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Abstract

QCD radiative correction to Higgs — two photons decay rate is calculated.
Below the threshold we found negligible correction, thus supporting results
obtained earlier by Djouadi et all [7]. Above the threshold radiative correction
appears to be large for both real and imaginary part of Hv~ vertex. This
leads to radiative correction for T'(H — 47) to be of order 20-100 percents at
m,; = 150 GeV. Possible applications of our results for Higgs search at Next
Linear Colliders (NLC) are briefly discussed.
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1. INTRODUCTION

The problem of Higgs boson hunting remains to be the most important
problem of contemporary high-energy physics. Different ideas and sugges-
tions were put forward in this direction.

Recently, the two-photon decay mode of Higgs-boson attracted much at-

tention of both theorists and experimentalists. This interest is based on two
different stories: '

e firstly, this decay chanel, having obviously small rates (Br(H — vy) ~
~0(10~3) for mg =~ 150 GeV) provides us attractive possibility to dis-
cover and study Higgs boson in'the intermediate mass range at hadron
colliders such as LHC and SSC [1].

e secondly, two photon production of heavy Higgs boson via yy — H —
— X (X = ZZ, tt) is quite interesting and promising. One can
hope to study the contribution of nonstandard ultraheavy particle to
I'(H -+ 47), probe different anomalous interactions [2-4] using this
very reaction. It was also suggested [5] to use vy — H — i to study
Yukawa Higgs-top coupling.

The important point for all these discussions is the two-photon width of
the Higgs boson, which was calculated to leading order in ref. [6]. In this
letter we report the calculation of QCD radiative correction to H — vy
decay channel. This radiative correction seems to be the largest within the
Standard Model and one must know its value in order to exploit both two —
photon decay and production of Higgs boson.



It must be noted that similar calculation already exists in the literature
[7]. However, the authors of ref. [7] restricted themselves to the calculation
of QCD radiative correction for Higgs boson lighter then 2m; only.

In our work we tried to improve the situation and have solved the problem
for the whole range of Higgs masses.

2. METHOD OF CALCULATION

As it is well-known [6], Higgs — two photon interaction can be described
by the effective Lagrangian:

F
L= %(«/ﬁGp)%F,wF“"H. (1)
Here « is the fine structure constant, Gp is Fermi coupling constant while
F,, and H stand for photon and Higgs fields respectively. F' is Higgs — two
photon formfactor, which reads:

mﬂ’

o ZM,Q.%’; —) (2)

Here N,, is a number of colors, @Q; is charge of the particle and summation is
performed over all particles which contribute to the loop. f;° were computed
in ref.[5]:

9 =-28((1- ) - 2” +1)
fw® =2 438w + 38w - (2— Bw) - £°

Here

It is sufficient to consider only top’s and W contribution; light quarks inter-
action with Higgs are negligible. :
As W does not interact with gluons, we need top’s contribution only to

compute QCD radiative correction. Generic dmgramms are shown in Figs. 1
and 2.
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Fig. 1. One-loop Feynman diagrams for H — 7.
.W—bnson — dotted line, photon-dashed line, top-solid line.
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Fig. 2. Two-loop Feynman diagrams for H — v+.
Gluon-wavy line, photon-dashed line, top-solid line.



Analyzing the structure of the Feynman graphs in Figs. 1 and 2, we can
write a simple formulae, which allows us to compute the contribution of a
given graph directly to the formfactor:

BE d_uvjrta)pp (klz -‘fz)
f{a} o dnyduu T (3)

Here d*” stand for (g*"k - k2 — k1" k2") and T(a)"” (k1, k2) is the amplitude
which corresponds to the graph labelled & (One must keep in mind that the
contribution of a single graph is not gauge — invariant itself, but applying
Eg. (3) we can work with its gauge — invariant piece only.)

Obviously, Hyy formfactor (we take only top quark contribution into
account) is analytic function with a cut over real axis from 4m,? to infinity.
Thus, f,(s) obeys dispersion relation, which reads

o0
a5 1 Imft(s') '
f,(s)_w ] s"-s—isds' )

4my?

For our mind, using dispersion relation (Eq. (4)) is the best way to cal-
culate the contribution of graphs in Fig. 2 to the formfactor. Thus, our work
proceeds in two steps: firstly, we compute Im fi(s) analytically and then, us-
ing Eq. (4) we perform numerical integration and obtain the answer valid for
arbitrary Higgs mass.

In order to compute the contribution of graphs in Fig. 2 to Im Ji(s) we
must cut them in a well-known manner, facing the graphs with two or three
particles in the intermediate state. The latter are Born graphs, while the for-
mer include one-loop proper subgraphs such as +tt vertex, top’s self-energy
and Hii vertex. Those subgraphs diverge and hence must be renormalized.
On this way we used on—shell scheme for quark propagator renormalization
and, as is well-established in QED, we performed subtraction for ~vit in zero
momentum transfer thus satisfying Ward identities. As for Hii vertex, the
one-16op counter-term is fixed by top’s mass and wave function renormaliza-
tion due to the fact that it is Higgs—fermion interaction which gives the mass
to the fermion (for exhaustive discussion see ref. [8]) Analitical calculations
were performerd, by Reduce 33 , on the base of the package, written by us.

3. RESULTS

Following the way, outlined in the previous section, we obtained f1(s)
and F(s) on two-loop level. In order to present our results in the convenient

Fig. 3. Solid — Re f{;) (mg) m; = 150 GeV
Dashed — Im fff))(mﬂ).
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Fig. 4. Solid — Re F(®)(mpg) m; =150 GeV
Dashed — Im F(O(mpy).



form, we will need some notations. Let us write two-loop QCD corrected
formfactor in such a way

F(s) = FO(s) + = F)(s), (5)

F(©) is the lowest order formfactor; defined in eq. (2).

Our results for Ref;(3), Imft(uj(j@] and ReF(®(B), ImF(©®)(B) and | i b "f il L O i
ReF()(3), ImF()(B) are plotted in Figs. 3, 4, 5 respectively. We used 1 | : : :
the value of the top mass to be 150 GeV, and for W we took 80.26 GeV. /]
Thus, below the threshold our results coincide with that of ref. [7]. Above |
the threshold radiative correction to F (ﬂ}(ﬁ) is large everywhere (~30-40%),
thus reminding us about similar situation in H — bk, H — V' studies. ; ;
It 1s straightforward then to compute QCD radiative correction to Higgs - —15-00"; """ S BT il
— two photons decay rate. Corresponding curves are plotted in Fig. 6. Below 3
threshold, radiative correction is negligible. Above the threshold its value is A T o000 110000 | 1500.00
about 20-100 percents at m; = 150 GeV and more at m; = 150—-200 GeV. We ,! my, GeV
want to make some comments for such enormously large radiative correction. Ei 45.4Solit—Re FQ) (mg) my = 150 GeV

This large radiative correction arises for next two reasons: Dashed — Im FO(mpg).
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1. large QCD radiative corrections to purely top’s contribution to form-
factor; :

120,00 —p------s=== T 3 -
2. well-known compensation of W and ¢ contribution to the formfactor. :

Roughly, this compensation occurs for ImF (®) for my above 600 GeV,

while for ReF(®) this phenomenon takes place for my below 600 GeV. 8090 ' z
Due to this facts, the first (negative) peak (my = 460 GeV) in Fig. 6 is 3 &
controlled by the correction to the imaginary part of the formfactor while the | Lol i
second (my = 660 GeV) is governed by the correction to the real part of the

formfactor. i

.4. DISCUSSION

|
|
We have computed QCD radiative correction to H — vy decay rate. ]
As mentioned in the introduction, our results can be used for studying the I:
possibility of Higgs search at Next Linear Colliders. Below two tops threshold “

-40.00 3--

QCD correction is negligible (about 1%). Above the threshold, radiative : " 000" 70“[‘;?1 Ge\}1mm 000

correction is large enough (20-100%) at m; = 150 GeV and more at m; = =

150 — 200 GeV. F Fig 6. Radiat-ive correction to H]ggs — two ph{)tﬂﬂ Wigth, %
For example, for yy — H — ZZ [2], the total cross section is proportional ‘ my = 150 GeV

to I'(H — vy). Thus Ao(yy — H — Z2Z) is equal to AT'(H — vy). (Here |



by A we mean relative radiative correction of the corresponding quantity).
As this correction for my = 600 GeV appears to be about 100%, this fact
must be taken into account while discussing the validity of this channel for
probing Higgs sector.

Another consequence of our result is connected with proposed study [5)
of the Yukawa coupling in vy — H — tf. (In this case the effect arise from
the interference of yy — H — ti with the Born amplitude yy — #t in the
resonance region (/3 &~ my). It is imaginary part of Hvyy vertex that
contribute to this interference. Due to the fact that W and  contributions
interfere distructivly, the change in the Im fi(7) due to QCD correction
will roughly double the signal in comparison with the results of ref. [5] for
myg > 700 GeV. However, for such a heavy Higgs, the signal is so hardly
observable that this result must not be taken too seriously. '

It was also suggested recently [9] to study vy — HH in order to probe
anomalous triple Higgs vertex. We want to note here that as QCD correction
to vy — H appears to be large, this must be taken into account for proper
discussion of vy — HH cross-section sensitivity for triple Higgs anomalous
coupling. Tt seems, that spoiling interference of W and top contribution will
inspire better manifestation of possible anomalies.
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