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Regge Calculus in the Canonical Form

V. M. Khatsymovsky

Budker Institute of Nuclear Physics,
Novosibirsk 630090, Russia

(3+1) (continuous time) Regge calculus is reduced to Hamiltonian form.
The constraints are classified, classical and quantum consequences are
discussed. As basic variables connection matrices and antisymmetric area
tensors are used supplemented with appropriate bilinear constraints. In
these variables the action can be made quasipolinomial with arcsin as the
only deviation from polinomiality. In comparison with analogous formalism
in the continuum theory classification of constraints changes: some of them
disappear, the part of I class constraints including Hamiltonian one become 11
class (and vice versa, some new constraints arise and some II class constraints
become I class). As a result, the number of the degrees of freedom coincides
with the number of links in 3-dimensional leaf of foliation. Moreover, in empty
space classical dynamics is trivial: the scale of timelike links become zero and
spacelike links are constant.

© Budker Institute of Nuclear Physics

1.INTRODUCTION.

Regge calculus [1] attracts much attention in connection with possibility
to construct quantum gravity theory free of ultraviolet' divergences. Such
the possibility is usually connected with discrete nature of the set of field
variables. The latter are link lengths of flat tetrahedrons forming piecewiseflat
Regge manifold. To introduce canonical quantisation we need continuous
time Hamiltonian formalism. It was studied in a number of works [2]-[7].
My strategy is that of refs.[3, 8], in which required formalism is the limit
of 4-dimensional Regge calculus while distances between successive spacelike
leaves tend to zero. The main problem is an adequate choice of variables
allowing one to describe in the continuous time limit all the degrees of
freedom of an arbitrary Regge manifold and to pass to Hamiltonian formalism
in the simplest way.In refs. [11] tetrad-connection variables were used first
considered by Bander in ref.[12]. In [11] formulation of Regge calculus was
suggested analogous to Einstein-Cartan formalism in the continuum general
relativity (GR) and, by passing to the continuous time limit, Lagrangian was
found, although not for quite general Regge manifold. Using these results
some trivial low-dimensional models were considered in refs.[13] illustrating
possible versions of arising finite quantum theory.

In the given paper Einstein action for arbitrary Regge manifold is
considered in the continuous time limit and reduced to the canonical form.

2.DESCRIPTION OF THE SYSTEM.

Our main object is Regge manifold or simplicial complex [15]. The
vertices or null-di- mensional simplices o° will be denoted by capital letters
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A, B, C,...; n-simplex o" (unordered) will be denoted by also unordered

sequence of it’s n + 1 vertices: ¢ = (A Aart) N,Ed} is the number of
n-simplices in d-dimensional manifold (may be, infinite). In particular, the
number of n-simplices meeting at given m-simplex o™ will be denoted as
N{D(c™). Now lgcal frames are defined on 4-simplices ¢* = (ABCDE).
In these frames a,b,... = 0,1,2,3 are vector indices; metric is 7ap =
diag(~1,1,1,1) and antisymmetric tensor €*°°* corresponds to g 4.
Ao B, Ax B are scalar and dual products of two matrices, respectively; *B
is dual matrix:

AoB ¥ %A“”'Bab
AxB = Ao("B) (1)
* 10 der 1 a

B b = i{. bchcd

In the local frames the following elements of SO(3, 1) are defined: connection
matrices Qapcp) on 3-simplices (ABCD) and curvature matrices R(apc)
on 2-simplices (ABC). Besides, also antisymmetric tensors (bivectors) v(apc)
are defined on 2-simplices: two vectors ,1 form the triangle with bivector

e fubtdff"lg: (2)

whose norm |v| %l (v o v)!/2 is twice the area of the triangle.
Einstein action for Regge manifold is written in the form [11]:

S = z |U[Aﬂci arcsin s o R(ABC]- (3)
(ABC) [vcasc)

Here function arcsin gives angle defect on a triangle in terms of curvature
matrix K. The latter is product of connection matrices:

3 £ r
RaBc) = Q(Tﬂﬂgﬁl} s Q(?EEE}‘ (4)

where gapc)p = 1 is sign function, whose argument is pair tetrahedron
(ABCD) - triangle (ABC). The only requirement imposed on this function
is consistency of egs. of motion for {,s which is equivalent for particular
(s to closure condition for 2-surface of 3-face ¢2. This condition includes
9-face bivectors rotated by connection matrices required to transform these
bivectors to the same frame. In particular, in the neighbourhood of flat space
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) = 1 it takes the form

E(ABC)DV(ABC) t+ E(DAB)CY(DAB) + E(CDA)BY(CDA) T £(BCD)AY(BCD)
=0(Q-1). (5)

Consistency of such the conditions for 3-faces of 4-simplex (ABC DFE) sharing
common edge (AB) requires that

E(ABC)DE({ABC)EE(ABD)EE(ABD)CE(ABE)CE(ABE)D = —1. (6)

Next some constraints on bivectors v are required ensuring their tetrad
structure. The difficulty is that neighbouring bivectors well may be defined in
the different frames; namely, a 4-simplex (ABC Dy Ey) exists for each (ABC)
where v 4pc) is defined (to reflect this fact let us introduce the more detailed
notation

Y(ABC) = Y(ABC)DoE, (7)

). Therefore it is natural to consider for each (ABC) the set of all (ABCDE)
containing this triangle and to define a priori arbitrary corresponding
vaBc)pEe- Now, what conditions should be fullfilled in order that this set
of bivectors would correspond to some Regge manifold where these bivectors
are given by (2)7 First, consider 4-simplex (ABCDE) and a vertex A in it.
The triangles sharing A satisfy relations on dual products of bivectors the
same as those for bivectors in the continuum theory at a given point [14]:

vABC)DE * Y(aBc)pe =0, perm(B,C, D, E) (8)

v(ABC)DE * v(aBp)cE =0, perm(B,C,D,E) (9)
E(ABC)DE(ADE)CY(ABC)DE * Y(ADE)BC+

E(ABD)CE(ACE)DY(ABD)CE * YacE)pp =0, perm(B,C,D,E).(10)

Second, the sum of bivectors in any tetrahedron is zero:

E(ABC)DV(ABC)DE + €(DAB)CY(DAB)CE + E(CDA)BY(CDA)BE
+eBepyav(BCDYAE =0 (11)

in any of two 4-simplices (ABC DE) sharing the tetrahedron (ABCD). Not
all of the relations (8) - (11) are independent ones since modulo (11) validity
of (8) - (10) at any vertex A means their validity at remaining three vertices.
If (8) - (11) hold, tensors v in the 4-simplex are bilinears of it’s edges just as
analogous continuum theory tensors are tetrad bilinears.
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Finally, third, we need conditions ensuring unambiguity of linklengths
recovered from v in the different 4-simplices. In the continuum theory such the
problem did not exist since the tetrad was local function of the bivector. Now

we can require continuity of scalar products of bivectors on 3-face (ABCD)
shared by 4-simplices (ABCDE) and (ABCDFY):

def

5(”{.45(:}1} o U(ABG)H) = VY(ABC)DE ° Y(ABC)DE
—vcaBc)DF © v(aBc)pr = 0,perm(4, B,C, D), (12)
ef
A(v(aBc)D © Y(ABD)C) = V(ABC)DE © Y(ABD)CE
—~vaBc)DF © YaBp)cF = 0,perm(A, B,C, D). (13)

By (11) there are 6 such independent conditions for each 3-face. This number
is sufficient for continuity of it’s 6 edges. Egs. (13), e.g., are sufficient. But
the system (13) (modulo (8) - (11)) is still highly reducible: it is sufficient to
require continuity of the edges of a triangle on only all but one of tetrahedrons
meeting at this triangle to get continuity on all such tetrahedrons.

In terms of only linklengths continuous symmetries of our system are
absent since, generally speaking, any change of linklengths means change of
geometry. Extension of the set of variables by inclusion of connection in our
case is compensated by symmetry w.r.t. SO(3, 1) rotations of local frames.

Thus, our formulation is characterised by action (3) and by the system of
constraints (8) - (13) of which we shall below extract irreducible ones.

3.CONTINUOUS TIME.

Here we derive the Lagrangian. In fact, it is generalisation on arbitrary
Regge manifold of the result of [11] written in bivector notations.

To pass to the continuous time let us divide the set of vertices of Regge
manifold into 3-dimensional leaves numbered by a parameter ¢ which we
call time and tend the step df between the leaves to zero. The points of
the leaf will be denoted by indices i, k, {,.... Let us assume the following
consistency condition: each 4-dimensional simplex is formed by vertices of
only two neighbouring leaves and length of one of it’s edges is O(df). This
requires for each vertex i at the leaf t occurence of it’s images it in the leaf
t 4+ dt and i~ in the leaf ¢t — di such that linklengths of (ii*) and (i71) are
of the order of df. Any such 4-geometry is formed of given 3-leaf as follows.
Let us choose any vertex ¢ and consider it’s star in 3-leaf, i.e. the set of all
the simplices of the leaf containing this vertex. Connect the image i* to all
the vertices of this star. Then analogous procedure can be repeated with
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the obtained "mixed” leaf (where vertex i is replaced by it) and with some
another vertex k. As a result, the leaf arises where two vertices are taken at
t + dt and others are at ¢. In analogous way all the rest of vertices can be
shifted in time untill we get the leaf all points of which are taken at the time
t+dt. It is clear that each thus obtained block of 4-geometry filling the space
between the leaves ¢ and t 4 di is specified by the consequence of the above
defined time shifts of vertices. It is remarkable that our Lagrangian will not
depend on such the consequence.

To pass to the limit dt — O let us choose sign function £4pc)p
conveniently. In 3-dimensional notations put

ea+ini = —1,  Eurni+ = +1 (14)

(this unify the form of the kinetic term)

Further, it is convenient when going to the continuous time to assume
the continuity condition: if (A]_Ag x .An+1) — (B; .. -Bn+1) at dt — 0,
then 94,45...401:) = 9(B1Ba..Baga) for a quantity g defined on n-simplices.
(Convergence of one simplex to another is understood as convergence of
corresponding vertices A; — B; and of vectors of links (4; A;) and (B; B)).

In particular, let us choose for sign function

E(i+kD)m = E(ikDmy  E(ikl)ym+ = E(ikDm- (15)

Also denote >
Eirl = E(it+ik)l- (16)

Then consistency condition for sign function (6) is equivalent to the following
OIlEe?

Eiki€ikmE(ikmE(ikm)l = —1. (17)

Connection on spacelike tetrahedron at df — 0 should describe parallel
vector transport at infinitesimal distance in time direction and thereby it
takes the form ’

Qeirim) = 1+ firm)dt. (18)

The same can be written for diagonal tetrahedrons with some vertices shifted
to the next time leaf. For continuity reasons corresponding antisymmetric
matrices f do not change at such shift (as those describing vector transport
at infinitesimally close points and at infinitesimally close directions). But this
is even inessential since the resulting Lagrangian turns out to contain ([11])
only the sum h;zim) of f’s over all four types of tetrahedrons - (tkim) and




it’s diagonal images with different number of vertices shifted to the next time
leaf; for example

hiikim) = fiikim) + fikim+) + Jpitm+) + fipti4m+), (19)

where antisymmetric matrix h(irim) i8 an analog of the continuum GR
connection wy.

The tetrahedron connection is the discrete analog of continuum connection
for transport orthogonal to the tetrahedron. Let us denote timelike
tetrahedron connection as

Qi « Qei+irn (20)

(and the same for tetrahedrons differing by time shifts of k, 1).
For bivectors we denote

def def
Nik(im)dt = V(i+ik)lm>» F(ikl)m = V(ikD)i+m (21)

Substituting the limiting form of variables into Regge action we get
the Lagrangian where analogs of the terms mw, hDon® and naR® of
the continuum theory [14] can be viewed denoted below Lg, La and L,,
respectively. Besides, some new terms appear due to the difference of limiting
curvature matrices R on spacelike and diagonal triangles from unity’. Indeed,
write out the finite part of curvature matrix Ry if, e.g., triangle (ikl) is
common 2-face of the timelike tetrahedrons (i~ ikl) and (ik*kl):

Eikt)i— yF (ikl)k
Rery = Q7500 Q(Ekﬁ:]kl;— +0(dt) = Q:‘r(u)ﬂk{ﬁ) + O(dt). (22)

Normals to the tetrahedrons (i~ikl) and (ik*kl) are, generally speaking,
different, just as vectors of links (i~i) and (kk*) are (the latter being
analogs of shift-lapse functions at different points), so Q;k) and Qi) do
not necessarily coincide. These matrices, however, are not quite independent
as follows from the equations of motion for connection; relation between
themn will also ensure finiteness of the Lagrangian. Indeed, at the infinitesimal
variation

8y = i) Lieiydt, wz(;,-} = —Wg() (23)

1The closure of these R to unity would be natural to assume for their contribution to
L be finite [8]. However, the finiteness can be achieved at noninfinitesimal R — 1 as well
on condition that contributions of neighbouring triangles cancel each other, just as in this
work.

o

t

. 1: Infinitesimal 3-prism

finite addends to the Lagrangian will arise only from potentially infinite terms
(contribution of the triangles with noninfinitesimal area and defects). There
are two such terms containing {2;(;;) - contributions of Rk and Rip+p.
Resulting variation of L is linear in wy(;) and leads to a constraint on 2, .
Permuting i, k, | we get the system which is solvable [11] and gives

Qiceny = Qi exP(ﬁf’i(H)W(im) + @ik *Tf(ikr])a (24)

where @i(kr), "@i(k1) are parameters. Noninfinitesimal contribution of (ikl)
into action (and thus infinite one into L) is proportional to ¢y — di(an)-
Contributions of diagonal triangles differs by cyclic permutations of 2, k, |
so that the sum vanishes, e.g. (see Fig.1)

Pr(iiy — Pikn) + Puik) — Pri) + Dirny — Pagix) =0 (25)

Important is that these differences are to be multiplied by close up to
O(dt) areas of images of (ikl). In the next in df order to get finite terms
in the Lagrangian (below denoted as Ly) one should take into account

infinitesimal area differences. The latter depend on n, the lateral (timelike)
2-face bivectors.




The resulting Lagrangian reads

LRegge - Lﬁ+Lh+Ln+L¢ (26)
L = ZW(:'H}DQE;H)Q{EH] : (27)
(iki)
Ly = Z h(ikim) ©
(ikim)
‘Ei n _'ﬁi n
Z Eifﬂ)mﬂ{fk’;l}} “(f’“)n(mg)”}_ (28)
cycle permikim .
def. 1+¢
(6 & ==
. M
O — n;g arcsin o Rix 29
;I bl |ﬂ.;k| ( )
(R = Q- Wiy Gk = EGR 1 = —EGk 1)
Ly = “Zf(im)mﬂ Z EiklPi(ki)Nik(Im) (30)
(ikl) permikl

(entering last equation scalar products T(ikl)ym © Nik(im) do not depend on
m due to the further considered continuity of scalar products of bivectors).
Appearing here in kinetic term bivector ;1) 18 T(iknym at m = m_(ikl), i.e. it
is bivector of a triangle (ikl) defined in the one of two tetrahedrons (ikim4.)
with the face (ik!) in 3-leaf whose vertices my (ikl), m_ (ikl) (functions of
(ikl)) are defined according to eirnm, = 1. We shall also write w4 or
simply w4+ for corresponding bivectors. Bivector n;i is njx(m) for some (Im).
Thus, 7., £ are dynamical variables.

For varying in ¢, "¢, Q2 let us introduce matrices U = exp(¢7 + *¢ *7), so
that { 4

; = {2: . — Qo — o .
Qo = QuenylUseny, ¢ [l e U (31)

It 18 convenient to treat {2, U as matrices of general form and take into
account the conditions of orthogonality and required dependence of U/ on
x with the help of Lagrange multipliers by adding to Lregge the following
terms:

Legt = ZB(:‘H)“(QLH}Q&H]_I)
(ikl)

i(ED)
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+ Z My 0 (U:'L:)Ui’{kf} ~1). (32)
i(kD)

Lagrange multipliers are symmetric (B, M) and antisymmetric (P) matrices.

It remains to add to Lpegge with the help of Lagrange multipliers
constraints on bivectors (8) - (13) where we shall pass to the notations
m,n and extract irreducible constraints. Conditions on the dual products
v * v! where vl is v or v’ result in the constraints = % 7, x*n and n *nl.
Since algebraic sum of 7 in the tetrahedron in 3-leaf is zero, there are 6
independent constraints 7 * #" in the tetrahedron. The number of constraints
7*n and n*n' is 8 and 6, respectively, in the tetrahedron at each vertex
whose shift-lapse vector form given n’s.

The closure condition (11) for 3-leaf tetrahedrons reads

EGRDMT(iklym + E(mik T (mik)l + EAmi)k T(Imi)k + E(kim)i T(eim)i = 0. (33)

For the timelike tetrahedrons conditions (11) allow us to express variations
of bivectors 7 due to time shift of any vertex of 3-leaf in terms of bivectors
n. These conditions were already used to express variations of v appearing
when finding L.

Subtracting from the number of components of =, n (which is QGN:EE])
the number of constraints (33) and of those of v * v! type gives

28N (3 (34)

for the number of 4-prism parameters. This is natural since any 4-prism
is defined by 22 linklengths; in addition, there are 6 rotational degrees of
freedom.

Continuity conditions for scalar products (12) and (13) also take different

form on spacelike and timelike 3-faces. Namely, continuity on spacelike

(and diagonal) faces means constraints with derivatives, whose existence
might change dynamical content of theory apart from being simply analog
of continnum GR. Fortunately, as it is proved below, given dynamical
constraints are consequences of the equations of motion for
Lagrangian Lpegge and can be omitted :

For example, consider continuity of the values like vov! on 3-face (ik*im)
(see Fig.2). .
The difference between bivectors of close spacelike (diagonal) 2-simplices in
the same frame on shifting the vertex &

def
Dimrnym/dt = (Vr+iyem = V(rtye+m )/ dt
= EEliMEkl(im) = Ekil BEi(Im), (35)
11
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;+

m

. 2: Diagonal 3-face (ik*tlm) - common for 4-simplices’ (ikk*Im) and
(ik*+ 11+ m).

which is an analog of covariant derivative (in fact, already used when finding
Ls). The difference of bivectors of the same 2-simplices in different frames
(an analog of usual derivative)

def
Ok T(ikl)ym = U(ik+i+)kem — V(ikl)k+m- (36)

The continuity conditions connect éx and Dr:

TGeDm © (GiTGenym — Dimgrym) = 0, perm i, k, [ (37)
Titm)k © (8imGenm — Dimirnm)
+mGkenm © (GimGimk — Dimaim) = 0, perm 4, k, L (38)
However, ém(iziym enter equations of motion for Lpegge only in the form
of full derivative (and for such m that gurym = —1)
Taendt = (6 + 8 + &) m(irn. (39)

Therefore constraints (37), (38) are equivalent to relations between 7 and
Dﬂ'(;k;) = (D;' + D + D;)ﬂ',—:,*ﬂ):

T(iklm © (T(knym — Drgenfdt) = 0 (40)
12

(D?T(;H)m/dtz E E:’H”ik{lm]):

permikl
T(itm)k © (T(iktym — DT (ixnym /dt)
+7(ik0ym © (TGmx = DT@mp /dt) = 0. (41)

Equations (40), (41) were earlier said to be consequences of the equations
of motion for Lagrangian Lpegge supplemented with the rest of constraints
on bivectors (without derivatives). Indeed, (40) at euriym = —1 arises
immediately from Lpegge at the following variation of connection type
variables:

Qurry — Qe expEarnmirn)s
Giery — ik — EGikr), perm i, kL. (42)

Namely, the constraint (40) turns out to be added to Lagrangian multiplied
by —&(ik1). Further, there is area continuity condition 17 ietym_|? = |7Genm,]*
among the scalar product continuity constraints. Differentiating it will lead
to (40) also at €(ignym = +1. Besides, in the nondegenerate Regge manifold

Nf} > N%a} (this follows from simple combinatorial discussion with taking
into account the fact that each edge is shared by no less then three 2-faces).
Therefore all the links in 3-leaf and, in turn, scalar products of different
bivectors 7 can be expressed through triangle areas. Corresponding relations
of the type ron’ = f(|r]) should follow from the below written irreducible set
of linear and bilinear constraints on bivectors 7, n corresponding to Regge
manifold. Since we already know how to differentiate areas, using these
relations will give derivatives d(x o #’)/dt in terms of 7, n. The obtained
relations are purely kinematic ones valid for arbitrary Regge manifold and
therefore these are no else than (41).

Thus we have shown that kinematic constraints with derivatives (40),
(41) follows from equations of motion for Lagrangian supplemented with
constraints without derivatives and should be omitted.

It remains to separate out irreducible conditions of continuity of scalar
products (12), (13) on timelike 3-faces. In 3-leaf this corresponds to continuity
on (spacelike) triangles. On the triangle (ikl) shared by tetrahedrons (ikim),
(ikin) we have for the bivectors of timelike and spacelike triangles meeting
at vertex i

def

A(TGry O T(GR) = T(ikl)m © T(ikhm — T(iklm © Txnm =0,  (43)
.ﬁ.(ﬂ'[;ﬂ) o ﬂ,‘k) = U, (44)
A(mrn © mil = 4, (45)
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A(ﬂ,‘k o n,-;,.) = ﬂ, (46)
ﬂ.(ﬂ.“ o n.,-;) = [], (47)
ﬂ(ﬂ{k O ﬂ“) R (48)

By permutations of #, k, [ we get additionally 5 analogous equations at
vertices k, [ (equation (43) remains unchanged). Continuity of edges of
tetrahedron (éit*kl) and, in particular, of the triangle (ikl) follows from (43)
- (48). But continuity of the triangle (ikl) follows also from the constraints
at vertices k, I as well, that is, some constraints are superfluous. In any
case, it is sufficient to keep constraints A(x o n) at only one vertex of each

triangle which gives their full number 2N2{.3). The latter is also abundant:
the constraint A(m(zry o nix) at all others fullfilled expresses continuity of
the length of (ik) in 3-leaf which should be stated on all but one triangles
(ik1) meeting at this edge. Their full number thus becomes 2N{¥ — N, The
constraint A(n;zon;;) can be associated with length continuity of edge (iit).
It suffices to impose it on Nga}(i) — 1 meeting at ¢ triangles (ikl). Summation
over vertices gives 4N§3) - Néa) for the number of independent constraints of
this type. Finally, constraints A(n;; o n;;) are given on all but one triangles
meeting at (ordered) 1-simplex (ik); their full number is GNEEI' - 2Nfﬂ). The
number of constraints A(min o W(ikn) i8 N}F’. As a result, the full number

of constraints of the type of A(vovt) is 22N> — 3N® — N® (with taking

into account that N;‘rﬂ} = 2N3(3)). This should be subtracted from (34) to give

6N + 3N ¢+ N® (49)

degrees of freedom. Of this number in each 3-leaf ﬁNég} is the number of
parameters of local rotations, N[Es] is the number of timelike lengths while

N F') is the number of spacelike ones; since we consider block of 4-geometry
between the two leaves, we take into account here the number of spacelike

edges in two leaves, 2N1{3}, plus the number of diagonal edges Nl(a). However,

when we glue different blocks together, we need N}(a} continuity conditions
on 3-leaf between them. These are just conditions contained in (40), (41)
and shown above to follow from equations of motion. As a result, we have
2N1(3) + Nf) independent linklengths at arbitrary time as it should be for
the Regge 4-manifold constructed of the most general 3-leaf.

The constraints introduced, v % v! and S v, woul, can be taken into
account with the help of Lagrange multipliers by adding to Lagrangian the
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terms Lqual and Lgcal, respectively:

Liyal = Z *P(ik)(lmjf (ikD)m * T(ikm)l
(ik)(Im)
o Z t"i{kl)mﬂik(lm] * Til(km)
i(k)m
o E *Fik{rm]ﬂfk(im) * Nik(Ilm)
ik(lm) :
+ Z"z"nmm T(ikl)ym * Nik(im)
iklm
+ Z Nik(im) [Eitk EimE T (itm)k * Mik(m) — “Aieim)),  (50)
ik(Im)
Lecar = E M(ikim) © Z EGRm T (ikl)m
(iklm) cycle perm ikim

s Z #(m]m(ﬂ'(.‘knm O M(ikl)m — Agikny)
(ikl)m

5 Z U;k(:m}(“ik{rm)ﬂnik(a‘m}—"'“r)

ik(Im)
+ Z X, (kD) Aikim (Trnym © Rik(im) — Aik)
iklm
+ Z xs(i(kf))[liklm(ﬂ[su}m O Nk(im) — Aixt)
i(k)m

= lﬁkm(ﬂ'[ikl)m C i(km) — ﬂﬂk)]

+ > Xs(iED)Wigkiym (Rikam) © Ritgkm) — Ticen))- (51)
i(kl)m

Here *u, "», "A, pu, v, A, nandalso®A, A, A, o are sets of
Lagrange multipliers; x,, Xs, Xz are characteristic functions of some §ets
of simplices S;, S, I, arising at constructing irreducible set of constraints
above. The S, T are sets of 2-simplices with marked vertex, on each of which
2 constraints A(r o n) and(or) 1 constraint A(n o n’) are set, respectively.
S, is the set of 2-simplices with marked both vertex and edge on which 1
constraint A(w o n) is set. It is convenient that the sets 5, X be chosen so
that continuity of m(ixr) © nie, T(ikn) © Nar and n;z o n; on necessary number
of triangles were fullfilled simultaneously in order that continuity of edges
on these triangles would follow immediately. I have check possibility of such
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choice for two simple examples of 3-leaf: the simplest periodic Regge manifold
[16] and simplest closed one - 3-surface of the 4-simplex.

As a result, quasipolinomial Lagrangian of Regge calculus takes the form
of the sum of expressions (26), (32), (50) and (51):

L= LRegge -+ Lmt -+ Ldual + Ls{:nl (52)
4. THE STRUCTURE OF CONSTRAINTS.

Proceeding to discussion of dynamics, consider full time derivative of
some quantity f in the system with Lagrangian (52) which can be written
symbolically as

L=70QlQ— H. (53)

Here H is function of 7, {2 and other variables. If f is function of r, {2 then
it follows with the help of equations of motion that

af ;

where Poisson brackets for specific form of the kinetic term in L prove to be

{f}H}:rn[Ifﬂ':fﬂ]‘f‘l{f QQTfﬂ_frﬂﬂfffﬂ’ (55)

Here indices w, {1 mean corresponding derivative, which over 7 is assumed
to be antisymmetrised.

The Hamiltonian H, as in the continuum theory, turns out to be linear
combination of constraints, i.e. it vanishes on their surface. Indeed, for
Laual; Lscal; Lrot 1t 18 s0 by construction. It is also evident for Ly, while
Ly + Ly 18 the sum over vertices of the groups of terms —H; each of which
is uniform function of degree 1 of the set n;; for all possible k at given i.
The n’s of this set can be multiplied by some general factor without violating
other constraints. This variation leads to Hamiltonian constraint H;:

LH+L¢,:—Z,FI{, =y {55)

Requiring the constraints be conserved in time allows us to define Lagrange

multipliers. Those at II class constraints are defined uniquely and therefore -

in the absence of matter are zero. Therefore classical dynamics is governed
in this case by I class constraints.

Proceeding to classification of constraints let us first establish continuous
symmetries. The latter correspond to occurence of 1 class constraints.
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Originally in the full discrete theory we have symmetry w.r.t. SO(3,1)
rotations in the local frames in 4-simplices. In the continuous time limit
we have rotations in 4-prisms or, equivalently to say, in their tetrahedron
bases: also we have some transformations of ¢, *¢. Tetrahedron rotations
Uikim) € SO(3,1) result in

v - U{iki'm}ﬂU(i;kIm], (57)
Q= Weam Kt Uaan) (58)
hikimy — U{iklm}h{ikim]U{th) - ﬂ(ﬁ;m]U{EHm)t (59)

where v is bivector = or n in the tetrahedron (ikim); (ikin) is another
tetrahedron in 3-leaf with the same 2-face (ikl). It is easy to check that on
functions of , Q infinitesimal rotations U = 1+ u are generated by Gaussian
constraint C(u) = —Li|n—u by means of Poisson brackets {C(u), } (see
55)).

: )'%he invariance at shifts ¢, *¢ is due to ambiguity when dividing Q)
into symmetric in i, k, [ part and rotation exp(¢r + *¢ *r) not changing
(k1) In particular, symmetry transformations at shift *¢ take the form

ey —  “Pikr) — Skl (60)
Qurery — Qe exp(Crn "T(rn), (61)

1- g
*.“(ik)[lm} —t *ﬂ[ik}(lm) + 5((;_};1}, ki E}"CIE perm 1, k, ' S (62)

(up to addition full time derivative to the Lagrangian). Gepera:tor here is 'the
constraint 7z * T(ik), which, although not written explicitly in Lagrangian,
is combination of constraints of the type 7 # 7’ and } .

Situation for shift of ¢ is complicated by occurence of linear in ¢
terms in the Lagrangian: analogous transformations (42) lead, as we have
seen, to constraints with generalised velocities 7. On the other hand, since
Néa} > N{EJ, there exist Ng[a} —N{a) relations f,(|7|?) on scalar squares of .
These constraints are consequences of our full set of constraints in Laual, Lscal
and are I class constraints generating transformations (42) for the following
particular choice of parameters:

e
.&:iH} =& 3(]“{1‘#1}[2)‘

(63)
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Then, up to the full derivative, the following term in the Lagrangian arises:

of Dr(ixn
ik © 64
AimanP) 0 ° oy

Ael = %«‘f“fa +€% )

(ikl)

(D is defined in (40)). First term is here combination of constraints. In the
second one the differences of constraints f, between neighbouring 3-leaves
arise. These differences are some algebraic constraints on 7, n and should be
combinations from our full set in Lgyal;, Lscal as well.

Thus, the I class constraints are encountered. These are Gaussian one and
kinematic relations for scalar and dual squares of x. All other constraints,
apart from those in Lgyal, Lscal, should arise when varying L in nondynamical
variables 74, n, ¢, "¢.Since the latter enter L nonlinearly, the equations
obtained do not give, generally speaking, any constraints on dynamical
variables 7., §2, but rather simply allow one to express nondynamical
variables in terms of dynamical ones. However, an important exception exists:
the scale of length of shift-lapse vector at any vertex i enters L linearly.
Therefore, first, bivectors n;; at this vertex are defined by given equations
only up to the common scale, and, second, variation in this scale gives the
above mentioned Hamiltonian constraint (56) at this vertex. This constraint
follows by acting on L the following operator:

Z Nik © s (65)
i

aﬂ;k :

Substituting into H; the values of nondynamical variables in terms of
dynamical ones gives a constraint on w_, ). Nontrivial equations of gravity
itself arise in Regge calculus at varying edge lengths, the Hamiltonian
constraint corresponding variation in timelike edges. Variation in spacelike
and diagonal edges means variation in 7_ and gives not the constraints but
equations of motion containing time derivatives.

As for the momentum constraints, these might arise, in analogy with
continuum GR ([14]), by acting on L the operator

) d

— T 0
a"(ik]fm s 3!’1(“};““

T(imk)l © (66)
This operator cancels Lqya), but now we have also Lgcq not cancelled by this
operator. As a result, there are no analogs of the momentum constraints of

continuum GR.: shift vectors enter I nonlinearly, therefore variation in them
allows one only to find these themselves.

18

Thus our system in the space of dynamical variables 7_, § is described by

Nf} Hamiltonian constraints H;, 6N§3} components of Gaussian constraint
C and by additional kinematical constraints on bivectors w_. The I class

constraints are C, w*m, fa(|7|?). Since Néa) = 2N§3), it is convenient to
define each m_ in any of two tetrahedrons so that each tetrahedron would
contain two bivectors defined in it, = and #’. Then other constraints, a priori
IT class ones, are H;, Nf) constraints 7+ 7' and Néa} functions g4 expressing
scalar products w o 7’ in terms of squares |~|:

ror =gallnl). (67)

It is easy to see that all kinematical constraints mutually commute w.r.t. the
brackets (55). Nonzero Poisson brackets arise only between H;’s in different

points and between H; and 2N§3] constraints 7+ 7', wor' —g4. This means

that also QN:EE) — N;}E’ I class combinations of functions 7 * 7', wow' =gy

exist. On the whole, there are GN;EH) - N}a) - N,ga} [ class constraints. As
QN{%E) II class ones we can take, in addition to H;, also some Néa) of products
x+ 7. Without taking into account the constraints the number of the degrees
of freedom would coincide with the number of canonical pairs SN.EE')., Taking
into account the constraints we get this number coinciding with the number
of edges N 1(3). This should be expectable since, generally speaking, change of
the length of any edge means change of geometry of 3-leaf.

We are faced also with some peculiarity connected with that Hamiltonian
constraint is II class one. As a result, the length of shift-lapse vector N being
Lagrange multiplier at this constraint in empty space is zero. However, in the
presence of matter this singularity dissappear. For example, contribution of

electromagnetic field Fy,, into action containes the terms of the form
g°°g%? FoaFopV, (68)

where V is the volume of 4-simplex, g, is metric. Since V ~ N, ¢° ~ N~2,
the given terms are proportional to N~1, so that equations of motion give
strictly nonzero value of N. One can say that the matter fields prevent the
collapse in time axis by developing the pressure from within the 4-simplices.
Vanishing the timelike lengths in empty space leads also in some sence to
triviality of classical dynamics in this space. Indeed, in this case Hamiltonian
reduces to linear combination of I class constraints. Since all these commute
with 7ron, the areas as well as links do not vary in time. However, normalised
bivectors n/|n| have quite complex dynamics. This means that parameters of
embedding the 3-leaf into 4-manifold have a nontrivial dynamics.
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5.CONCLUSION.

Having got Regge calculus in canonical form we can write out puth
integral as formal solution to the canonical quantisation problem for this
theory. The functional integral measure is defined by volume element in
phase space on hypersurface of constraints of the theory and contains nonlocal
factor which is determinant of the Poisson brackets of II class constraints. The
latter are original constraints of theory plus gauge conditions by the number
of original I class constraints. One of interesting feature of Regge theory
is that (in the case of Euclidean signature) integrations over connections
(elements of SO(4), not of Lee aigebra so(4), as in the continuum theory)
are finite and one does not need to fix the gauge, that is, to divide by the
gauge group volume. In this case the measure factor will be defined by simply
the original II class constraints of the theory {Hamiltonian and kinematical
ones).

Another, unpleasant feature is that this measure is clearly singular in the
vicinity of flat manifold for which symmetry group is larger and classification

of constraints changes. Therefore in the vicinity of flat space the perturbation
theory does not exist.
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