpedance we must multiply it on a factor
;gfvﬂr/ﬂ-r, when x<l; when x>1, we can retain the shunt

impedance for a beam with the zero width. In the next
section we will adduce more accurate account of the beam
radial dimension. The resonant parameters with the account
of the finite radial dimension of the beam are given in the
table 2 in the brackets.

7. FINITE RADIAL DIMENSION OF A BEAM

Return to the expression for the impedance (3.15):

zz hp 2V 4
Z (w) = -2uR™) - E (R} sin
: slN s {wg’wﬁ -3 B4 (

12

[I{zp z +np/2),

"“’0: Be/R.
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The radial dependence zof 4 the impedance contains the
resonant factor ZvX({wfwu] -v°) and the modes factor

(RE B{R)}z. The character dimension of the field changing
S,

is d/m (m is the radial number of the mode), it retains much
more than the beam radial dimension for a great number of
first resonant modes. Thus, averaging the impedance over the
beam cross section, we can average only the resonant factor,
supposing the slowly changing modes factor to be constant.
For a simplicity, we suppose the radial density
distribution to be constant in the beam cross section:

p(R}={ l/e, IR-R i< /2, (7.1)
9 . IR-RD|>0'P/2 :

Averaging the resonant factor, we get (denoting
xuszﬂz’BC, ﬂ=wr/ﬁc]:

<2v/((w/w )2-v?) > = J.va([w/wG{R]}z-vzlp{R]dR i

A2 A2
1 1 1 1 1 J‘ dx
- - dx = - o =
A J-x+x o % x+xn+v xﬂ+v A x—(u—xn)
shra -~ © -A/2
- S
! ! {ﬂ/z—iwr—xu]] o ; x—(vr—xﬂi A2
i el D I s
0 {ﬂ/2+[ur—xﬂll W 1 _A/2
(7.2)

At v =X (omitting the first term, negligibly small
r ;

near the resonance):
<2v/((w/w )2-v%) > = 2i/A arctg(b/vll. {13
0

In the limit A-0O
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<2v/((w/w ) -v") > = 2i/v ; (7.4)
But in the contrary case, if ﬂ»vi, the resonant peak is
<2w/((w/w )*-v°) > = mi/p, (7.5)

the resonance peak is *n:vi/Zﬂ less than in the case of zero

beam width.

This result agrees with the rough estimation given in
the previous section.

Finally, we note, that if the resonant bent is more
than the beam radial dimension {vizﬂ} or if the resonant

peak is remote {nilv—xﬂl} , then averaging is not necessary:

s ] 1 I*ﬂ/(Z{U—xn]]
<2u/((mfw0} -p) >= - X 7 + 7 In 1+ﬂ/(2[v—xﬂ]] ~
g e B = 2v = 2 2
oy Xu“’ . xz-uz = 2u/({w’u0{Rn)} i B 1 7.6)

Fig.9. shows one of the first resonant peaks for
different radial beam dimensions. The shunt impedance
dependence on the radial beam dimension is given in a
fig.10. We can see that for the parameters of the
phi-factory the shunt impedance of the considered resonance
is 4.5 Ohm instead of 155.4 Ohm for a beam with zero radial
beam dimension.

Fig.1l represents a frequency dependence of the
impedance of the phi-factory, for the nonzero radial beam
dimension and all four <camera walls with finite
conductivity. The peak impedances are approximately 30-100
times less than given in a fig.8 for a beam with zero radial
beam dimension.
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8. ESTIMATION FORMULAS FOR RESONANT PARAMETERS
The parameters of the resonances are estimated in
App.4. The resulting estimations for the resonant

frequencies, bands and shunt resistances for a beam placed
in the center of the chamber at R=(a+b)/2, for modes with

p#0, 1#0, are given in section 9.
2/3
A =[6662C1x’11p3] »l.
Denotations:
=(b-a)/a; 6z=g/R; vi=1m{v];
vl=Im[ﬂ)k/(a'Bz}~“#E/¢2G/Bz {EZz modes),
v1=Im[ﬂ)a'/[sz}~“v’k/n‘Zn/§ (H_ modes);
Cl=n'{1$1/4J for Ez, Hz modes (121).

1)The resonant frequencies:

3

{kb)z——-(BCl]2/63+{1tp/26212ﬁ[3cl}2/6

2)The resonant bands:

(30;}2/53
A(n)=|2v 2|
(mp/23 )

3)The resonant band in r-direction:

Ar/(b-a)= ui/(kba}
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4)The resonant peaks: R =Re(Z(w)/n)
shunt m

u ax

2
n an
Gt - e (for E, H modes)
G . g
i
or
4)The resonant peaks: R =Re(Z(w)/n)
shunt max
HZZDp
g : g (for E, H modes)
SRS {kb)"» 873 R
§. o
or
n°Z Y2boZ_ p
0 0
h tﬁ 5/ 2 1/2 (E, modes),
Gl 0 5 3 %
n°Z V2beZ _ &' %p
0 0
: 2 g (H modes).
shunt (kb] 62 A

For more accurate estimations see App.4.
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Appendix 1

INTEGRALS OF BESSEL FUNCTIONS CROSS-PRODUCTS

b

2 ge - ah B
uJ‘pvtarr,a'a)—? = _2[pv Brvx’av i Spufav] Exbira) (Al.1)
a
b
2 = R - - i
vqu{yr.zaJT b (qv asv/av s, Equ/élv} (5. 78) (Al.2)
a
b
dr..  ¥b 3 =
ujpv[arr,gra}qv(gfr,;ra}—r- - —zfpv st/av E, qu/c‘:]v) (rhre)
a
=ﬁ(q dr /8v - s_ 8p. /dv) (AL1.3)
= il T ks P (¥b,7a)

Appendix 2

APPROXIMATION OF BESSEL FUNCTIONS OF HIGH ORDER
AND THEIR DERIVATIVES

In this section we would Ilike to adduce the
approximation formulas, which we have wused at our

estimations and calculations of the impedance.
1.We have chosen for the impedance calculations a

Langer uniform approximation [5] for Bessel functions of
high order:

Jv[x} = A(w,v) Ail(y(v,w)), Yv{x] = A(w,v) Bi(y(v,w)),

(A2.1)
x 4 PV
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2/3
W = 1/1-{x/v]2 , ¥ = ( % v (arth(w) - w]] '

1/3 176
ﬁ[w,v}=[g] [artk;(w) w] '
. w /3

X » In

2/3
w = \/[x/vlz-l , ¥y = —[ % v (w - arctg(w}]] ;

1/3 1/6
ﬂ[w,p}=[§] [w agctg(w)] ‘
w3
The order and argument derivatives can be easy found as
g oW v
8x  8x Oow'’
d aw 4 B-. & dw dx}a _ @ _ia_AZZ
% v ow  ov  ov +[Bv aw]ax_au +[ v ]ax'{ =

2. For estimation of the dispersion equations solutions
we can use the main term of the Debye asymptotic expansion
(4], 9.3.(7-22),

J i cos(p)+ulictg(B))/v sin(p)
{Y}pw/msm . ‘/2/{“vtg'ﬁ} {sin{qﬂ—u[ictg{B}J/v cos(e) |’

J1 3 g ~-sin(@)-vlictg(B))/v coslp)
{Y}U(UKCGSB] 5 v/stB/{nv] { cos(p)-v(ictg(B))/v sinle))’

= v(tgB - B)-1/4 ;

P
{i’} (v/cha) = \/2/(1wtho:.} {_1_’1’2} e (12ulcth(c)) /),
v
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4 1
%

{J}’{v/chu:] = \/ahZa/[nv] {1/2} eiw{Iiv[cth(u]]/v},

Y =v(tha-ao);
u(t)=-i(3t-5t°)/24, v(t)=i(-9t+7t3)/24.

(A2.3)

or the asymptotic formulas for
([4], 9.3.23-9.3.28):

J ¥ - K 23 (Ai 1/3
{Y}v[v +zv T)=1¢ [;] {Bi} (=27 "z),

2/3(, .
31’ 173y 2 Ai’ 13
{Y}p{v +zv T)=% [E] {Bi'} (-2 "z).

Finally, we want to adduce here the approximate
formulas for the order-derivatives for the Bessel-functions
cross-products P, and S, In the first approach it is

sufficient to derive only the Airy functions in (5.1), not
taking into account the slow dependence on v and x of the
amplitude A(v,w):

in the transition region

(A2.4)

pu(xl,}ch:AlAz{Ai{yl }Bi[yzl-ﬁi(ylei[}fl ));

ﬁpu { dyl :
e = AIAZ (Ai {Fl}Bl{}rz)‘Al[}’zjﬁl {}’1]] —d?+

LY

dy
+(Ai(y1 )Bi’ [yzl-Ai’ {yz]Bi{}'lJ} —a-;]

2

ap. [dy 8x
”’[ ol (A2.5)

: pr[d}rzaxZW
ax
1

+ ;
dv 6‘}*1 axz dv asz

Analogously, for su{xl,:{z] (using the Bessel equation):
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asv st d}'laxl

ds [dy ax
C A v 24
' dv 6):1 dv 6‘];1 axz dv ayz

dy dx
= - : 1] : s + [1"{1?/1{ ]z]q ]"‘
X v 1 v

dv ay1
dy 8x
% ST g N S R o T ;
dv 3}*2 X,V 2 v

or, for s {(x ,x_)=0, we have:
A e
dy dx

v 1 1 2 2 2 2

Deriving the arguments of Airy-functions, we get:

r

X arctgw B x
e : = - . = t w, X-v),
[Elig_)_;_] = e N sinf ( B= arctg ) P
dv dy 2 -
ot WEEW L & f s arthw, ke

. P W sho

Now, we can adduce the approximate values of the order
derivatives at pu[xl,x2]=0 or Su{X1’Xz}:D for two cases:

1) v<x <x_; let |lw-w |« w
§ 10 1

ap & B

v 1 2

Lt

(A2.8)

-'I" - -+ _-_'
av v smﬁlq v smﬂ;
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a”

asv BI 2 ‘62 2
av —sinﬁlsm quv-‘-sinB:m Bzrv = Blsm quu+325m Bzru'
(A2.9)
app{xl,xz]NZn:osf-:pl—tpz] NZCos{cpl-rpz}
5o ~ fBz'ﬁl]“ — & (for E modes)
nthBlth nvtgﬁl 3
(A2.10)
Bsp[xl,xz} Zcos{@l—fpzl . ‘
= ~ - é sin Blﬂln Bz.[for H modes)
nvtgﬁl §
(A2.11)
(fP1’2= "’{thLg = BLEJ, ¢, ~¢ =mn)
2) x <v<x
1 2
For w«l -d-y—@i ~ -—x—, hence
dv dy v
eix .n ) X X
20k SEC GRS DR B (A2.12)
av v v QP % 2
Ssu[xl,xz} e 2 xz 2
= W [1-—[1?/:{1] ]qv+ FP[I-F{LJ";’}L'ZI! ]I‘v. (A2.13)

Denoti == = -
enoting p[fozJ ru[xl,xz},/qpixl,le, Y =v(the-a), we

can write for yY>l1:

E modes:
=
s BENE -2
p(xl,xz} = ing e «l1
op (x ,x ) S
e - R e
- = qu(xl,xz){ p{xl,xz}v +'|3'] q[xl,xz]F/ccs,B
(A2.14)
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8s (x ,x )
i =3

av

=‘qv[xl, X z) [shzw’chwp(xl,xz}sinzﬁfcosﬁ] ~

H-qv{xl,xz}sha/l (A2.15)

Appendix 3.

EIGEN VALUES A

Return to the dispersion equations for the ideal
toroidal waveguide:

E modes: pv[a'a,a'a[lm)}:{}; (A3.1)
z
H modes: sp[?a,a’a(1+a)}=ﬂ; (A3.2)
z : e
S .. " s=(b-aVa
=

Consider a dependence of Vi s root of (6.1) and of Vo

a root of (6.2), on the frequency w=kc, or, for simplicity,

on the argument X=ya. ‘ :
If wv#ya,yb, we can approximately solve dispersion

equations (A3.1) and (A3.2) via (A2.3): . .
The dispersion equations can be rewritten Via
asymptotic formulas (A2.4) as
Ai[jfl} Ai[yz)
Ez modes: Ai[yI}Bi(yZJ—m{yz)m(y1}=0, or Bi(}fll = Bi{yz) .

(A3.3)
H modes: Ai’(y )Bi’(y_)-Ai’(y_)Bi’(y )=0,
z 1 2 2 1
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Ai’{}'l) hi‘[yzl

ar

Bir(},l} - Bif{yzlr {ﬁ:}.‘t‘]

173 1/3 173
gl [%] (ya-v); : P [%] (¥b-v)=- {'—21;] (yal(l+8)-v).

Aily) Ai‘ (y)

Fig.12(a,b i —— g
ig.12(a,b) shows the functions Bi(y) and BI (3"

1. v<ya,7yb, i. e. yl, };2 % 0.

The Debye approximation (5.3) leads to next
dispersion equations:

pp{xl,xzkﬂ = 51n(q&z-go1+[ul—u2}/p]=o i

2 2 2 l+5Ctgzﬁn
(vtg B+(1+5ctg B)/(8vsin B))ctgB=nn/6 = LD ¥ SUD SiDBD :
sv{xl,x2}=0 B sm{rpz—:pl+(v2—v1}fv]=0 =
(te28-( 2 ] 2 : 3”“328:}

tg“B-(3+7ctg B)/(8vsi = =v -
vtg B ctg B)/(8vsin B))ctgB=nn/8 = Ve BVG sinﬁﬂ ;

i

where uu=lx2—{nn/6}2] uz’ sin Bﬂ=nn/6x, X, 22:{[116/2]

¥

(A3.5)
If the curvature decreases, retaining x-&=const, i. e.

retaining sinBD=const and increasing X, then the difference

between longitudinal wavenumbers for the curve wavegui'de
(vE, vH] and for the straight one {"’9} decreases as I/x. If

the curvature & retains constant, ’che2 differences of the
squares of the wavenumbers [vE H*uﬂ] decrease with

increasing the modes number n.
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2. ya<v<yb, 1. e. }Fz <0 < j,rl.

Airy function for | big positive arguments has
exponential approximation [4] (10.4.(59, 61, 63, 66)),which
leads to

E modes:
=

tgg + _u(wz-arctg{wz})] =M{y1] —é- exp [-Zv(arth[wll—wl)J :

‘H modes:
=z
ctg (T + v(w -arctg(w ))|=M(y )—l exp|-2v(arth(w )-w )|,
|4 2 2 i e 1 1 Y

(A3.6)

where W e \/(?b/v’}z-l o v/i--(a‘a/v]z , and M(y) is a

slightly changing function: M(0)=2/¥3 , and M(y)~1 for big
arguments. The graphical solution in variables s is shown

in the fig.13. The figures 13a show a high frequency
case,when E and H modes have a great number eigen values
z z

in the region 7ya<v<yb; the figures 13b - a case, when the
delayed modes only begin to appear( one Ez and two Hz modes

in this region); the figures 13c show a low frequency case,
when the region ya<v<yb contains the only I--Iz mode with eigen

value v~(ya+ybl)/2.
If we consider the waveguide with a small curvature

d=(b-a)/a~(yb-ya)/v «l, then, denoting w1=th(a:] and
w2=tg[f3), we can write: .
v=yb cosB=yall+8)(1-2sin’(B/2)) =

= ya choc=ara[1+25hz(cx/2}], (A3.7)

hence,
sh¥(a/2)+(1+8)sin’(8/2) = 8/2,
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or, for 8«l,

-2

o +3 =28. (A3.8)
Substituting (A3.7) and(A3.8) into (A3.6), we get the

dispersion equation in a form Fl[:x ) = Fz{za—a. ) and,

solving it relatively a«, we find the eigen value v. This
procedure results with

2/3 0 '
% E~}'[1—E [CIE/'_*;} ], CIE—n(l-—l/-'-U, 1=1;
fat - l2r3 GO —
oy [1 g[CIE,{f] ], CIH-n[l 3/4), 1=i;

i > 5 2/3y 372
C = C + =exp|-—=A[1-|3C /A for E or H modes.
1 = 3 1 z z

where £ = 37°/2 ~ 1.04; A=y(25)*%.

The roots of (A3.3) are close to the zeros of Ai, and
the roots of (A3.4) - to the zeros of Ai’.

The fig.14 shows the dependence of the eigen values v
on the argument X for equations pv(x,x(1+6}]=0 and

sv[x,x{l+6}]=0 (8=0.2). When wv<x, the dispersion curves are

close to the ones of a straight waveguide, the eigen values
of Ez and Hz modes practically coincide. But when the

argument increases, the dispersion curves not only approach
to the line w=x, but cross this line and find themselves in
the region x<v<x(1+8). Here the eigen values of E and H

Z z

modes differ essentially: v, are approximately in the middle
between neighbour uE.
Rk 1y ) <L

In this case we can use power series [4] (10.4.2,
10.4.3):
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Ez modes: Al[yi]Bl(}’zJ—Al[yz]Bi(y1]=0 =

[1+y3/6+y6/180][y +y4/12+y7/504)_
14y /6ty flsmty +y f12+y /504)=0

H modes: Ai [yllEil [_‘,rz)—ﬁu [}rz,‘lBi’{y1]=0 =

2 5 3 3 Gl 5 3 6
(y1/2+3r1/30)[1+y2/3+y2/72) [yz/2+y2/30}[1+y1/3+y1/72}=0.

We find that there are no Ez modes in this region, and

there is one H mode with
b

o
szza(H -2(1+[6'ga}3/{303ra)}}, where {S*ara)S/ESDara]qcl. (A3.9)

At Y 240 (i. e. for small curvature or small
frequency) v —)a'(aa-h)f’z and simultaneously coincides with the
longitudinal Etralght waveguide wavenumber for the H mode

with a zero x{r)-component of the wavenumber. That is why we

have compared v with the longitudinal wavenumber k with v
v

divided by the average camera radius <r>=(a+b)/2.
Appendix 4
RESONANT PARAMETERS
1. Resonant frequencies.
The resonant frequency can be found from the equation:
(kR/B)-vik )=0, (A4.1)

where
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v (k)=yb [1—5 [Cl/a'b] 2"""] 5

2/3
Cl

(k> -k’ o el

uz[k}ﬁ[kz—kz}bz [1—2»;—'

=

] (for 1+0). (A4.2)

Thus, the resonant frequency can be found as
k2=3'2+k2=x3/b2+k2, where x is a root of the equation:
= - (gcz’ 3/5 ) - (wp/23 B) /25 = 0,
where aer/Bb - 1: 6z=gx’R.

For p=0 [kb]2={ﬁ/5r)acl. (A4.3)

For p#0 (A4.2) can be rewritten as

¥ -3 A-1=0, (A4.4)

2/3 2/3
where y = X 28 [2{36 /npa] , A = 2¢ [285 C/npa] :
r z r - A | r

In two opposite cases we have the following
approximations:

1) A»l > y = A+1/A%= A(1+1/A°),
x =(y/25 )° [npa /288 ]2 ~ (£/8 )°C?,
r r z r |
(kb]z=x3+{kzb}2= (3C)*/(25 )7 + (mp/23 )°. (A4.5)
2) A<l s y & 1-A/3,

2
% {msarl [np/ZBaz] ,

{kb}2=x3+[kzb)zﬁ[npfzazlz{lﬂ/[ﬁarﬂz]]. (A4.6)
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For 1=0 vi{k}ﬁ[ga}zt1+6(1+63(3aJ2/SO]}. it gives

(kb)~(k b)*+(np/23 B)* 122 for pi0 (A4.7)
r
tkb]zmamaefzar){nza}xa‘ for p=0. (A4.8)

2. The widths of the resonances.

The resonant bands can be found from the condition of
equal real and imaginary parts of the resonant factor.

a)JResonant band in r-direction.

Re[ 21"2 2]:1111[ v ? 2] 2 Re(wR/Bc-v)=Im(wR/Bc-v)
(wR/Bc)™-v (WR/Bc) -v

Re[wR/Bc—v}WR/ﬁc—[wR/ﬁchﬁﬁ = ﬂ[mR/BcJ=ui,

Ar= lec/w.

H)Resonant band in k~direction.

As v depends on k as (A4.2),the resonant band can be
found as:
'8

(k. R/B vk  J=0;
3 res 0 res

Re [(kR/B}E-vz(kJ—Zun i (k}vl] =Im [(kR/B]z—us(k)-Zuni [k}vi] ;

ZkaL[{kR/B}Z—vz[k}] =2kﬂk§—-—[(arR/B}2-v2{'ar]] &
2 0 2 0
ak k dy k
res res
5 zpﬂ[krestl'
For 10
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2/3

a 2 2 21 2 2 2 2§Cl
—E[(?R/B} -uniar)] ~b [lR/b} - vﬁ/{'a'b} - —-73"] =
3y 3(¥b)

ZECZKS

1 —
2/3

= —l—é[({Rk/,S]z— vg}—(sz/ﬁlz-
3(yb)

'

262"

1 ]
B{fa'blm

=- —1—2[{np/{3262}2+
4

2
¥ Zpﬂ[kresjui e 'Erz Z{R/B} s
2/3 2/3 ¥

26C
2/3}

Ak

25(31 ;5
_-Ef_*‘] [{n’p/ZBS )T+
3yb)™" %

k[(ﬁpf2{35232+ ;

{26l

For p#0, [#0 fnpf;‘%ﬁz}z}}l and E{Cl/a'b]zj3<6<<1, thus we

can write

2 #
R s LT T 2v, [{kb]z/{-etpz’BZéz}z"l].

(np/BZﬁzlz
For p=0, 120
2 2/3 8/3
M =t KB 3{?33 v = A(kb)= A(n) ~3 : 213—
:ECI gl:1

1)A»1 » (kb)’= [3c113/(zar13 + (np/Zﬁz}z $

BC MRS T
mn]=2ul - zr ,
fn:p.f'ZEEz]
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—*

2)A«l = (kb]zm(npfzaz}zt1+1/(33r32)} >

8

; N= 2 f [Exflar = 222K [Ez+(ZGH ) ] oo g(125 )
A(n) = 2v /(85 B). ?pzﬂ ; :

g ;
Eor Jad) (for Ez, Hz modes) 2
2 2[ 7R/B) v (ar}]._[R,fB 2148142 8°(32)%/30)); E ) = s Al e [zazci/“par] Zek I IEE WS
8y gy i i have the next esteems.
0 res i 2 2 2 2
s = 3 h = = =
A(kb)= A(n) Ko(25 +35) (p#0) ch'a (v/(¥R)) =(k/7) 1+{k2/3'] =
r
) &’k /y)%%8+ (np8/65 C)%«S, al=a’+sns.
" r z il r
3. The shunt impedance. 2 )
W=ve”/35C; Y =va/3~C (mps/65 c:l}3
The resonant peaks of E and H modes can be estimated =
* " E modes:
as: -
= [RE{Z (w}/n}] = ply b,r HL)ﬁ[sin{.%‘x’-ﬂfsha:m]ezl‘*"’r »1
shunt 1 p p
max
A ap arpb,ar a)
x-r (7 b
=-Re[% P E2 (R) sin(k z +Hp/2}:[ *Im( 2v ]n:, = rV{?p ,'Jpa]cosﬁ
k N x B0 zp O g 2
8 res [w/mo} -V
p{yR ,7v a)
A #op 0 p -5(1
2R B B o = E %(2e :,br,b]}/{:xﬁ]
H[T N s,H(R{}} sin {kzpznﬂcp/ZJ]D e rv{'.zfp ,?pa)
] 1
: ¥ b
where v =Im(v), and the index "O" at the term in square SR P - 8 2
i . _ 9 = 5 I"v['a'm:?'b} Eapv(a’a,zb]'gm? Zg rv('a'b,;ra]/cusﬁ
brackets means that it can be calculated assuming 7n=0. ?IPZD p 0
Let the beam vertical position zﬂ=[}, then, for the ?
. (Z " 4 2nR/k
modes with A =1 (see (3.17)) we have: R VJ 5 Py (? = i 28 2’ 2
P shunt khg g ['}’ b iy a] WPCDS'B_
{R ) i e B
. = ?TER o' '
" shunt k N i U'l’ ZTIZG - 2
5, 18 = (2e "sh(y-y ) (e /B).
(kb) v & P y
1 =
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where v =Re(n)/8 , C=(1-1/4)n, I=1. References
H modes: l. R. Warnock, P. Morton. Fields excited by a beam in a
z - smooth toroidal chamber. SLAC-PUB-4562, 1988.
ply b,y a)=4(sinB/sha)e «1 2. K.Y. Ng. Resonant impedance in a toroidal beam pipe.
e SSC-163/FN-477, 1988.

3. K.Y. Ng, R. Warnock. Reactive impedance of a smooth

st{arpb,a' H]H 2 toroidal chamber below the resonance region. Phys.Rev.D,
o qu(arpb.afpaiﬁ N vol.40, N 1, p.231, 1989,
4. M. Abramowitz, I.A. Stegun. Handbook of mathematical
2 functions.

SV{?‘QRG’? a-)

e ) ~o B [%hwsh{w-*w })2 S. Erdelyi A. et al. Higher transcendental functions.
q,, ?p :3’1}3 3 > McGrav-Hill Book Co., 1953,V2, Ch.7.

6. L.A. Vainstein. Electromagnetic waves. Moscow, 1988.

¥y b
. T 3 ___kbg 2 2
N =— 5—q,,(73,7b) —=s_(72,7b) gx——q (yb,ya)B
¥ Z, Ee e

P

(Z /v.) 2nR/k(s (¥ R_,7y a)k )?
R Bt L B v /B%=
shunt  kbg g kr b,y &) ¥ p
: v ' p p P

21120 3 "
= (2e "shly-y )) (e« /B).
(kb) v & et

where vi=Re(n!/6, Cl=(i+1/4]1r, 1=1.

If uclz_/&:{l, hence ¢y » qﬁr,,ﬁ'ﬁélﬂ, ¥~k, and (for y=1)

2
5 14 an

shunt s

2172
S

z

(kb]zulﬁ

where " for E and H modes are given above.
A Z
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of the straight and curve waveguide in the subresonant re-
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Fig.6. Berkley storage ring. Frequency dependence of the
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Fig.7. Phi-factory. Frequency dependence of the impedance.
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