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Abstract

A super collider transverse feedback system should
suppress injection errors, emittance growth due to
external noises, and beam instabilities. It is supposed
that the feedback system should consist of two circuits:
an injection damper operating just after injection and a
super damper. To damp the emittance growth, the
superdamper has to operate with the ultimate decrement
close to the revolution frequency. The physics of such a
feedback system and its main limitations are discussed in
this article.
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1. Introduction

The luminosity is one of the most important parameters among the main
parameters of the Superconducting Super Collider. To reach the required
luminosity, one needs high beam current, low beam emittance and durable beam
lifetime what conditions very stringent requirements to the beam stability. In this
case, the role of the feedback system for suppression of beam instabilities and
emittance growth is very important,

The main purposes of the transverse feedback systems are the damping
of the emittance increase due to injection errors, suppression of transverse
multibunch instabilities and new task, unusual for previous colliders, i.e. the
suppression of the emittance growth produced by extemnal noise. Thus, the two
main regimes of the feedback system operation can be distinguished.

The first one is the damping just after injection. The damping decrement
at this stage should be high enough to suppress the emittance increase due to
injection errors. The frequency band at this regime is determined by a time
distance between batches (1.7 us) and should be an order of ~0.5 MHz.

After initial damping, the long term damping system has to be switched
on. Further we wiil call this system the superdamper. The system should operate
all time of storage (except short time just after each next injection from HEB),
acceleration and collisions of the beams. To prevent the emittance growth due to
own noise, the system should have the noise of electronic referenced to the BPM
resolution smaller than 1 gam. Because of this system operates on the already
damped beam, its power can be much lower than for the injection damper.

This article is devoted to the analysis of the main requirements to the long
term svstem and analysis of its operation. The theory of the feedback system with
ultimate decrement and the theory of the emittance growth under feedback system
noise are developed as well.



2. Coherent Instabilities

We will start our study from review of beam instabilities whose determine
the initial requirements to the super damper.

2.1 Transverse Final Wall Resistivity Instability

Because of a verv large circumference of the collider, the instability of
the final wall resistivity is one of the most dangerous. For the collider with a two
laver round vacuum chamber its increment can be expressed by the next formula"
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where / is the beam current, R is the average storage ring radius, E is the beam
energy, c is the light velocity, v, is the betatron tune, w,=|wy(v,-n)| is the
frequency of the mode n, w, is the revolution frequency, a is the vacuum chamber
radius, 0, O,, d,, d, are the conductivities and thicknesses of internal (copper) and
external (stainless, steel) layers,
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are skin layer thicknesses. We neglect from here a coupling between the vertical
and horizontal motions so that v, denotes the tune related to the chosen direction
(vertical or horizontal one). For the SSC the bottom and upper parts in Eq.(1) can
be used for f«17 kHz and f»17 kHz, consequently. Note also that the bottom part
of Eq.(1) is justified for sufficiently high frequencies

sz1+1)! 3)

so that magnetic field is still small outside the vacuum chamber (for the SSC
vacuum chamber @/27=90 Hz). As can be seen from Eq.(1) the instability
increment is  proportional, to 1/® at low frequencies and to 1/®"® at high
frequencies. The results of calculations at injection (E=2 TeV, I=70 mA, a=17
mm, d,=0.1 mm, ¢,'=5.6:10° Q/cm (RRR=30), d,=3 mm, o," =8.5:107 Qfcm)
are shown in Figure 1. We suppose here that the collider vacuum chamber in warm
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Figure 1. Dependance of growth time of the final wall resistivity instability on frequency.



straight sections 1s produced of a substance with high conductivity, and their
contribution to the transverse impedance is small’. One can see that the mode with
the lowest frequency (f=f;+| 123.78-124 | =760 Hz) is the most unstable. AI: full
energy the decrements will be 10 times smaller.

2.2 Transverse Multibunch Instability due to HOM of Cavities
In the gencral case for the dipole motion of equidistantly spaced bunches
the instability increment is equal to!*

aq-?ﬂ ReLZZ o(Nym+g+[v]))-
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where g is the mode number for beam motion, f§ is the average ring ff-function,
N, 1s a number of bunches in the beam, [v] is the {ractional part of the betatron
tune, Z (w) is the ring transverse impedance per turn normalized on a bunch
length

wg §
Z(m)-Z(m)exp(— 3% 3
and o, is the r.m.s. bunch length. ;

At high frequencies where the increment of the final wall resistivity
instability is small the main contribution to the transverse impedance is made by
RF cavities. Due 1o a large number of bunches in the collider (=17000) there
always will be the mode in the beam motion which interacts with the cavity mode
having the highest impedance. In this case one can write down a simple estimate
of the instability increment:

Iemﬂﬁ 6)
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where f3. is the B-function at cavity location, Z,, .. is the maximum value of the

'The total length of warm sections is about 10% of the orbit length,
so that for the aluminum vacuum chamber with wall thickness of 3 mm
the contriburion of warm sections to the transverse impedance will be
less than 10%.

transverse impedance of one cavity, and N_, is a number of cavities. The
transverse impedance has a weak dependance from cavity geometry and strongly
depends on damping of the cavity HOMs. The experiments carried out at SLAC!
show that in the case of a single cell cavity the Q-values of most modes can be
damped to 30-100. Nevertheless, some of the modes have much lower damping,
therefore in our estimate we will use Q. ~1000 that coincides with Z, =0.5
MQ/m. For comparison, note that the undamped normal conducting cavities usually
have the maximum value of the transverse impedance Z,_, ~5-10 MQ/m. For the
collider working on injection energy (E=2 TeV, /=70 mA, B.=200 m, N cavity=32)
one can get from Eq.(4) that A7 ~10s. The growth time will be 10 times larger
at the collision energy.

In reality the instability growth time should be even larger because the
different cavities should have slightly different geometry (or we can artificially
facilitate it) and, consequently, different frequencies of HOMs . In this case, the
total transverse impedance does not grow proportionally to the number of cavities
and the instability growth time will be larger. The use of superconducting cavities
allows further increasing of the instability growth time.

2.3. Landau Damping and Beam Stability

If the tune shift of coherent betatron motion is small in comparison with
the betatron tune spread, the decrement of Landau damping is about inverse
decoherence time. In the collision mode the main source of the decoherence is a
dependence of particle tune on amplitude due to the beam-beam effects. Then the
decoherence time is

T ~RufAv) =(fE)7 )

where € is the so-called beam-beam parameter, and f; is the revolution frequency.
In the worst case of one interaction point only, the beam-beam parameter is equal
to 0.0009 what determines t~0.3 s. Thus, at the top energy the beam-beam
effects should stabilize all instabilities due to cavity HOMs and the final wall
resistivity instability for frequencies higher than 1-2 kHz. In the case of four IPs,
the resistive wall instability can also be Landau damped.

If the beams are separated in the IPs®, the decoherence time will be much
higher. In this case the main source of decoherence will be the lattice nonlinearity.

L]

It always occurs at injection and during beam storage and
acceleration.



As follows from computer simulations!’), the expected betatron tune spread should
be an order of Av=5:10" (ts=1 5) at injection energy and Av=5:10° (t,=10
5) at the top energy. This value is comparable with the real part of the coherent
tune shift due to the wide band ring impedance whose value is
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Here I, =eNc/(2)"?0, is the peak bunch current, o, is the r.m.s. bunch length and
Z,(w) is the transverse ring impedance. It follows from Eq.(8) that Av,,=~5+107
for Z, =4 MC/m and E=2 TeV. One can see that this value is close to the expected
particle tune spread. The considered value of the transverse impedance is rather
optimistic®. If the transverse impedance has a higher value, the Landau damping
should be suppressed by coherent tune shift and the instability of cavity HOMs
should occur in the absence of the beam-beam effects at both the injection and top
energies.

Note here that although the betatron tune spread due to lattice
chromaticity can be larger than the ones considered above, its effect is suppressed
by synchrotron motion and can be neglected in the decoherence process,

3. Transverse Emittance Growth and its
Suppression by the Feedback System

Noise and ripples in the magnetic field of a storage ring produce the beam
betatron motion which due to the betatron tune spread leads to the emittance
growth and, consequently, to the luminosity reduction. It is especially dangerous
for the Superconducting Super Collider because of a very small revolution
frequency and beam emittance. The main sources of this external perturbation are
the transverse displacements (oscillations) of quads and ripples and noise in dipoles
and dipole correctors.

3.1. A Short Review of the Theory

As the measurements of ground motion at the SSC site (and also at other
places in the world) show, the expected value of the quadrupole axis displacements
due to natural and man produced ground motion is so large that the emittance
should be doubled in 10-60 minutes after acceleration'®. In the ref.[7] it was
suggested to use the transverse feedback svstem for suppression of the emittance
growth. Later the process of emiltance growth due to noise and its suppression by
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the transverse feedback system was carefully studied in refs.[8] and [9]. It was
shown that in the general case, where the spectral density of external perturbation
is a smooth function of frequency (i.e. the spectral density does not change
significantly within the frequency band of betatron tune spread), the emittance
growth rate could be approximated as

g8 _pale: 33 de
Lt +67 3 E<0.1 <0.5 . )]
dt (SE+3.3EZ th)ﬂ ' ]

Here g=2)/f; is the dimensionless decrement of the feedback system, E is the
beam-beam parameter,

X Bs@),  0,=ogven (10

is the emittance growth rate without the feedback system, S(w) is the spectral
density of beam kicks summed over one tumn and referenced to the B-function .
One can express this "summed" spectral density through the cross spectral density
of angle kicks from different magnets

BS(w)= E J/BBS (w)cos(p, -, =t (11)
=1 :

Here N is a number of magnets, [3; and f§; are the f-functions in magnets ¢ and

J» i-p4; is the betatron phase advance between magnets { and j, T; is the time of

flight from magnet i to magnet j, S;; 18 the cross spectral density of angle kicks for

magnets / and j. This cross spectral density is bound up with the cross correlation

function of angle kicks by the expression

y iw(t,-t (12)
Ky, ~1)=0x,)8x))= [ Sw)e " do |

where 0,(t) and 6,(t) are the angles excited by kicks of magnets ¢ and j. In the
most of cases, one can consider that all the sources of noise are independent
S,;=0;5; so that Eq.(11) is simplified to

N
BS(w)=)" BS(w) . (13)
i=1

Eqs.(9)-(13) are justified for both the vertical and horizontal planes. It is
important to note that coupling between the vertical and horizontal motions should

9



redistribute the emittance growth between them so that for both transverse planes
one can put: de/dt=((de/dt),+(de/dr),)/2.

As follows from Eq.(ll)j, the betatron resonance frequencies only
contribute to the emittance growth. Usually the main contribution is determined by
harmonic with the lowest frequency wg=w,min([v,],1-[v,]) because the speciral
density of perturbation drops very quickly with increasing frequency. Here [v,] is
the fractional part of the betatron tune. For the Super Collider with the revolution
frequency wy/2n=3441 Hz and tune variation in the range [vo]=0.22-0.45, this
frequency is in the range 700-1500 Hz.

A survey of measurements of ground motion made in different locations
and an estimate of the emittance growth in the collider on the basis of these
measurements were performed in [6]. It was predicted that in the worst case the
emittance growth time in the collider mode can have an order of 30 minute or
even smaller. To have a required 24 hour beam life time, one needs the feedback
suppression of the emittance growth at least 100.

3.2. General Requirements to the Feedback System

The general requirements to the feedback sysiem are considered on an
example of a simplified system with a sufficiently wide frequency band so that the
motions of different bunches can be considered as independent. The feedback
system consists of a beam position monitor (BPM), an amplifier and a kicker
located a quarter betatron wave length downstream of the BPM. Let be for a
transverse bunch displacement equal to x at the BPM location the bunch gets a
kick in x-direction

50=—22 (14)
VBB,

in the kicker. Here B, and B, are the B-functions at BPM and kicker locations. If
the dimensionless gain g is much less than 1, the damping decrement of the system
18
r=2y . (15)
It follows from Eq.(9) that for g»E the suppression of the emittance
growth by the feedback system is

s N (16)

S :
(defdt) (3.3+67g°)E*
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For four interaction points (IP) in the collider (§=0.0036) and an ultimate
feedback system damping g=0.5-1, it gives §=1000. So we can conclude that to
get the required emittance growth suppression the feedback system with ultimate
damping should be used. The damping decrements in this case are much higher
than for the damping of instabilities.

To prevent the emittance growth due to own noise, the feedback system
has to have very small level of this internal noise. As follows from Egs.(9) and
(10) for the case where extemal noise is equal to zero, the emittance growth due
to noise of the feedback system is equal to

de _Ewo, 33 =, g
= +6? 2l . (17}
dt  4m \g2433E ),,;.u B, seu( @)

Here we take into account that in accordance with Eq.(14) the spectral density of
the kick angle S(®) is bound up with the spectral density of the feedback system
noise Sgpy(®) referenced to the BPM coordinate resolution

-
e

BS()=B, ﬁg : sk ®) (18)
1r2

For a wide band noise we can express the sum in Eq.(17) through the BPM
resolution

Wy ), Sgpu(@,)= f Sppp(ONAO=X 35 (19)
n=-e o
thus, one has
de ' X3
%€ B2(3.3+678%),—2 . 290)
2 ( 8V 28,

One can see from Eq.(20) that for g<0.2 the emittance growth rate practically does
not depend on the gain value. For the emittance growth time of 24 hour we finally
have that the BPM noise xgpy has to be less than 1 um.

4. The Theory of the Multi-Bunch System with
Ultimate Gain

11



A necessity of very careful analysis of the feedback system operation is
conditioned by the requirement to achieve the ultimmate decrement of the feedback
system.

The simplified scheme of the system is shown in Figure 2. Because of a
very large circumference of the collider the BPM and the kicker are located in one
straight section and a beam kick is applied at the next turn. In this case, the phase
advance between the BPM and the kicker depends on a collider tune. To allow the
collider operation on different tunes, a couple of BPMs shifted by /2 in betatron
phase is used. The mixture of their signals allows one to get the signal with
required phase.

To get the ultimate BPM resolution the signals from the BPMs are used
in the closed orbit correction system which should suppress the beam offset from
the BPMs electrical center with an accuracy of about 5-10 um. Because of the
correction system has a time response of an order of 1 s it cannot suppress fast
closed orbit variations in the BPM. To exclude them and to prevent from a
saturation of the output amplifier it is suggested to use the notch filter. The idea
of the filter is that the BPM signal from the previous turn is subtracted from the
signal of the current turn. It removes the residual constant displacement of the
closed orbit in the BPM and strongly suppresses its slow variations.

4.1. Bunch-by Bunch System with Notch Filter
First, we consider a wide band system where the motion of each bunch

is independent of others. _

Considering the particle motion in an accelerator, we will neglect the
coupling between vertical and horizontal degrees of freedom and use the following
variables:

X5 T P=[3£i j 1)
ds
VB VB
where s is the path length along orbit. The particle motion is suggested to be
ideally linear so that the one tum mapping in the lattice is

i ” e o cos(2nv,) sin(2nv,) 22
Vn-rl :MVH L Vn= ¥ ;= . ) ( )
A -sin(2nv,) cos(2mv,)

where X, and P, are the bunth coordinate and momentum, and 7 numerates a tum
number. We also introduce the matrix of the coordinate transformation from the

BPM to the kicker
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Figure 2. The symplified scheme of the feedback system, p



= 3 cos(p,) sin(p,) (23)
: -sin(p,) cos(y,) :

Taking into account the notch filter effect we suppose that the kicker
deflects the particle so that the differential of particle momentum in the kicker is
proportional to a difference of bunch coordinate in the BPM at current and
previous tums: :

AP/=G(X,-X, ) . 24)
Then a full one turn mapping is
k5 Ly Ll sk e AR 25
Vo =M7,+G| OIMI M@V, . el
We will look for a solution as
VA7, 26)

where A and V¥ are the eigen-number and the eigen-vector. Substituting it in

Eq.(25) and taking into account that the equation has a non trivial solution if its
determinant equals to zero one gets the equation for the eigen-numbers

g e . G
M+G M(A-A-AE ”=ﬁ2+2n.(cos Iy )+ Zsing, )+

27)

+1 +G(smpz-shpl}+%5mpl =0
. £

where p, =2mv, - u,.

For G<«l1, this cubic equation can be solved with the help of the
perturbation theory. In this case two roots are complex conjugated and close to the
eigen-numbers of unperturbed motion:

-1 ; sin Pl i3
A=A} =Ay+G AO :S;HW,_JH.):AU.FE(E# Mo_yeh (28)
5 2isin(@nvy)' ° Ay ! ° 2i

2mivg . ! : :
Here  Ag=e ™o s the cigen-number of the unperturbed motion. The third root

is close to zero (very high damping):
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A,=-Gsinp, . 29)

The damping is determined by the eigen-number modules

]ﬁl,:zl ~ 1+R€(A~;(ﬁlig*ﬂo))=1+ﬁsiﬂ(ﬂvo) CoS(T Vv + 1 )- (30)

One can sce that for a fixed betatron frequency the maximal damping is for

1,  Gsin(nvy)<0

“m(““ﬂ*“1)={—1, Gsin(rvy)>0' s

The optimal phase advance between the BPM and the kicker depends on the
betatron tune otherwise the case without the notch filter where this phase advance
does not depend on the collider tune and should be equal to (n+0.5)m.

For large G (G=1), the solutions of Eq.(27) were found numerically. The
dependencies of modules of eigen-numbers A, on gain values are shown in Figure
3 for the optimal phase advance between the BPM and the kicker in accordance
with Eq.(31). For a small gain, the damping increases with gain and at
G-sin(mv,)<0.1 the asymptotics (29) and (30) are very close to the exact values
of the eigen-numbers. At further gain increase the damping reaches its maximum
and then drops down. We define the damping decrement as the decrement of a
mode having the weakest damping

A=fo; min(-In(|A,])) - (32)

At each collider tune there is the optimal gain value G, when the damping
decrement ). reaches its maximum 2, .. The dependence of G, and i, /f, on the
collider tune are shown in Figure 4. One can see that the maximum decrement
depends slightly on the collider tune and has its maximum =0.47 at v,=0.4 (or at
symmetrical point vy =0.6).

In accordance with the general definition, the betatron tune is bound up

with the eigen-numbers

@)

£ 2w

] i=123.: (33)

so that the real part of v, determunes the betatron tune and the imaginary part
determines the damping decrement A,=-2nf;Im(v,). Without the feedback system,
the tunes are real numbers. The feedback system produces both real and imaginary
parts of the tune shift. For small &, the real part of the tune shift is negligible,
however, with an increase in G the real and imaginary parts of the tune are

15
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comparable. The dependence of real and imaginary parts of the tune on the gain
value are shown in Figure 5 for the tunes v, equal to 0.05 and 0.45.

4.2. Multibunch Feedback System with Notch Filter
In the general case, after amplification the signal from one bunch will also
affect the motion of other bunches due to final width of a frequency band. We will
consider a system of N bunches equidistantly spaced around the ring with the same
intensity. The bunches are numbered by k=0,1...N-1.

As in Eq.(22), we can write the one tumn mapping for the bunch motion
in the lattice

= =i X,z : cos(2mvy) sin(2mv,y) (34)
i sin(2nvy) cos(2nv,)

where X, and P, are the bunch coordinate and momenium, # numerates a tum
number. :

To take into account the feedback system effect we introduce a single
bunch response of the feedback system g (t) so that after the pilot bunch passage

with offset Xy, in the BPM the feedback system will deflect a test bunch in the
kicker:

APy ()=3.(0) X, - (35)

Here 7 is the time between the pilot and test bunch arrivals to the kicker. Because
of the causality, the feedback system response is equal to zero for ¢ < nfd

ET(T)t{ g:)(l') ’

T > —fﬂ,

36
4 L (36)

For 1=0 when the bunch is effected by own signal Eq.(35) ums to Eq.(24). Then
the kick applied to a bunch from the feedback system is

:lP”,ﬁEﬂ g.(mt )X . (37)
m=

Here m numerates all previous passages of bunches through the BPM, X are
coordinates of bunches in the BPM, t,=7/N and T is the revolution time.
We will look for the solution as
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B Zni(v-g)— . 2ri(v-g)— s x
VH*:VHJ'“NHE NEVE N : r:,k= 9 . m=Nn+k. (33)

4

Here g is the mode number. Substituting Eq.(38) to Eq.(37) one has the feedback
sysiein response

G “2ri(v-g) 2
AVP‘*:L;# E g.(mtye =G(v —q}Vx“ , my=[t)T,]. (39)
m==my
Here the differential of momentum AV  is taken in the kicker and the

Py

coordinate qu is taken in the BPM. Thus, the problem of motion of N bunches

under influence of a real feedback system is reduced to the problem of bunch
motion in the idealized system considered in Section 4.1. In this case, one should
change the gain G in Eq.(24) by

“2mi(v-g)

G(v-q)= i g.(mt e s (40)
m=-my

To express G(v-q) through the feedback frequency response we define the
Fourier transformation of g.(t) as

Nmﬂ $ -iwt
g (0)=—=" [g(me ™ du ,
2n
- (41}

3i: s
gr(t)zm :[;gw(f.»:-}ME'i do .

Because of causality: the function g (o) is an analytic function in the lower
complex plane. Substituting Eq.(41) 1o Eq.(40) one has
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mﬁ

=2ri(v-g)
Nfgw(m)elmbmdm=

{ -
G(v-q)=—— e
(v-9) e m;%

w0 ~i(wty-2niT)m,
- fg (@) o dw=
N, ="

-i{wt b—z:-:i_'"};_q}

42)

1-e
=Y g,(@,), W, =(v-g+Nm)w, .
H=—m

To provide the convergency of the summing we slightly shift the path of
integration to the upper complex plane. Rewriting Eq.(27) in new definitions we
have the dispersion equation

Ai -%q(coa(Zﬁ v) +L;_@siﬂuz}+ 1+
(43)

)+ G(v-g)
A

q

+G(v-q) (sinu:-sinp.l sinp, =0 .

Note that now the gain value G(v-g) is the function of the eigen-number
A=e9 and thus Eq.(43) is more complicated than Eq.(27). Similarly to
Eq.(32) we define the damping decrement of the mode g:

Ao minC-In(|Ag ) - 44

For a small gain |G(v-q)|«1 and an optimal phase advance between the
BPM and the kicker cos(mv+y, )=-1, we obtain from Eqs.(30) and (32) the
feedback system decrement of the mode g

A, ~foRe(G(vy-g))sin(nv)=
- (45)
=fysin(r v)Re( 5 gu(mﬂ(vﬂ—qﬂ‘fm)n .

m=—=

For a large gain the solution of the dispersion equations (43) was studied
numerically and will be discussed later.

5. The Collider Transverse Feedback System.

As follows from previous sections the collider feedback system should
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have the maximally possible damping
at low frequencies (0.5-20) kHz, very
small own noise, and also it seems
very useful to have at least a small
damping (A/f;=10"-10") in high
frequencies 1o suppress possible
multibunch instabilities. Although the oo
frequency band of the system can, in T s
principle, be narrow, in reality the
frequency response should be formed
in a wide frequency band (up to 30
MHz) to prevent instabilities due to

the feedback system itself. - +
The first question to be rigure 6. The BPM cross section.

1- vacuum chamber,
2 - BPM electrodes.

bt

solved is the choice of a frequency
range. Although the use of low
frequencies seems very attractive, it
has some serious difficulties. The first onc is a very complicated problem of
suppression of power line harmonics (n-60 Hz). And the second one is a
requirement to provide the beam stability for all 16000 modes. As follows from
Eq.(45), to get the beam stability, a phase shift of the feedback system gain for all
modes should be smaller than z/2, that is, an amplification should not fall down
faster than 1/w. Thus, a necessity of very high amplification at low frequencies
begets a sufficiently high amplification in the whole frequency range of 30 MHz,
i.e., the instability due to the feedback system can not be Landau damped. Thus,
to reach a beam stability, one needs careful forming of the frequency response in
a wide frequency band (0.5 kHz - 30 MHz). Taking into account a high power that
is not a trivial task.

To avoid these difficulties, it is suggested 1o use a high frequency system,
Because of frequency transfer (as can be seen from Eq.(45)) the frequency band
can be shifted by the bunch frequency Nf;=60 MHz. In this case the frequency
band width of 30 MHz will be shifted to high frequencies (45-75 MHz) where we
can easily form the required frequency response.

3.1. Frequency Response of the Feedback System

To determine the frequency response of the feedback system we consider
an unbunched beam circulating in the ring with current /, and a harmonic
displacement from the closed orbit at the BPM location
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x()=xe' . (46)
Then, as follows from Egs.(21) and (35), the beam deflection will be equal to

A e S 1dt X
P, e 1 X6 —mtgt(!) Od =g, 0 (47)

£ B1B2ﬂ ENP 1,#[31132 ,

(compare with Eq.(14)). Here N, is a number of particles in one bunch, and we usec
Eq.(41) to express g(t) through g_.

From the other hand, for the strip line BPM and ultrarelativistic particles
the differential voltage induced by the beam on BPM plates is

X,
Uppy=2i sin(wL/c) Jﬂfzm, | (48)

where L and a are the BPM length and radius of aperture and Zypy is the BPM
coupling impedance. Its value is determined by the BPM wave impedance p

(usually 50 Q) and the angle width of BPM plates o visible from the BPM center
(see Figure 6):

L 2sin(e/2) 3
A

ZHPH

(49)
The coupling impedance Zg,, reaches its maximum value of 2p/n when each
plate takes up a half of the full angle. We will use ot =50° and p=12 €2 in below
estimates.

The kicker deflects the beam by the angle

P oeva ol "
where £U, is a voltage amplitude on each of BPM plates, L and a are the kicker

plate length and the radius of aperture. We suggest here that the BPM and the
kicker have equal apertures and lengths.

Taking into account the total amplification of the system K(w), we obtain
the beam kick

Ap, by delZy, J K(w) Sillz(ml.,:’c)x
wlfc 5

Comparing this equation with Eq.(47), we finally have the frequency response of

(31)

P cpa*®
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the feedback sysiem

4eLZyp\ J o K(0) sin*(w Ljc) BB, (52)
cPaz wlfe G

g (w)=i

5.2. Analyses of Feedback System Stability

For the analyses of the feedback system stability and damping we &
compiled the feedback system response from responses of BPM, amplifier, delay
line and kicker:

8,(©)=8ppp(©0)8 ()8 41 (0)8sii(®@) (53)

We modeled the BPM and the kicker as ideal strip lines whose frequency
TCSPONSES are

Eappd@)=i"sIn(®Lgp, JC) (54)
for the BPM and

(35)

_ for the kicker, where Lypy and L, are the BPM and kicker lengths. We choose

these lengths of 125 cm to maximize the frequency responses on the central
frequency of 60 MHz.

Because the general delay was taken into account in the equations of
motion, we consider here only the deviation of delay time from the one turn delay
so that

-lwt A5
Sde:uy(m)=€ “iddgy (56)
The frequency response of amplifier was modeled as “
et l
pisdilg Y : e (57)
W+ WLy, HW 1w
1 2 l+fQ E-I' {') f’
W, O

for a narrow band system and as
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Figure 7.

Diagram of betatron
motion stability;
v=0.395,

Q=3000 (Af=20 kHz),
af=-1.5 kllz,

tdcluyﬂ'ﬁ ns,
£1=50 Mz, £5=70 MI1z,

g0=U.?6.

Figure 8.
Dimensionless dec-
rements }JJ::, for all

betatron modes, and
the real part of the
feedback system gain
G(w) (solid line) for the
parameters of Figure 7.

Figure 9.

The real part of the
feedback system gain
G(w) (solid line), and
the real part (dotted
line) and module
(dashed line) of
frequency response for
the parameters

of Figure 7.
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Figure 10,

Diagram of betatron
motion stability;
v=0.395,

Q=300 (Af=200 kHz),
of=-16 kHz,

tdﬂla}f‘s ns,
;=50 MEz, £,=70 MHz,

g,=0.70.

Figure 11.
Dimensionless dec-
rements lffﬂ for all

betatron modes, and
the real part of the
feedback system gain
G(w) (solid line) for the
parameters of Figure 10,

Figure 12.

The real part of the
feedback system gain
G(o) (solid line), and
the real part (dotted
line) and module
(dashed line) of
frequency response for
the parameters

of Figure 10,
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Figure 13.

Diagram of betatron
motion stability,

v=0.395,

Q=2, Tde]a},rz'3-9 ns
f1=50 MHz, f,=70 Ml 1z,

£5=0.66.

Figure 14. _
Dimensionless dec-
rements M/, for all

betatron modes, and
the real part of the
feedback system gain
G(w) (solid line) for the
parameters of Figure 13.

Figure 15.

The real part of the
feedback system gain
G(w) (sohd line), and
modules of frequency
responces for the
feedback system
(dashed line) and the
amplifier (dotted line)
for the parameters

of Figure 13.
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Figure 16.

Diagram of betatron
motion stability for the
bunch-by-bunch
feedback system;
v=0.395,

Tdelay=-7.67 ns

f1=90 MHz, {,=90 MHz,

g£,~4.0

Figure 17.
Dimensionless dec-
rements A/f, for all

betatron modes, and
the real part of the
feedback system gain
G(w) (solid line) for the

parameters of Figure 16,

Figure 18,

The real part of the
feedback system gain
G(w) (solid line), and
modules of frequency
responces for the
feedback system
(dashed line) and the
amplifier (dotted line)
for the parameters

of Iigure 16.

(58)

i Y @
8,(©) 30{ mlﬂim) (wzﬁm)
for a bunch-by-bunch system. Here , and w, are the frequencies of low and high
pass filters, o =Nw,+2n-0f and Q, are the resonance frequency and the quality
factor of a resonance circuit.

Four different cases were analyzed. They are: two narrow band systems
with frequency band widths equal to 20 and 200 kHz, a wide band system with
octave frequency band (60 MHz) and a bunch-by-bunch system. For all cases the
general amplification g,, the detuning of the resonance circuit &f and the time
delay t,,,, were fitted to obtain the maximum damping: the first for the betatron
sidebands with the lowest frequencies (fy[v,]=1359 Hz and fy(1-[v,])=2082 Hz),
and the second for all other modes. We also choose the fractional part of the
betatron tune [v,]=0.395 where the maximum damping can be obtained (see Figure

4).

The eigen-numbers of all the betatron modes are plotted on diagrams of
betatron motion stability (Figures 7,10,13 and 16). As was shown in Section 4 each
mode has three eigen-numbers, thus one can see three separate islands on each
diagram. A total number of eigen-numbers is 3N (=50000 for the SSC). In
distinguish of bunch-by-bunch system, the narrow band systems have a large
variation in frequency response at different frequencies what determines a rather
large size of islands. It is also important that the narrow band system damping
strongly depends not only on frequency (see Figures 8,11,14 and 17) but also
produces a large tune spread in betatron coherent motion of different modes. The
unperturbed eigen-numbers (which are not seen in Figures 7 and 10) are shown by
diamonds on the diagrams of betatron motion stability.

In Figure 8 one can see that even the feedback system with a frequency
band of 20 kHz has comparatively large damping for the highest mode
(Mf=3-107) which frequency is 30 MHz. The system with a frequency band
width of 200 kHz has already sufficiently high damping decrements to damp all
multibunch instabilities and an emittance growth. Although the system with an
octave frequency band width (see Figures 13-15) has a rather small variation of the
damping on frequency, the size of islands on the diagram of betatron motion
stability is almost the same as for the narrow band systems. The feedback system
frequency responses are shown in Figures 9, 12,15 and 18. It is necessary to note
that the frequency responses of the BPM and the Kicker strongly change the total
frequency response for wide band systems and should be taken into account
without fail.

Figures 19 and 20 show time responses of the feedback system for the
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Figure 19. Time response of the feedback system for the parameters of

_ Figure 13.
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Figure 20. Time response of the bynch-by-bunch feedback system with

parameters of Figure 16.
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cases of the octave band width system and the bunch-by-bunch system. One can
see that an octave bandwidth is not sufficient to suppress coupling between
bunches.

5.3. The Emittance Growth due to Feedback System

In Section 3.2 we obtained the emittance growth rate due to feedback
system noise for the case of the bunch-by-bunch system where we neglected a
dependence of damping decrement on frequency and suggested a zero bunch
length. Now we will obtain the emittance growth rate for the general case of the
multibunch feedback system and final bunch length.

So as the noises at frequencies of different modes are independent, each
of them independently contributes to the emittance growth. To take into account
the dependance of damping on frequency one should replace g by 20 Jfo in Eqgs.(9)
and (10) and rewrite them as

ZE: N-1 .
(dE)szwu ¥ 3.3

\dt An % ke 40Yfs +3.38

+67)Sm(m i) s (39)

where w,=0y(v-q-Nk), S (@) is the noise spectral density of the kicker angle
kicks and A, is determined by Eq.(44).

In addition to the above considered case of emittance growth, where the
noise kicks affect a bunch as a whole (rigid bunches) there is another mechanism
affecting the emittance growth. In this case a change of kick value along the bunch
excites the bunch quadrupole motion in phase space. This motion is not affected
by the feedback system, therefore the emittance growth excited by these kicks is
not suppressed by the feedback system as well. Becausc the frequency band width
is larger than the revolution frequency one can consider any two sequential kicks
of the bunch as independent. Then the emittance growth rate is equal to!®

where
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Kt T g
e 2n1, ! exp('?) (0r)-6Fdt=
; 61)
211:1: _f exp( {ez(t)} "2<ﬁ(t)ﬁ))dt

is the r.m.s. differential kick angle, ct, is the longitudinal bunch length and

27:1:5

f exp( -Efi) 0(r)dr (62)
e Ty

is an average beam Kick for one passage and the angular brackets denote the

averaging over many passages. Substituting Eq.(62) to Eq.(61), taking into account
the connection between the noise correlation function and its spectral density

(00 =K(t 1)< [ S (@)™ P (63)

and integrating over t, one has the r.m.s. differential kick

80)=[S,,(0)1-e Mo (64)

and finally the emittance growth rate due to the feedback system noise

S5, 5
_BogE? E . 33

air 423 +3.38°

B w i3 2
o f S isd( @)1= ")

07 S noise( @)+ (65)

For thorough design of the feedback system the main source of the noise
is the thermonoise of preamplifiers
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e (66)
v

where A=1 characterizes the excess of preamplifier noise over thermonoise of the
input impedance p. Taking into account the feedback system amplification and
kicker transfer function, we obtain the spectral densitv of the angle kicks of the
kicker

S

rmr'.s'e(

A ;Slﬂ (muc)lxu( )!ZAkTp : (67)
E%a? (wljc)*

The feedback system noise is the most dangerous for the bunch-by-bunch

W)=

system. Figure 21 shows the dependencies of the emittance growth time

1d
A

on damping decrement of the mode with the lowest frequency for the bunch-by-
bunch system and the narrow band system with a frequency band of 200 kHz. It
is suggested that for both systems: A=2, 7=300 K, p=50 Q, p,=p,=450 m, a=1.7
cm, E=20 TeV and £=0.0036 (4 IP). The other parameters of the systems are
shown in captions to Figures 16 and 10, respectively. We use here the constant
A equal to 2 because of the noise from the previous turn is added to the noise of
the current turn in the notch filter that doubles the noise spectral power. If for the
narrow band system the contribution of the second addend in Eq.(65) is negligible
in comparison with the first one, then for the wide band system the second addend
is much larger than the first one. To demonstrate that, the emittance growth time
for zero bunch length and the wide band system are shown in Figure 21 as well.
Although the differcnce in the frequency band widths is very large (=200), the
difference in emittance growth times is much smaller (=8 at large damping). This
is due to different behavior of damping and noise spectral density at high
frequencies in the narrow band system (compare Figures 12 and 18). For a high
frequencies the damping is proportional to the real part of the feedback system
gain (=Aw™), but the noise spectral density decreases much slower than the gain
itself (=Aw). Although the r.m.s. Kick value is much larger for the wide band
system the feedback system strongly suppresses the emittance growth rate for all
harmonics. so that the integral effect i1s only slightly higher than for the narrow
band system. One can see that even in the case of the bunch-by-bunch system the
noise of the feedback system can be done small enough so that the emittance
growth is small yet in comparison with its damping by the synchrotron radiation
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Figure 21.  Dependence of the emittance growth time on damping decrement:

solid line - the wide band feedback system,
dotted line - the wide band system for zero bunch length,

dashed line - the narrow band feedback system with a frquency
band of 200 kHz.

34

(12 hour). Although the required level of the feedback system noise is obtained
much easier in the narrow band system, one can conclude that the thermonoise of
the amplifiers does not impose principal limitations on the feedback system design
even for the bunch-by-bunch system.

Discussion

In our numerical examples we used the fractional part of the collider tune
equal to 0.395 which is close to half integer resonance. In comparison with tunes
located closer to integer resonance it has some advantages:

1. Lower required amplification to get the same damping (see Eq.45) and,

consequently, smaller feedback system noises.

The maximum possible decrements can be achieved (sce Figure 4).

Smaller spectral density of the extemnal noise (Its spectral density drops

very quickly with frequency increase) and, consequently, smaller emittance

growth due to external noises.

4. For the narrow band system, the feedback system produces the coherent
tune shift of some modes to the nearest integer or half integer resonance
(see Figure 10). If the unperturbed tune is close to half integer resonance,
there does not exist a mode which coherent tunes are close to integer
resonance. What decouples the low frequency ground motion and coherent
betatron oscillations.

Table 1 shows the parameters of the above discussed feedback systems
for the case where the feedback system amplification was chosen to obtain the
maximum damping for the lowest harmonic.

One can see that the choice of a frequency band of about 200 kHz allows
one to obtain reasonable decrements within the whole frequency range.
Nevertheless, there are two unclear questions which should be studied before
accepting the final choice. The first is the study of an influence of gaps between
batches on damping and stability of the narrow band system, and the second is the
study of beam dynamics for the modes whose coherent frequencies are close to
hall integer or integer resonances (compare Figures 10 and 16).

A large number of bunches and the requirements to obtain the ultimate
damping and the minimum emittance growth due to feedback system noise
determine high accuracy and quality of the feedback system, i.e., the BPM
resolution should be better than 1 gm, the accuracy of the delay line should be
about 1-2 ns (It is about (3-6)-10 times smaller than the revolution time). Thus,
although the feedback system can be build from the general point of view, a lot

I~
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of complicated technical problems should be solved for successful feedback system

operation.
Table 1
= e —

Reference to Figure Fig.7 Fig.10 Fig.13 Fig.16
Central frequency [MHz] 60 60 60 60
Frequency band width(FWHM) 20 kHz | 200 kHz | 47MHz | 75MHz
Damping decrement A/f, for: 1

mode with lowest frequency(1.36kHz) 0.374 0.457 0.466 0.46

mode with highest frequency(30MHz) M0 271 0.08 0.4
Amplification, K *10° 6.34 6.14 5.88 6.24
Emittance growth suppression for

extern.noise at 1.36 kHz and 4 IPs 1060 1090 1090 1090
Emittance growth time [hour] 2.810° | 3.4-10' 6300 3800
R.M.S kick at equilibrium [nrad] 7-10 2:10° 2:10° 3107
Noise power per kicker plate at

equilibrium [mW)] 0.4 4 430 770
Effective BPM resolution [tm] 0.002 0.005 0.05 0.07
Peak power for damping of 5 um

betatron oscillations [kW] ~2 ~2 ~2 ~2

From the Table one can see that after beam damping the output power
determined by the feedback system noise is rather small for all considered systems.
Really, the maximum power should be determined by accuracy of the notch filter

_subtracting and by required dynamic range of the feedback system and is almost
the same for all the systems.
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