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1 Introduction

The Operator Product Expansion (OPE) is widely used for investigation of
correlators in the quantum field theory. In particular, it is the basis of the
QCD sum rules method. Let II{p) be a correlator of two local currents in the
momentum space. Then OPE reads

() = 3 el”) (02), (1)

where {O;) are vacuum averages of local operators of various dimensions d
(called also vacuum condensates), and ¢;(p?) are coefficient functions. They
are perturbative series in «,. In order to make sum rules more precise and
to establish their applicability regions it is necessary to calculate both higher
perturbative corrections (higher terms in a, expansions of coefficient func-
tions) and higher non-perturbative (power) corrections. We shall not discuss
physical applications of QCD sum rules here. '

Methods of calculation of higher loop diagrams (perturbative corrections)
form an established field of research, and many articles and reviews are de-
voted to them. We shall not discuss this subject; instead we shall concentrate
on the methods of calculation of higher-dimensional terms in the OPE (1) in
the leading order in a,.

There already exists an excellent review on technical problems of QCD
sum rules calculations [1]. The present article can be considered as an ad-
dendum to it. It is based on the works devoted to calculation of higher power
corrections: the heavy quark case was considered in [2], and the light quark
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one—in (3, 4, 5] and [6, 7]. We shall formulate the algorithms of calculation
of higher power corrections in a form suitable for a Computer Algebra imple-
mentation. Full technical details (partly omitted from the original papers)
will be included for the reader’s convenience. In all cases when a question is
discussed in [1] we shall refer to this review and the literature cited in it.

Unfortunately, there is no complete package for such calculations in conven-
tional Computer Algebra systems (REDUCE, Mathematica,...). Such a
package would be very useful. I have written several Modula-2 programs
which implement 'some of the discussed algorithms and produce a REDUCE
readable output. They are useful as a set of tools though they can’t be a
substitute for a complete package.

The plan of the review is following. In the Section 2 we shall briefly discuss
the fixed-point (Fock-Schwinger) gauge on which the modern methods of
calculation of power corrections are based; for more details and proofs see [1].
In the Section 3 we shall discuss the systematic classification of vacuum
condensates. There exist many relations between condensates, therefore we
should choose a basis of independent condensates and formulate an algorithm
of reducing an arbitrary condensate to this basis. Heavy quark condensates
and correlators are discussed in the Section 4, and light quark ones—in the
Section 5.

2 Fixed-point gauge

The QCD vacuum has a nun-trivia:l structure. In order to calculate a correla-
tor in QCD, we should first calculate it in a background (vacuum) gluon and
quark field. Then we should average the expression for a correlator via these
fields over the vacuum. After that we obtain the expression for a correlator
via vacuum condensates (1).

Correlators of colourless currents are gauge invariant. Therefore we can
use any gauge for the background gluon field. It is convenient to use the

fixed-point (Fock-Schwinger) gauge
z,AL(z) = 0. (2)

In this gauge the Taylor expansions for Aj(z) and ¢(z) can be written in a
gauge-covariant form [1]

a . 1 a 1 “~
AH(Z) - WEFGVF(G) + ﬁﬁquDqu”(U)

11 should like to apologize to the authors of these articles for not citing them directly.
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Figure 1: Quark propagator in background gluon field

-+ 2.0 mﬁzaxpDﬁDaGiﬁ{ﬂ) e (3)
. 1
gtz)y. = q([]) + z4Daq(0) + ﬁzpzaﬂp D,q(0) +---

d e _ B =

!an henc:e a(z) = 7(0) + q(0) Dgzo + +++). Here D,g = (8, - id,)g
15 a covariant derivative in the fundamental representation, Ay = gAjtY
DF'GEL, = Eaﬁ §9° — iAf’)Gf;q is a covariant derivative in the adjoint represen-
tation, A%" = gf “‘I’Af,. Hence only gauge covariant quantities are used at all
stages of calculations.

In this gauge the theory is not translational invariant. A translation
should be accompanied by a gauge transformation to another fixed point
gauge. Correlators become gauge invariant and hence translational invariant
after vacuum averaging. We can choose the gauge fixed point (origin in (2))
at any vertex of the correlator to simplify calculations. In the momentum
space, background gluon lines have incoming momenta k; and contribute

d*k. . . ! F
A;(k")_“L[h).* where AJ(k;) is the Fourier transform of (3) and is the series in
derivatives of §(k;). The vertex chosen as the gauge fixed point provides a
common sink for all vacuum momenta k.. '

The quark propagator (Fig. 1) can be written as a sum over the number
of background gluon lines:

00 51 -
S() = ) S(p), Sofp)zp;‘?—'_m: Sk(p) = —So(p)ASk_1(p),
: k=0 :
3 = _;iﬂln .. D4y G% 10, ... 8, i
T ke ed s i e i )
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It is convenient to use recurrent relations for Si(p):

o

A _ £
S0 15 Ak = iGuwdtSi-t, Au=—70Dalri-1. (5)
I=0 '

Here §, = 3/3;}# acts on all propagators to the right, and D,—only on the
nearest G, = gG§, (0)t*. For example, retaining gluon operators with d < 4
(Fig. 1) we have

] 1
B Sk %Gnu S00uYv So + ED“ G.twsﬂaﬂal#‘fFSU (ﬁ)

i 1
=9 ED.IB Dﬂcﬂvsﬂaﬁé}&aﬁ'ﬁsﬂ iy EGpovasﬂapTasﬂapTusﬂ-
I have written a Modula-2 program for simplification of expressions con-

structed from Sy, d,, and 7,. It applies 9, to all Sp to the right using
9, S0 = —So¥uSo, collects similar terms, and pmduces a REDUCE readable

; output It can be used, for example, to expand these expressions in basis

maltrices.

These formulae can be used for both massive and massless quarks. For a
light quark we can expand S, in m. For a massless quark the equation (6)
gives

g 1 -~
5(p} = ;}E" = ;‘_IP ;GJLL-"TL"Tﬁ {T)
1 2 {4 . ~
-+ ;76‘ R \ ,;P + PADAP;LGWTV) it zipﬁ.Dlp#G#V’T"?E]
L
1 E a & " 3 = -
-+ ;g 2 (P T_::,G;LAGA_MPV “P;LG;;AGAVPVP) — 2ipx D), (p J —pﬂjﬂp)

) fd(pAD,x) = p*D* )Pp g YvYs — 1 [Fncﬁhé-’w’}'”%] ] -

Here J, = g.}”'"t“ JV= D, G}, = qu 7 v,t%’. Note that the last term

v
in {7) is missing in Tl} In deriving this formula we used the relations D* Gy =
':-I-}jijy + D J." LG#,\* G_l,.l] D D'J.,G!“_.r i D}.J,u gL [Gy}rcpu] GJLAGAF +
Gl = 5“1;(';;00”1 G:wGuv - GI_.,L,.G'#,, In practical calculations it
15 often more ccnvement to substitute symbolic expressions for propagators
like (6) to the diagrams and to simplify the complete answers than to use (7).
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Figure 3: Gluon propagator in background gluon field

In order to consider the glucm propagation in the background gluon field
we should substitute Aj + aj into the QCD lagrangian, where Aj is the
background field and aj is the quantum gluon field. The lagrangian becumes

L= 4GﬂyG;, ‘{Dﬂﬂﬁ)(D}#F‘:)'F_(Dp“:)(D “p)‘*‘ ““Gnﬁﬂb +-++ (8)
Here G%, and D, include only the background field Ay, and e G A
We chnose the ﬁxed-pmnt gauge for the background ﬁclcl Ag. T}us lagra.nglan
is still gauge invariant with respect to af. We should add a gauge fixing term
and a corresponding ghost term. It is cunvement to use a generalization of
the Feynman gauge ﬁxmg term —3(D4a%)?. Then the free gluon propagator
is Dﬂp(p} 6,.v/p%, and the vertices of the gluon’s interaction with the
background field (Fig. 2) are i43°(p1 + p2)abus — 1A% (p1 — P2)y — 1A% (ps —
p1 }.ﬁ G?‘t and Aﬂcﬂcb'&‘“p Aacdcb +AncAcb

Retaining terms with d < 4, we have the gluon propagator (Fig. 3)

1 1 1 /2. ;
Dop = F'saﬁ T Emaﬁ $ (E%Jﬁaﬁ + 4ipx D) Gaﬁ)
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1
+ 3 2p2aDrputpbap — 2 (4(paD))? — p°D*) Gop ~ (9)

1
4 'E (pEGvapv + 4PpGpAGAqu) 5&,5' + 4P=GalGAﬁ .

Here the matrix notations are used for colour indices.

3 Vacuum condensates’ classification

Vacuum condensates can be divided into classes according to the number
of quark fields in them. Those without quark fields are gluon condensates.
Those with two quark fields are bilinear quark condensates; they have d > 3.
Four-quark condensates have d > 6, and so on. The unit operator is the
gluon operator with d = 0 according to this classification.

As is clear from the previous Section, bilinear quark condensates of the
form (g(D...DG)(D...DG)...v...vq) appear in calculations of bilinear
quark currents’ correlators at the tree level. Analogously, gluon condensates
of the form (Tr (D ... DG)(D...DG)...) appear in the one-loop approxima-
tion (there are at least two (D ... DG) groups because otherwise the colour
trace vanishes).

In the Section 3.1 we shall discuss the systematic classification of bilinear
quark condensates following [7]. We shall present all formulae necessary for
the practical use of this method. In the Section 3.2 we shall apply similar
methods to the gluon condensates. In the Section 3.3 we shall discuss methods
of vacuum averaging of expressions for correlators via quark and gluon fields,

3.1 Bilinear quark condensates

Using the formulae G,, = ¢G%,t* = i[D,,D,], (D,A) = (D2 A8t =
[Dy, A] (where A% is in the adjoint representation of the colour group, and
A = A%t®), we can easily reduce any bilinear quark condensate of dimension
d = m + 3 to a combination of terms of the form (gD,, ... D, Paiia ),
where 'y,  , is constructed from ¥, and 6,,. Choosing the terms with
the largest number of 4 matrices, we permute them in such a way that their
indices are in the same order as in D, ... D, . Arising additional terms
have fewer v matzices. We repeat this procedure going to terms with fewer ¥
matrices until we reach terms with 1 ¥ matrix or without them at all. As a
result, a bilinear quark condensate reduces to a linear combination of terms

of the form (§O;q), where O; are constructed from D and D,. Due to the
equations of motion, those terms in which D is adjacent to ¢ or g reduce to
lower-dimensional condensates multiplied by m.

Having written down all the condensates Bf = (FOg) where O™ are
constructed from D and D, and no D is adjacent to g and §, we obtain a
certain set of d-dimensional bilinear quark condensates. We have just demon-
strated that any d-dimensional condensate can be systematically expressed
via B¢, me"‘l,. .. This means that they form a basis of quark condensates
with dimensions < d. But this basis is extremely inconvenient for use be-
cause its condensates contain a maximum number of derivatives acting on
q. So we should better choose a basis of the most convenient d-dimensional
condensates Q_f. We can express Q_“j; via BJ, me’l,. .. Solving this linear
system we obtain the expressions for Bf via Qf, me‘l,. .. Having these ex-
pressions we can easily reduce any d-dimensional bilinear quark condensate
to the basis ones Q;-i, mQ?“l,...

A general guideline for choosing good Q;f 1s to have a minimum number
of derivatives acting on the quark field, and hence a maximum dimension
of gluon operators in Q;-‘. It allows to expand propagators to a minimum
dimension in the background gluon field. Among such operators one should
first of all choose those containing J,, because they are really four-quark ones
and are more easily calculable.  They may be suppressed in some vacuum
models (of the instanton type) in which vacuum gluon fields may be strong
but D,G,, = 0. -

For dimensions d < 6 we have

B®=(qq), B®=-(gD%), B®=—i (q‘D,‘ ﬁpﬂq) : (10)
We choose the basis condensates
Q=@ Q" =iECuwoma), @ =(zlq), (11)

where o, = Yiu7Yv]» and square brackets mean antisymmetrization. These
condensates are expressed via Bf as

Q3 - BE :
Q* = -2B°42m?B° (12)
Q° = -2BS+2mB5. :

Solving this linear system we obtain
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1
B = —;Q°+m'Q’, (13)
g —%QE—?Q5+m3Q3,

For d = 7 we have
B! = (gD*D?%), Bj = (gD,D’D.g),
B! = (§D;D,D,D,q), Bl= (aﬂ,‘ﬁinﬂq). (14)

We choose basis condensates

QI . (ﬁGvaqu) 3 Q; - £<§Gﬂvéyv’fﬁq> ’
Q; = {EG;;.LGAHJ;WQ> : QI - i(EDpJuﬂ'pu'Q) . (15}

Here the condensate containing {3#,, = %E#pPyG pe and 5 = f;:fﬁuﬂ-}rj‘}fa’}‘ﬁ YyYs
is understood as a short notation for the expression from which both ¢ tensors
are eliminated using £#*7¢,p,5 = —4!8;, 856467, and this expression is valid

at any space dimension D. These condensates are expressed via B¢ as

Q! = 2B]-2Bi,

Q! = —2B7—2B]+2B]+2B] —4mBS + 6m’B® — 2m* B>,

Q! = 2B]-2B]- B +2mB®-m’B°, (16)
Q7 = -2B]—2B]+4B]—4mB®+4m?B°.

Solving this linear system we obtain

1 1 &
B] = -Q]-3Qi-Qj-m'Q°+m*Q’,

3 1 i
By = EQ} - 5@; - Q5+ EQI - mQ® - m?Q® + m*Q’,

1 1 ;
B} = Q[-3Qi-Q@i+;Q{-m®-m'@®+m'@®, (17)
7 7 7 6 m? 5 4 13 |

B& = Ql—Qs""mQ _"-2_Q +mQ.

Similarly, for d = 8 we have

B¢ = i (3(D,DD,D* + D*D,DD,)qY,

10

B} = i(g(D,DD*D, + D,D*DD,)q),

BS =i (q‘(DpﬁD.,D,,D., + D.,D,,,D.,ﬁD,.)q) , (18)
B} =i(gD*DD%), Bf= i(ID,D, DD, Dyq),

BE=i ('qp,.p,,ﬁppp,q)  B= i(qﬂ,,ﬁ*puq) :

Operators similar to those in B 5 but with a minus sign between two terms
are C-odd, and their vacuum averages vanish.

An interesting new phenomenon similar to the axial anomaly arises for
bilinear quark condensates of dimensions d > 8. At a space dimension D # 4
we can construct the condensate

A = i(gDaDp Dy D;s DeVa V8V 157e}4) - (19)

All coefficients in the expansion of this condensate in gluon condensates (see
the Section 4.1) contain traces vanishing in the 4-dimensional space. Mo-
mentum integrals in coefficients at d > 8 gluon condensates converge, and at
d = 8 they contain divergencies 1/e. As a result, the quark condensate A is
equal to a combination of d = 8 gluon condensates.

Choosing the anomalous condensate A as one of the basis ones, we can
choose 6 proper quark d = 6 basis condensates as

Qf =1 (E[[G.u-}! Gavl4s Dﬂ]+'qu} ’
Q3 = — (al[Gur Grs) Dulswsa)

3= i(‘q’[ﬁG",,G#p]q) g (Eszﬂ') ) (20)
Q: =1 (E[Guw J#]TP'I) ' Qg i (ﬁépm Jp]+'¥stﬂ) .

Here again the expressions containing énv and 7,75 = ai!zmp,rq-ﬂ‘rﬁfh are
understood as a short notation for the expressions in which both ¢ tensors
are eliminated. "

All operators in (20) (as well as in (15), (11)) are purely C-even. C-
conjugation permutes all D, and 7, in the opposite order, and changes their

signs (because D, is transformed to E#]- Therefore every commutator gives
a factor —1 to the C-parity, and every anticommutator gives +1; we should
not use ordinary products if we want to obtain operators with a definite
C-parity. According to these rules, G, and all its derivatives D,G,,. .-
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(including J,,) are C-odd; v, and o, are C-odd, while 1, 75, and Y¥u'Ys. are
C-even.
The condensates (19), (20) are expressed via (18) as

A = —-B*— B+ B4+ B+ B;—Bs+ By

+ 2mBT + 2mB? — 2mB] — 2mB] + 3m*B® — 4m*B® + m°B’,
Q% = B®-— BS+2B? - 2B§ - 2mB] + 2mB], |
Q% = 2B%-2BS-2B} 4 2B —2B§ +2B;

—  3mB7 + 2mBI + 2mB] — 2mB] — 2m*B° + 2m°B®, (21)
Q% = —4B%+4BS+44mB] —4mB;,
Q% = 2B%+2BS-2B% - 4B} - 2mBj,
Q¢ = B%+ BS 2B - 2mB] —2mBj] + 4mBj,
Q% = 3B%4+ BS-2B}-2B}

—  4mB7 — 2mBJ + 4mB] — 4m*B® + 4m’B°.
Solving this linear system we obtain
£ 1
By = A+3Q: - §Q§+ EQ:%'— §Q5+Qg
. m ¥
+ mQf - 5Q] —2mQf — m’Q° - 2m’Q° + 2m°Q’,
1 1 1 Pt
B = A-zQi-3Q-7Q3-5%+Q
+ 3mQ] - 7Q] - 2mQ] + mQj - 3m’Q° — 2mQ° + 2m°Q?,
1
B = A--Q3-Q5+Q

L
+ 2mQ;~ EQE — 2mQl + mQ} — 3m?Q° — 2m*Q® + 2m°Q°,

1 3 1 1
B; = A+§Q§“§Q§+EQ§+§Q3
m p
£ ?QI ~ mQI - m*Q°® + m°Q°, (22)
1 1 1 1 1 3
BS s -—_.4_-——'8—-—,8,—— E: 1 H__E = 7y8
2 2 4Q1 «1Q~ 3Q3 294 2Q~'+4Qﬁ
3 m m " -
+ Emgi_E_Q;__ng_i__E'Qi_gszG_TnEQg_i_mJQE}
\ i : S 1 1 1 1 % R
O ey e o o s | SRR gL ety | Bl 4
D 2 qgl %QZ-E 323 4‘9‘1 2Q4+ 4(;-}!:."
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mt m :
+ mQ] - —QI—m@I+ S Qi - 2m’Q° —m’Q° + m*Q’,
1 1
B} = A-3Qi+3%
m 3 m” sce .
& mq'{+ EQ; _mQ; b Em?QE h TQ.J +muQ3'

I have implemented the discussed algorithm as = Modula-2 program. It
accepts an arbitrary bilinear quark condensate and expresses it via B¢ pro-
ducing a REDUCE readable output. Jt can be used to express the condensate
via Qf using the formulae (13), (17), (22).

The problem of four-quark classification is much more difficult. Even at
d = 6 there exist infinitely many condensates (Eﬁ[m ---‘T,;,..,]Q} (ﬁm £ T;.a“]Q>1

<Etu“|'[_“1 : ..qun]q_) (Et“'—rm ...fn,“]q}. Those with ¢ > 4 are anomalous and
can be eliminated [8].

3.2 Gluon condensates

In this Section we apply similar methods to the classification of gluon conden-
sates. For each dimension d = 2n we introduce a linear space. We shall call it
the extended space. It is generated by the basis of formal sequences E? con-
structed from D, in which each index is contained twice. Sequences obtained
from each other by renaming indices, cyclic permutations (trace cyclicity),
and reversing (C-parity) are considered equivalent. Physical gluon conden-
sates can be systematically expressed via this basis, and form a subspace of
the extended space. We can choose a basis in this subspace composed from
the most convenient condensates G_f, and extend it to a basis in the whole

space using a subset of E¢, After that we can expand any condensate in
E¢ and then reexpress it via G}-‘ and the selected E¢. In fact E¢ should not
appear if we have indeed selected a complete basis in the physical subspace.

General guidelines for-choosing good basis condensates are similar to the
quark case. First of all, we should include all independent condensates con-
taining J,. The number of derivatives should be kept minimum.

There is only one gluon condensate with d = 4, namely G = (GG,
The extended space is two-dimensional: Bt = DDF, B = DD DU,
G* = 2E% — 2E3. But all this is of no use here.

At d = 6 the extended space is 5-dimensional:

ES = D*D*D?, E{=D'D,D,D,D,, E5=DD,DD,,
ES = D,D,D\D,D,D,, E{=D,D,D,D\D,D,. (23)
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There are 2 linearly independent physical condensates: All condensates are written in an explicitly C-even form (even number of
commutators). They are expressed via E? as

G} = -8Eg+4Ej,+4E},

They are expressed via Ef as - Gy = -8E} +4E+4F},

= ES_3ES+3ES— EY, 3 Ef~4E§+4E§+2E£1—4E§,+Efi, :

= =2E? +8ES - 2E; -4E;. (25) Gy 2Eg — 4E7 + Eg + 2E3; — 4B}, + 2E3, + Ei;, (29)

G? = i(Tx GauGuGia), Gy =(Tx Judu)- (24)

Q
&
Il

A2 B2

Gl = E_5E24 2B 4 4AE)—2ES +4F% —ARS - B2 4+ B3,
We can exclude ES .: AR 4R,
G S AR AR LS 3B VIR L AR S BEL. —uPE L BpL.
Ef = -ng'-lEf-l-iEg—lEg, : 2 i g ’; 8 10 151 13 14
4 2 2 G} = —2E}+8E3—6ES—8E; +12ES —16E2 4+ 4E5 + 8E%,.
e %Gﬁ 2 %Ef +3ES — ggg. (26) PR Wecan cciade BS. .
8 1 8
After that we can expand any d = 6 condensate in (23) and express it via (24) By, = ZG1 + 2Eg — Ej,
and E? ,; the last terms should not appear. We have verified it for all d = 6 2 e
condensates. . Ey;, = ZG:, 3 ;Gs
At d = 8 the extended space is 17-dimensional: 1 5 1 1 1 3
b wB B B B B B B B LR
2022 n? 8 22 il IR e L e R e A ST s SO
BE=DDDD E=D'D'D.D.D.D,, h 1 1 I 3
ES = D*D*D,D?D,, E®= D?D\D,D»\D,D,D,, Bi; = 461-3Ge+ 3G+ B -cE;
Ef = D?*D\D,D\D?D,, E&=D?D\D,D,D\D,D P 3 1 1 1
’ ¥ ~ES B =B B B BB -8
E$ = D’D,D,D,D,D,D,, E§=D?D,D,D,D,D,D;, R i e e S 1 IR G
1 1 3 3 1
E§ = D*D,D,D*D,D,, E} =D?D,D,D’D,D,, (27) E}, = gc:% + EE’? ~-E2+ ;Eg + E§ - EES +2E% - EEg, (30)
E}, =D,D,D,D,D,D,D,D,, E% =D,D,D,D,D,D,D,D,,
o e e Rk B = letect+lot-lotsla
E{y=D,D,D,D,D,D,D,D,, E;,=D,D,D,D,D,D,D,D,, 2 2 2 4
Efﬁ " DFDPDPDFD#DFDPDFT Efﬁ - DHDVDFD#DUDP‘DPD‘” ot %Eg 23 %Eg i EEE + 2E§ + EE’? 8 EES ) EE?G’
E%, = D,D,D,D,D,D,D,D,. - g T
: Eifs = =Gi+G3-Gi— E;+2E;—2E;+4E} - E§ - ES,,
A set of independent d = 8 gluon condensates was found in [2]. We choose - ? ;
i3 o _ 1
one condensate in a different way [7]: F' E:, = EG? & EG% -G8 + 2GS + 268 - GS + EG?
G} = (T GuGuGapGap), G3 = (Tt GuGapGuvGap), . — 2FE3 4+ 3E3 — 2E§ + 4E§ — 2E3.
B " v
Ga = (Tt GuaGarGupGpu)y Gs= (Tr GuaGarGupGpy), After that we can expand any d = 8 condensate in (27) and express it via (28)
Gs =i(Tr JuGudy), Gg=i(Tx A\[DrGusi Gl (28) and E? ,.; the last terms should not appear.

G8 = (Tr J,D? ) I have written a Modula-2 program that expands any gluon condensate
in Ef and produces a REDUCE readable output that can be used for ex-
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pressing this condensate via G""E and selected E{. Using this program, I have

verified that all d = 8 gluon cundensates mdeed can be expanded in the
basis (28).

3.3 Vacuum averaging

After nb_taining an expression for a correlator via background fields we should
average 1t over the vacuum. The first possible way is to write down the most

general expressions for vacuum averages with free indices and to find unknown
coefficients by solving linear systems.

For the quark condensates with d < 6 we have

* Q°
{qa Qp) - 2_211:-5':
i im@?
(@, Dagp) = - 24 (Ya ) pos
3 1 : i
<QEDﬂDﬁqP} v -'::.E [Qb ('i::ﬁ + EU&{J) = zszaﬁa,ﬂ] ’ (31)
po
i : 1
(@oDaDpDygp) = 5633 [Qﬁ(éuﬁ?-r + 08y Ya — 56ay¥p — 3icapys¥s7s)
5 5 :
- 3m@Q (5aﬂ"f-f + 6,61’]"-1 4 EQTTJS . 15&;3157575}

+  6m°Q°(6apVy + SpyVa + 5&7’?’13)]

per

One can easily obtain similar formulae with Gap and its derivatives by anti-
symmetrization over corresponding indices.

For the gluon condensates with d < 6 we have

g £ 2y g 6% Bunbve — Bunbia)
NCFI D 1y - e
(4°ClDaDpGlr). = NC’F;TBD— VR DGE 5 peabio
. 4G?526263ﬁ{61AP5Pﬂ"‘5#6‘5vp)]= (32)
PO = =k

ibe
N2CpD(D - 1)(D — z)f Auvappo,
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+ 0u80apbar + 6uabpabpy + 6,p800bpy — bupbacdpy.

We can substitute these relations to expressions for correlators and obtain
scalar expressions. But these formulae become very complicated in higher

- dimensions.

An alternative and simpler way is to average an expression for a correlator
over p directions. This is done using the recurrent relation (n is even)

pE

PuiPuz =28 = D+4n-— 2(6"”“-‘13“ < Dpn +0p, 5 Ppg -+ Py +°°°
+ Gy pnPiiz -+ Prins) (33)
or the explicit formula
(P2
pﬁlpﬂ: = 'p#“ N D(D "+‘ 2) e (D 4+ n - 2){6}‘1”26“3“" Nt éﬁn—ll"ﬂ- _!_ gl ')?
(34

where the sum is taken over all n!! methods of paring n indices. Here D is
the space dimension; the formulae can be used at any dimension including
non-integer one (the dimensional regularization). After such an averaging
we obtain scalar vacuum condensates for which the methods of the previous
Sections can be directly used. e

In calculations of three-current correlators we encounter the averages
P, - Ppodv, - - -Gu, over orientations of the pair p, ¢ with a fixed rela-
tive orientation. These averages can be calculated using the decomposition
g = (gp)p/P® + 91, ¢ = (p’a® — (pg)?)/p®. First we average over orien-
tations of ¢, orthogonal to p in (D — 1)-dimensional space using (34) with
Sy — 61y = 84 — Pupv/P®. Then we average over orientations of p. It
is clear that if there is only one vector ¢ then the averages are given by the
formula (34) in which one p? is replaced by pg. Some less trivial averages are

1

PaPpquly (D Gin I}D(D 2y ,2) [((D 55 1]1}2? =5 E(M)z)éﬂﬁ 'Spu
+ (D(pg)* = B0 baubpr + banbps)],
pq
PaPpPvy92r9u9v

(D —1)D(D + 2)(D +4)
% [((D + 1)p%q® = 2(0g)?) (6apbapbyy + - )
+ (D +2)(pg)? - 39%¢%) (6arbaudyy + }] (35)
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Figure 4: One-loop diagram for a heavy-quark condensate
p?
(D —-1)D(D +2)(D + 4)
x  [((D+3)P%¢" — 4(p)")byu (Bapbos + )
T (D(pq)z S pzqz)(éuﬁ&rp(s{p +-- ')} i

PaPpPyP59uly

Of course, these formulae can be also obtained by writing down the most
general forms with unknown coefficients and solving linear systems.

4 Heavy quarks

4.1 Heavy quark condensates

If the quark mass is large, all correlators can be expressed via gluon conden-
sates only. This is also true for quark condensates (one-current correlators):

Qi = Y cin(m)G. (36)

n

This is an expansion in 1/m.

In the one-loop approximation (Fig. 4) quark condensates are given by
the formula

# [ (dp =
% = @D =i [ () (oul-ipu-iadse), (1)
D
where A, is given by (4). We use the MS regularization: the space dimension
is D =4 — 2¢,

~ 27\ 2 dP
(2—”) = (‘“ ) =, (38)

T/ p 4ir (27)

18

p is the normalization point, ¥ is the Euler’s constant. We substitute the
quark propagator (4), (5) into (37) and average the integrand over p directions
in the D-dimensional space. The result is expressed via the integrals

= J(8), o S (5) ome-aeo

im? (1 m? . i i m?
wr (- 1) By (2 ).

o i(—1)"
T @i -1)(n- 2)(m2)»-2’

I1 =

w

n > 2. {39)

Coefficients ¢y, with d,, < dk' contain ultraviolet divergencies:

mﬂ

1 d

We define the quark condensate Qi(u) renormalized at the point p as the
sum of the series (36) from which 1/¢ poles are removed.
We obtain the following results [7, 5]

1 1 1
S s @3 o . B0 S L BE5
DY 2k 2412[ 6m°(L + 1)N+mG 15m3{61 2)
1 8 8 8 8 8 _ 468 — 18G8
. ]
; 1 PR e T
1 8 8 8 8 T 8
+ (3G +2G3 -~ G3 - 9G4+ 9G5 — 1G5 — Gr) + - |,
i § 1 1
G S 6 b S £ 8 "8 8
V= g | L g 86y = 5 Ge= 40a) & ]
Yoon i Im3( L + 1)G? LGE
¥i = T12x2 | m (L +1) +2m 1t :
1 :
Q = 75-(G1+6G2-4G)+ -,
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1 1 1
7 - 6 1 8 1 8 8
Qi - _m mLG=+‘6_ﬂ_1{4G5_§Gﬁ_G7)+"' 3
3
& = -5 [3m*(z+E)c*+z(af—zea—zr;:)+---},
1
Q; = 2452 [12"12(134'1)3?—5(0'?-G§-2G§+EGE—4G§+G§)
+ }
L
e, 8
¥s- = =~ toy,
L
Qs = FGE'F""
QE = 0+4.-,

where [ = log f:;_: As we have already mentioned, the series (36) for the
anomalous condensate A includes only d = 8 gluon condensates:

1
32x2

Many of these results can be obtained using various physical considera-
tions [7] instead of the described “brute force” method.

A= -

(GT + G5 — 4GY). (42)

4.2 Heavy quark currents’ correlators

Correlators of heavy quark currents can be expressed via gluon condensates:
I(p) = ) _ an(p?, m)Gha. (43)
n

The one-loop diagram (Fig. 5) contains two propagators of the type (4), (5)
(don’t forget that one of them has the vacuum momenta sink on the other
side, and is given by the formulae mirror symmetric to (4), (5)!). After
differentiations we obtain a formula with the integrals

f (;::)D (k2 - mﬂ)n(a(f_)ip)z —m2)m’ (44)
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Figure 5: One-loop diagram for a correlator

The denominatots can be combined using the Feynman’s formula

1
1 I'(n+ m) / 2" (1 - z)™1dg (45)

anb™ ['(n)T'(m) J [za+ (1 — z)p]nt+m’

After the shift of the integration momentum k — k + zp the denominator
becomes k?+z(1—z)p? —m?; we may average the numerator P(k+zp) over k
directions. The integrals reduce to the form (39) with m? — m? —z(1— z)p?.
We are left with one-dimensional integrals over the Feynman parameter z of
the form [2]

1
dz
_ (2n—3)1 u—l)" JaEl S e (a—1)““‘"
" (=10 [( 2a ﬁlogﬁ—1+£(2k—l)!! 2a :
where £ = —p?/m?, a = 1 + 4/¢€. Using these formulae, we can calculate

any gluon contribution to a heavy quark currents’ correlator. The simplest
example of d = 4 is considered in [1]; contributions with d = 6 and d = 8
were calculated in [2].

5 Light quarks

5.1 Limit m — 0 in heavy quark correlators

Let us consider the heavy-quark correlator (43) (Fig. 5) at p? > m?. We can
express it via both gluon and quark condensates:

I(p) = Og(p) + Ng(p), | (47)
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Figure 6: Quark condensates’ contribution to a correlator

Ig(p) = 3 ah(p*, m)Gn, To(p) = D bi(p’,m)Qs.

Here II¢(p) corresponds to the contribution of the region where the virtual-
ities of both quark and antiquark in Fig. 5 are large (k? ~ p*), and Hg(p)
corresponds to the contributicn of the regions where either the quark or the
antiquark has a small virtuality (k* ~ m?). These contributions are usually
depicted as the diagrams cf Fig. 6.

The quark condensates’ contribution (Fig. 6) in the coordinate space is

lg(z) = (@(2)T'S(z, 0)Tg(0)) + c.c., (48)

where T is a v 'matrix, and c.c. means charge conjugate. In the momentum

space
e 1
Ho(p) = <E(1 ~iD o84 - g‘ﬁ;ﬁ,saaaﬁ + - -)FS(p)I‘q> t+ce  (49)

We substitute S(p) (4), (5) and average over p directions, and finally reduce
(49) to the basis quark condensates following the Section 3.1. The contri-
bution of A is omitted because this condensate is a gluon one. The quark
contributions-with d = 7, d = 8 were obtained in [6, 5].

Having obtained Ig(p), we can find Iig(p) from the heavy-quark corre-
lator II(p) using the expansions (41):

Do) = 3. a4a(p*m)Cn=T(p)lc - Mo(p)le

Y an(p? m)Ga — D bu(p?,m)ckn(m) G- (50)
n kn

The coefficients a, (p*, m) have singularities at m — 0 arising from the regions
k2 ~ m?. These singularities have to cancel in (50) giving a, (p?,m) finite

22

at m — 0. Using the results of [2], the gluon contribution with d = 8 was
obtained in [7, 5.

5.2 Minimal subtraction of mass singularities

The method of the previous Section is good when the heavy quark correlator
is already known. But when we want to calculate a light quark correlator
from scratch there should be a simper way then to solve a more difficult heavy
quark problem first. Such a method was proposed in (4], and used in [5] for
d = 8 calculations.

Now we want to go to the limit m — 0 before D — 4. The difference of
a renormalized quark condensate and a bare one is (see (40))

1 1
Qk AIE Qli:ﬂ.rﬂ = _E Z mdj.—dn,},rkncn — —E Z Tﬂ:ﬂGu- (5]_)
e <di dw =dy

At m = 0 all loop integrals for QL™ vanish because they contain no scale
(ultraviolet and infrared divergencies cancel each other). Therefore we obtain
for the gluon contribution to a correlator (see (50))

No(p) = T)lo +5 3 bu(p)1enGo (52)

da :dh

Here II(p)|¢ is calculated in the MS scheme with m = 0, and -y, are mixing
coefficients of quark condensates @ with gluon condensates G, of the same
dimension (coefficients at L in (41)). Omitting 1/¢ poles we finally obtain

Ig(p) = (p)lc + Z %’rknGn. (53)

dn=dy

The quark condensates’ coefficient functions by should be calculated at m =0
up to linear terms in £ (using D-dimensional tensor and v matrix algebra,
and in particular D-dimensional averaging, see thr Section 3.3).
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