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ABSTRACT

As basic variables in general relativity (GR) are chosen antisymmetric
connection and bivectors — bilinear in tetrad area tensors subject to ap-
propriate (bilinear) constraints. In canonical formalism we get theory with
polinomial constraints some of which are II class. On partial resolving the
latter we get another polinomial formulation. Separating self- and antiselfd-
ual parts of antisymmetric tensors we come to Ashtekar constraints including
those known as “reality conditions” which connect self- and antiselfdual sec-
tors of the theory. These conditions form second class system and cannot
be simply imposed on quantum states (or taken as initial conditions in clas-
sical theory). Rather these should be taken into account in operator sence
by forming corresponding Dirac brackets. As a result, commutators between
canonical variables are no longer pelinomial, and even separate treatment of
self- and antiselfdual sectors is impossible.
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1. Ashtekar variables [1] attract much attention as possible tool to solve
quantum constraints of GR nonperturbatively [2]. Such a possibility is con-
nected with polinomiality of GR in the new variables. In this note two another
polinomial versions of GR are suggested. Canonical formalism is developed
and connection with Ashtekar variables is considered.

The issue point is Einstein-Hilbert action in the tetrad-connection vari-
ables [3]:

5= [d's cauct el D2 DI (1)

" where D) = 8 + wx (in fundamental representation) is covariant deriva-

tive, and w? = —wl? is element of s0(3, 1), Lie algebra of SO(3,1) group.
Raising and lowering indices is performed with the help of metric gp =

diag(—1,1,1,1), while € = +1. o,8,...=1,2,3 and p,v,... = 0:1.2,3
are coordinate indices and a,b,...=0,1,2,3 are local ones. Separating space
and time indices we put Lagrangian density into the form
Here
h=—w "2 —lfﬂﬁ"."['p 'D] o __1 afy ¢ od
= 0, ab = 5 By Pylaby TMap = Efabcdf €aCnys
Naagh = _Eabcdﬁgﬂi (3)

Scalar product of two matrices (o) and hereafter used their dual product (*)
and dual matrix are defined as

Aol & %A"bBﬂb




AxB = Ao("'B) (4)
*na def 1 a '
B By EE Ilchcd
In order that n,, 7* be of the form pointed out in (3), dual products of
the type 7 * 7, n * n and traceless part of 7 * n should vanish:

™xaf = 0 (5)
™ *ng -— %(f" *ny)6g =0 (6)
naxng = 0 (7)

Conversely, having got 6 antisymmetric matrices 7%,nq (36 components),
subject to 20 conditions (5)- (7), one can check that there exists the unique,
up to an overall sign, tetrad & ( 16 = 36 — 20 components),in terms of which
7%, ng are expressible according to (3). Adding (5) - (7) to (2) with the help
of Lagrange multipliers gives

1 - 1
L = Lp— Epaﬂﬂ“ 7P — Ax®* xng — Eu“‘ann * ng (8)
déf .ﬂu — ﬂ‘i‘,

where pag, v®f are symmetrical, trA = ;\g'= 0, A =(p,v,A), and @ denotes
the set of constraints (5) - (7).

9. Consider the structure of constraints. In the Lagrangian formalism we
first vary £ in A, h,n. This gives, together with earlier introduced @, also
Gauss law o

C=Dyx*=0 (9)

and

A3 *nf +v*? *ng + R* =0 (10)

Let us multiply (10) in scalar way by n7,n,. This allows, with the help of @,
to find ), v; besides, requiring »*# be symmetrical gives constraints, having
the form of momentum ones [1] - combinations of diffeomorphism generators
with local rotation ones C,

Hg- "%i_f fa.ﬂ-rﬂ'ﬁﬂm =U, (11)

while requirement trA = 0 leads to Hamiltonian constraint

Ho ™ ngoR*=0 (12)

Constraints (11) and (12) are produced by varying action by operators

)
g © E (13)
and 5
Capy’ © ohy 7 ! (14)
Upon varying w.r.t. 7,w we get equations of motion

We = =Dah+ (pr+ An)q (15)
7 = [h,7%] - P Dgn, (16)

Further require that constraints obtained be conserved in time. Egs. (6)
and (7) (14 components) allow to find 18 components n, up to 4 parameters.
Differentiating these will give n, with the same degree of undefiniteness.
Namely,

Ng = Vg + faﬁ.,uﬁar"’, (17)

where u®,v are parameters. Knowing n, we can differentiate Ho and pa-

rameters ), v earlier obtained from (10). The rest of constraints can be

differentiated with the help of (15) and (16) without problem. The (auss
law, Hamiltonian and momentum constraints are conserved identically, and
the only nontrivial is condition

%(w“ x7P) =0, | . (18)
which gives the constraint

G = ng * (2P1Dp7d + 2P Dpn7) = 0. (19)

It is thus the consequence of equation of motion for connection §S/éw = 0.
Finally, differentiating (19) allows us to find y14g. Indeed, dependence on
lap arises due to terms with &, see (15), and has the form

GoP = 2 det ||gas||€ascacieleses(97 g% — QTEQE;)#E.: P (20)

def 4
gﬂﬁ == Eaﬂﬂa-

1 More accurately, our constraint Hg is combination of Hamiltonian constraint [1], whose
effect in combination with C' are shifts in time, and of Ha; se¢ below
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Due to nondegeneracy of metric the equation G = 0 is uniquely solvable for
L.

In Hamiltonian formalism denote by § the momentum, conjugate to coor-
dinate q. In particular, (7, w) already form canonical pair (g, q). Hamiltonian

density is
H= E gg— L. (21)
q ‘

First, the primary constraints can be found:

A=0, h=0, #=0. (22)
Their conservation leads to secondary constraints

d’ 3 oH
0= 2i=1q [Hea)=-F @#mw), (23)

which are easily recognised to be the earlier obtained in Lagrangian formal-
ism constraints ®, C and (10). The Poisson bracket is defined as usual, in
particular

{we(z), 75y(2")} = (8285 — 638c)0a8°(z — =) (24)

The further Dirac procedure of extracting the constraints completely repeats
the above consideration in the Lagrangian formalism. As a result, the fol-
lowing nondynamical (i.e. different from m,w) variables remain undefined:
h, h, being Lagrange multipliers at constraints C, h; 4 parameters in n and
the same number of those in 7 (see (17)) being Lagrange multipliers at con-
straints H, and at four combinations of i, respectively. This means that
corresponding constraints are I class.

In particular, to describe evolution of physical observables (which are
natural to thought of as functions of 7, n, w) it is sufficient to use the set of
pairs (m,w), (i, n) as phase space. Then phase manifold of GR is defined by
I class constraints,

C, M,, 4 combinations 7, (25)

and by the others, II class ones:
®, G°P, 14 combinations fi. (26)

The number of the degrees of freedom is equal to the number of canonical
pairs minus the number of I class constraints and half of the number of II
class ones. Let [A] be the number of components of a value A. Then the
number of I class combinations of 7 (4 in (25)) arises as [n] — [A] + [p]. The

same is the number of constraints u- As aresult, the number of the degrees
of freedom turns out to be expressible as

[w] = [n] — [A] + [A] = 2[4] = 2, (27)

as it would expected.

3. Some disadvantage of formulation (25), (26) is that # are not purely I
or II class constraints but rather their nontrivial combinations. We can pass
to another polinomial version of GR by noting that ® can be solved for n as

n = €ap 0’ T + veapyn? 17, (28)

where w®, v are parameters. Then constraints G*P, Hy at v # 0 are equiva-
lent to the following ones:

GoP 7« ([n%, DyrP] + ([, Dy®)) - (29)
Ho e Eag.-r‘?raﬂ'ﬂ o RY (30)
Phase manifold in terms of (r,w) is given by constraints

G Mo i Ho (31)

and

x7P, G°P (32)

of I and II class, respectively.

In quantum theory II class constraints cannot be simply imposed on states
since due to their noncommutativity this will lead to vanishing the wavefunc-
tion itself. Instead, these should be taken into account in the operator sence
by assigning to quantum commutators the values of the Dirac rather then
Poisson brackets. Dirac brackets arise from Poisson ones when projecting
orthogonally to the II class constraint surface in the phase space: '

(£, 930 = {f,9} - {f,04 1A 1)*B {635, g}, (33)

where {©4} is the full set of II class constraints, and A~! is matrix inversed
to that of their Poisson brackets:

(A~1)AB {05,600} = 54 (34)




Now when © 4 are constraints (32), the matrix A~ is easy to find. Poisson
brackets on constraint surface take the form

1 g 1 SH
{./(-ipapfr" x 7P 4 ﬁmap(}"""’) >z, j(-ipi,ﬁrr" * 7P + §m:"ﬁG AVdPz) =

j(det llgasl)?[tr(my’ — pm') + teptrm’ — trmtrp’ + (35)

tr(my)trm’ — trmtr(m’x)] &°z,
xﬂ'ﬂ déf EQTE'H;T * Dﬂﬂ'ﬁ.
Here m, m', u, p' are test functions (symmetric matrices), while raising and
lowering indices is made with the help of metric gog. Inverting the bilinear
form (36) which leads to A~! offers no difficulties, and Dirac bracket of any
quantities f, g turns out to be local:

& g}D o {fs 9}_
% j(det. llgasl)~2[t=({f, $H{G, g} — {f, GH4,9}) -
%tr{ f, 6}tr{G, g} + %tr{f, GYtr{s, 9} + (36)

-;-tr{f,qﬁ}tr(x{qﬁ,g}) - %tr({f. o}x)tr{4, g} d°z,

o E 7 P

Procedure of performing trace refers to indices of functions G, ¢, x, while
integration variable z is their argument. Dirac bracket turns out to be non-
polinomial (due to occurence of (det ||gap]|)~?). Also note that different com-
‘ponents of w do not commute.

4. Finally, let us pass to Ashtekar variables and decompose for that
antisymmetric tensors A% into selfdual *A and antiselfdual —A parts,

A=*A4 A, *A=(AxitA), i(A)=#(*4), (7

each of which embed into complex 3D vector space by expanding over basis
of (anti-)selfdual matrices

5k = +i(6560 — 65 60) + €xan, (38)
so that A
kpab . gk dyiab jg S8 £, diab g (39)
8

(matrices —i L2, are chosen to obey algebra of Pauli matrices o* ). Then for

real tensor quantity A = —A (overlining means usual complex conjugation). |

At such embedding the constraints become sums or differences between
monoms of only selfdual and of only antiselfdual fieds. It is convenient to
group these as follows:

2igP = tge.tgP_ —g*. 7P = (40)
—2iG* = v, Rl x tp, +5P) '

| —~F. Fe % D, ) =0 o (41)
Co(tE~ "T)/2 = ™= Dy #*=0 (42)
Co(tEx Oy & Hp He g Pl =0 (43)
 Me = eap (YR -TR 4+ R "R =0 (44)

—4Hy = eapy(TRO x TR . TR 4 7#* x “# . "R)
= 0. (45)

Here Dy (") = 8a(") — ¥4 x (), TR = —e*PY[*Dy, ¥D,]/2, while (c...p)
means the sum of objects with indices a...# and §...a. Equations (40),
(41) and (42) at *7 = ~7 present 6 + 6 + 3 real conditions. If the condition
+7 = -7 is not assumed beforehand, we deal with 6+46+3 complex equations
on +#, 7. It follows from (40) that some U exists, an element of SO(3,C),
such that ¥7* = U ~#®. Then (41) and (42) allow us to find 9 components of

connection: 1Dy = U D UT. As a result, (43) - (45) are fullfilled separately
for (+) and (—)-components. Thus we arrive at the Ashtekar constraints:

-t

Dai®®, €apyi® - R, eapy® x 7 - R, (46)

where #, R are (4) or (—)-components.

Equations (40), (41) in the theory with pseudoEuclidean signature are
known as reality conditions [4]. These equations, however, survive in the
real theory with Euclidean signature. In both cases these connect self- and
antiselfdual sectors of theory and their being the II class constraints leads
to commutators (Dirac brackets) of =,w different from canonical ones and
nonpolinomial (see (36)). In particular, different components of w do not
commute and there is no such representation of commutation relations that
w be e-number. On the other hand, the components of © do not commute
with each other, and one might try to use representation in which = is ¢-
number. However, when imposing the I class constraints on states we shall




not get analytical functionals of w as solutions (physical case of pseudoEu-
clidean signature is considered). Nonanalyticity occurs in the dependence
of commutators on the (real) metric gog. Indeed, in selfdual components
g®Pdet ||gys]| = 7 o 7P becomes real part of 27 - 7.

Besides, self- and antiselfdual components do not commute. For example,
it is easy to find from general formula (36) that

{fi(2), *®*(e')p =
—(det [lgapl)"1(+2™ “myrdh + P “map)6(z — 2. (47)

We thus have considered 2 formulations of GR with polinomial Lagrangian.

These are defined by the sets of constraints (25), (26) and (31), (32) on phase
spaces of pairs (7,w), (#t, n) and of (7, w), respectively. The first version turns
out to be appropriate for generalisation to discrete Regge gravity where it
allows one to put theory into quasipolinomial form [5]. Second version leads,
on separating self- and antiselfdual components of tensors, to Ashtekar vari-
ables. It turns out that due to commutators Ashtekar variables are not free
from nonpolinomiality and nonanalyticity.
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