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ABSTRACT

A hole is considered by variational method in the ¢-J model at half filling
in a simple cubic lattice with Néel ordering. Analytical expressions for hole
energy and wave function are derived. Interaction with magnetic excitation
is calculated. Role of dimensions is discussed.
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The t — J model (equivalent at { <« J to the Hubbard model) is widely
used to describe correlation effects. The two-dimensional ¢ — J model is now
very extensively studied as a model describing electronic structure of high-
temperature superconductors. Much attention is paid to the one-dimensional
model [1]-[5]. However, much information on the problem can also be ob-
tained from three-dimensional studies. For example, comparison with two-
dimensional results will make possible to distinguish correlation effects from
geometry effects.

In two dimensions, the most popular approach is numerical cluster cal-
culations (a review is presented in [7]). However, such calculations in three
dimensions are much more complicated. Calculations on only 8-site cubic
clusters have been reported [8]-[12]. First works calculated ground state en-
ergy if the Hubbard model with infinite [8] and finite [9] interaction without
periodic boundary conditions. Symmetry properties of the ground state in
the t-t’-J model for several lattices were studied in [11]. Finally, spectral
weight function of a hole oi the cubic Hubbard model is presented in [12].
Obviously, small cluster size limits possibilities of obtaining details of the
three-dimensional band structure by numerical calculations. In contrast, the
variational method, which has proved to be successful in two dimensions [13]-
[16], is easily generalized to three dimensions. In this paper, we variationally
calculate hole dispersion and wave function in a simple cubic lattice. Using
the obtained wave function, we calculate the vertex function for interaction
of holes with long wave length magnons.




The model is defined by the Hamiltonian

H=H+Hr=t Y (d,dno+He)+J Y Sn:Sm, (1)

<nm>o Lnmz

where dla and d,, are the creation and destruction operators for a hole

of spin o (¢ =1,|) on site n. The spin operators are S, = %diuﬁaﬁdﬂﬁ.
< nm > implies summing over all nearest neighbors in a simple cubic lattice.
The Hamiltonian (1) is supplemented by the constraint of no double electron
occupancy. For convenience, we set J = 1 in further calculations. The
system at half filling (one electron per site) is a Heisenberg antiferromagnet.
Its ground state has Néel ordering (see [6] for a review).

Let us consider a hole added to a half filled system with Néel ordering (we
may also consider a background with Ising ordering, i.e., an antiferromagnet
without quantum fluctuations). We assume the wave function to be of the
form
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Al = @N)=12¥ (1 = A,)d}, exp(ik - ra), (2)
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where |0 > is the background state, A, = 1 for the spin-up sublattice and
A, = —1 for the spin-down sublattice, § is a unit vector corresponding to
one step in the lattice, and k is the wave vector. The trial wave function

(2) includes spin-up holes on the spin-down sublattice (operator AE ) and
spin-down holes on the spin-up sublattice with nearest neighbor spin flip

(operators AL) In other words, we consider states with one simple hole

and one possible hopping (given by applicaton of H;). This assumpsion is
quite natural at £ < J. However, it turns out that in two dimensions this
ansatz gives reasonable results [16] even for t/J = 5. In three dimensions
we expect a similar range of validity since neither coordination number nor
background are changed drastically as compared to two dimensions. An
important advantage of the ansatz (2) is that it leads to simple analytical
expressions for dispersion and wave function which enable one to perform
further calculations, e.g., of interaction between holes.

For calculations, we denote the basis states of the wave function (2) as

|1 = AEIU -

[ AIED > & 13 >= ALIU >,

|4 >= A; 10 >, |5 >= Aiylﬂ >

6 >= Alj0 >, 7>=Al 0> . 3)

The basis (3) is not orthogonal. The normalization matrix is

> = A < e peaw, A e e b
<ili> = B&ij+2A(1 - &;)lg2085 +q11(1 - &5)];
1 1 :
A = g+o B s o pi; (4)
g 0, otherwise.
ITere and hereafter the following characteristics of the background are used
Z & 1 —_—
: 1 2
pu = < 0|85 454610 >, m=3< 0|SE Sy y546010 >,
F x 1 E
P20 = < 0555742510 >, 920 = 5 <O|ST57,5510>,  (5)

c=|<0lSi0>], pr=p1+201 =<0|S,,-Snysl0>, &§LE&.

For the Ising state, the correlators (5) are trivial. For the Néel state, using the
spin-wave theory (see, e.g., [6]) we obtained the following numerical values

o = 0422, p = —0.299,

pn = =0194, pu=p=p;=0179
q1 = —0.052, J11 = 0.02{}, Jap = 0.013;
A = 0922, B=0.866. (6)

To make the theory self-consistent, we took ¢, = 1(p1 — p1). Results close to
(6) can be obtained by other methods [6].




We will calculate the energy with respect to the background level Eq:
H|0 >= H;|0 >= Ey|0 >. Therefore, we make a shift Hy — Hj — Eo. Now
the Hamiltonian matrix is

3 g s
< IIHll >= E(ﬂ'_gpl): 1,] =2:'--:73 ! 7,'_.?:

< 1|Hli >= _t{Be.-““ﬁ* + 2A(q1 + 920 + 24(q1 + q1) Y efk5'},
§'16;
ks o207 15

15
Té. + ?cr —_ 4p1 - I‘pg -— 6q1 - "'f“ﬂ'Pl + 10‘791: (?)

< i|H|j >= q1(e — 1/2) + g20(To — 4py + 10p; — 8q1) + (0 — 2p1 )@ 65 .

In order to simplify formulas, ground state factorization has been used in
calculations of the matrix elements (7). Complicated correlators were treated
as, e.g.,

< s >=

< 0| AnSESE, §5m 10510 >2< 0[An S50 >< OIS 5575510 >= 2q10.  (8)

These terms play a negligable role in the final results. Therefore, inroduced
small errors can be safely ignored.

When t = 0 (i.e., H = H; and there is no hopping) the hole energy is

et 1|H|1> 3 o—2p1 _ [ 3/2 forIsing state, 9)
. 1|1 > T2 1/24¢ % 1.7 for Néel state.

Simple estimations show that the correction to the energy (9) is 6eo ~ —0.1.
This correction comes from appearing in the wave function states with more
complicated structure (relaxation of the background). The most important

states are those with double hopping diTS;HS:HH*lU >. Their contribu-
tion can be estimated a perturbation.

The set of basis functions (3) can be orthonormalized by the following
transformation

|I > = ﬂ:‘1|1 >,

12> = ax(|2>-]3>),

13> = a(l4> -5 >),

|;i > = ay(|6> —|7>),

B> = ea(]2>+]3>-4>-|5>),
6

B> = oa(]2> +]3> +4 > +]5 > —2[6 > 2|7 >),

—

7> = as(|2>+3>+4> +[5> +[6 > +[7>), (10)
By = A‘”E,
az = [2(B-24204)]""/?,
as = [4(B—-2(2q11— ga20)A)] /2,
ag = [6(B—2(2q11 - g20)A)] "1/,
as = [6(B+ (8q11+ 2q20)A)] 72

The variational procedure leads (for the Néel state) to a fourth degree
equation. In order to obtain an approximate solution, we assume correlators
g11 and gao to be equal. So we substitute g20, g11 = 92 = 2g11+ 3920 = 0.018.
The coefficients for q;; and g2p are chosen taking into account how often they
appear in (4) and (7). The small role of ¢11 and qg0 in final results justifies
this approximation.

Now the variational procedure yields the energy of a hole

ﬁ A2 1/2
€x = €p + . S, S = [—4— - 652(“ * E’TE)] ) (11)
where
1 < i|H|t >
T, = 5((;05 ks + cosky + cosk;), A= ;|1|zl; e

o e-dgetwlill | o +10(0 +g2)/a)” | _ (ﬁ) iy
1—2q2/9g : 1+ 10g2/9g B '

For the Ising state, A = 5/2,a=1,b=0,and g = L In the absense of
quantum fluctuations, a hole can propagate only in a spiral way by tunneling
through string barrier [13, 14]. This process is neglected in the ansatz (2).
Therefore, we have results with no dispersion. For the Néel state, the domi-
nating process is motion as allowed by quantum fluctuations with A = 1.94,
a = 1.12, b = 0.80, and g = 0.97. In the strong interaction limit (t > J),
the total band width is 2t+v/6a = 5.2t, which agrees well with 5.4t presented
n [12]. Unfortunately, absolute values of band parameters are not given in
[12].
The normalized wave function has the form




. 1/2
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where
2t

$ = a(A +25‘k)[
—1_ 9+ 10(q1 + ¢2)/g

(14 v)exp(ik -8) — (u + v)n,

= dn el
1+ 10q2/g 1 —2q2/q

For the Ising state, u = v = 0. For the Néel state, u ~ 0.48 and v ~ 0.08. In
another notation, the wave function is ' -

A 39e 13
- T et ehertee..
[¥k1 (SASkN) %

¢

G L(l 5 ;'kn\J{l g 255 exp(~ik 'J)dl—aidnl}diﬂg > exp(ik -ry). (13)
! &

Ohvimush{, the wave function of a spin-down hole can be obtained by taking
thers1ums in (12) or (13) over the other sublattice and inverting spin indeces.
[hie bottom of the band (11) is located at the surface v = 0

A - [l s
f—'a=fn+§—h—+ﬁaz2] : (14)

Tak111;;_mto account thie difference between g90 and g;1, we found the following
correction to dispersion along the surface 1, = 0,

455, IJF - 1‘}{“’(31nj k. 4+ si.n:‘; ky + siﬂ.2 k;) fort < 0.4,
| —0.012¢(sin? k, + sin ky +sin®k;) for t > 0.4. (15)
Thus, we Ihn*:'e the band bottom at Ko = (+7/2,47/2,4+7/2). The same
:ffm:i. exists in -L}:_:.: two-dimensional case. Assuming qi; = g¢q0, the band
votton iz at the line cos kg + cos ky = 0 [16]. After taking into account the

-dlﬂ.-‘.“.‘t.‘{’:iﬂi‘. 5‘:--—.*%-‘»&.-:;;(3“ q11 and g0, the band bottom is at K = (£7/2, £7/2),
n agreement with results of other methods [7]. The energy correction along
the line cos &k, 4 cos ky =0 is

se— 4 —022t%sin’k; + sin’k,) fort < A/,
FEY o00lEaTE, L anvE (16)
z+sin“ky) fort > A/4.

Holes are defined within the Brillouin zone which is the same as that for
fcc lattice with lattice constant 2. There are N/2 states for spin-up holes and
the same number for spin-down holes. Under doping at zero temperature the
zone occupied by holes has the form of 8 semiellipsoids in the neighborhood

‘of the points of minimum energy. The Fermi energy ¢ is connected with the

doping concentration z by the equation

3x (7\ /2 113 205 2/3
€F = _4'_ E ﬁ" rB_L Tty (1'?)
where 31 and f are the hole reciprocal masses at the bottom (3. is for the
direction towards the origin and g for the perpendicular plane). According

to (11) and (15),

o 202 e 1.65¢% for t & 0.4, (18)
s (6atZ + AZ/4)1/2 062t fort > 0.4;

5~ 0.025t> fori < 0.4,
s a1l 018 Tori 304,

The knowledge of the wave function (12) enables one to calculate the
interaction of holes with long wave length magnons. Short wave length mag-
netic excitations are effectively included in the ansatz (2) and do not need
more consideration. In the spin wave approximation (see [6]), the magnon
dispersion is wq = 3(1 — 42)'/2. In the long wave length limit (¢ < 1) it
reduces to wq = v/3q. The explicit form of the magnon creation operator is

' c:fl = N1 “(cosh 0 al — sinh 0 a,) exp(iq - r,), (19)
where o £
tanh 20, = %4, ﬂ,j; = +2 =S+ “2 ~St.

We consider hole-magnon interaction by the perturbation theory. In the
unpertured Hamiltonian we include simple excitations (12) and (19)

Ho=Eo+Y ahl,bue + 3 waekeq, (20)
ko q

where the second sum is restricted to small ¢, and we treat the remaining
part of the Hamiltonian as perturbation V = H — Ho. The interaction is
then characterized by the vertex function

Dk |k~ a 1,a) =< OlhwyVhl_gycll0 > (21)




Neglecting terms propotional to magnon energy we come to
'k ;k—qf,q)=

=< Ol (H = Bo)hf_grehl0 > —ex < Olhih]__dio>.  (22)

Calculation of the vertex function (21) is quite similar to the corresponding
two-dimensional calculation presented in [17]. It is performed by commuta-

tion of operators and asumes ground state factorization. For 7 = 0 and
g < 1, we obtained

1/2
3 1] - 1]
'k l;k—qt,q)=- (ﬁ) f(t)(gesinks + qysinky + ¢, sink,), (23)

where

t o
t)=Ait+ Ay—+ A =
f(t) it + 231;+ ESk(ﬂ—F?Sk)

A; = 0.69, A, = —3.58, and A3 = —21.8. Approximately,

() = 3.0t fort < 0.4,
L 09t+1.1 fort > 04.

The structure of the vertex (23) supports that the band bottom lies at the
points Ko = (£7/2,£7/2,+7/2) because interaction with magnons, which
reduces energy, is maximum at these points. Not small value of the vertex
function indicates that spin waves may play an important role in behavior of
electrons.

The results obtained in this paper are quite analogous to those of the two-
dimensional model. This suggests that one-particle properties are determined
by correlation effects and are not specific in the two-dimensional geometry.

Acknowledgment. The author thanks O. P. Sushkov for suggesting the
topic and for discussions.

10

References

(1] E. H. Lieb and F. Y. W, Phys. Rev. Lett. 20, 1445 (1968).

2] B. Doucot and X. G. Wen, Phys. Rev. B 40, 2719 (1989).

(3] M. Ogata and H. Shiba, Phys. Rev,B 41, 2326 (1990).

[4] P. A. Bares and G. Blatter, Phys. Rev. Lett. 64, 2567 (1990).

[5] P. A. Bares, G. Blatter, and M. Ogata, Phys. Rev. B 44, 130 (1991).
[6] F. Manousakis, Rev. Mod. Phys. 63, 1 (1991).

[7] E. Dagotto, Int. J. Mod. Phys. B 5, 907 (1991).

[8] M. Takahashi, J. Phys. Soc. Jpn. 47, 47 (1979).

[9] A. Kawabata, Sol. St. Comm. 32, 893 (1979); in E.fﬂctrm_m Corm_faﬁan
and Magnetism in Narrow Band Systems, edited by T. Moriya (Springer,
New York, 1981), p. 172.

[10] J. Callaway, D. P. Chen, and Y. Zhang, Phys. Rev. B 36, 2084 (1987).
[11] J. K. Freericks and L. M. Falicov, Phys. Rev. B 42, 4960 (1990).

[12] Lun Tan, Qiming Li, and J. Callaway, Phys. Rev. B 44, 341 (1991).
[13] S. A. Trugman, Phys. Rev. B 37, 1597 (1988).

(14] R. Eder and K. W. Becker, Z. Phys. B 78, 219 (1990).

[15] R. Eder, K. W. Becker, and W. H. Stephan, Z. Phys. B 81, 33 (1990).
[16] O. P. Sushkov, Sol. St. Comm. 83, 303 (1992).

[17] O. P. Sushkov, Physica C, to be published.

11




