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ABSTRACT

The quantum effects in the total intensity of radiation at
channeling have been considered. It is shown that the
problem can be considered in frame of’ magnetic bremsstrah-
lung limit. In a region, where quantum effects are weak, the_
general formulae have been obtained for quantum corrections
to the total intensity of the channeling radiation. While in
diamond and silicon the quantum effects become noticeable at
energy of order 5 GeV, in tungsten the quantum effects lead
to appreciable decreasing the radiation intensity already at
energy 1 GeV: order of 25 7% at room temperature and 347% at

T =177 K.
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1. A radiation mechanism at motion of fast charged
particles in oriented single crystals depends essentially on
their energy €. At relatively low energy (order of MeV in
axial case and tens of MeV in planar case) when in the
transverse potential well, which forms the channel, there
are a few levels (a number of levels « Ve in an axial
potential well and « Ve in a planar well), the channeling
radiation is connected with transitions between these
levels. With energy increase, when the number of Ilevels
become large, classical description both motion and
radiation become vaiid. The character of radiation depends
on parameter*} p = ZVDs/mz ["Ju is the value of the potential
of an axis (plane), £ (m) is the energy (mass) of the
particle). At p « 1 the radiation is dipole one and at p » 1

one has magnetic bremsstrahlung limit [1]. In an inter-

-mediate region where p~1 the theoretical description of the

#
"The system of units h = ¢ = 1 is used.



radiation spectrum is rather complicated problem even in
~the planar case [2]. At last, with further energy increase
it appears that recoil at radiation become important and the
nature of radiation turns out again quantum. This situation
is controlled by the parameter xs:eEse/ma, eEs= VG/ag (}EZS is
the value of the electric field, a_ is the screening radius)
and at ¥ « 1 the classical theory is valid. Because of p/}:;
~ ZmaENIUE, at x;l, when the radiation is essentially quan-
tum, one has ,cwl{.'}2 so that the radiation is of the magnetic
bremssirahlung nature. For this case the general radiation
theory was developed [3, 4].

However, one should to has in mind that the quantum
effects in the magnetic bremsstrahlung are "turn on" rather
early. For example, already at x=0.1 the classical value of
total intensity is around 1.5 times larger, than correct
result. Even at ;w«-l-:i}_2 (p~1) quantum corrections are getting
quite noticeable. Just in this energy region (when p~1)
which in axial case ranges for different crystals from
several hundreds MeV to a few GeV, the radiation intensity
at channeling exceeds the radiation intensity of the brems-
strahlung and the radiation at channeling may be used as a
powerful source of the hard directed radiation. This paper
is devoted to consideration of the quantum effects in the
channeling radiation.

In the classical electrodynamics the total intensity of

-}

the radiation ~depends on local characteristics I(p) =

™ ——

——

= (2/3)e’m°x(p), where x(p) = eE(p)e/m° here E(p) is the

local value of the electric field at a distance Sfmm an
axis (for definiteness, we consider axial case). Due to this
fact the total intensity of the channeling radiation is
obtained by integration aver S of the Ilocal intensity I(SJ
irrespective of the set of the trajectories.

As the weight in this integration the distribution
function in transverse phase space is used. This function
depends on a thickness of the crystal. In thin crystals it
is determined by the initial conditions. In thick crystal,
the thickness of which is L » l'd [1{I is the dechanneling
length, the length at which the distribution function is
changed appreciably), the distribution function in the
transverse phase space become uniform one due to multiple
scattering [S]. As the result, the total intensity of the

channeling radiation in thick crystals has the form of the

‘average:

I ='J' I(p) dzp(s, (1)

where S is the area of a cell in the transverse plane which
contains the projection of one atomic chain, S = nrz, then
s 1/S is the density of the chains of atoms (axes).
Integral in eq. (1) is taken over this cell. This circum-
stance is particularly valuable in the axial case, where the
description of the spectral distribution of the radiation

still wait for solution. However, the formula of the type of



eq.- (1) in nondipole region (pzl) is much simpler than a
calculation which is based on spectral distribution in
planar case too. In the frame of this approach the radiation
yield at axial channeling was considered in the pﬁper [6]
using classical electrodynamics. The experimental data on
the radiation yield [7, 8] agree quite satisfactory with the
theory predictions.

2. However, the quantum corrections should be taken
into account in the upper part of the energy interval
considered in [6]. Generally speaking, in the quantum region
the simple formula of the type (1) for the total intensity
does not exist. But in magnetic bremsstrahlung limit (p»1)
the description of the radiation is getting again local. So,
for us the interval 15,05102 is most interesting, because at
p=1 the quantum correction are very small and classical
electrodynamibs is applicable and at ,\t:ral[]2 (xz1) the mag-
netic bremsstrahlung (local) description is wvalid. This
means that the most strong effects of nonlocality in the
total intensity of radiation (or 1in total energy loss)
become apparent just inside of the discussed interval of p,
i.e. in the region where one can put x«l. For analysis of
this pfublem we will wuse the general quasi-classical
equation for energy. losses (see eq. (2.46)} in [4] and egs.
(2.3), (2.5) in [9]). If one represents the particle
velocity in the form,V(tJ=vD+v(t, vn), where ¥ is the mean

particle velocity, then the energy losses E are

R T e o O s o 3 i

ca [na)
iezmz udu dt :
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u = w/(e - w), w is the photon energy, ¥y = ¢/m, f (u) =1 +

+ uz/[2{I+u)], v =9t L o
1,2 1,2 1,2

integrand in eq. (2) into a series in powers of u (the main

t ¥ tT/2. Expanding the

contribution is given by the region u ~ x « 1) and retaining
the terms which give the contribution up to ;1:4, we obtain

after integration over u:

e m dt > ; \
E=En+ E1+ I-:2 e dt s 7, [1 + ¥ (vl- vzl /2] X

xl-i/¢® + 6/¢°] + (:ai/sb“J[IZ + (13/2)7°(v,- "z}] (4)

In this expression the term l/gbz gives the classical formula
for the energy losses. Because the function ¢ (tT) is odd the
integral over T may be taken as half-residue in the point

T = 0. As a result we obtain known local expression
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= dEG/dt= (2/3)e” 1}2?(‘1 s {273 ezmzxz. (5)

cl

Precisely in the same way one can calculate the term with
4 : 5 : =
1#¢ which gives the second quantum correction (oc-x‘ﬁ. It is

also universal and local:
I = dE /dt = 32e°m” [{{rarz/m}”’ + (35/16Um4}[8[d2v/dt2}2 :
3 3
- 41 (dv/dt-d v/dt }]] (6)

But the term containing 1/’@52t is, generally speaking, non-
local. For it calculation one have to substitute into (4)
the given trajectory (the explicit expression for v(t)). We
consider here rather general situation of quasi classical
motion following an elliptic trajectory discussed in [9]
(Section 4). For this case one has for the first quantum

correction in terms of mean radiation intensity: <Il> =
X

=1L }J-dt..., where the explicit representation of the inte-

0
grand is given in eq. (4):

as = - (55¢’m®/ 8(3)” zh]<13>k1(pJ (7)

here W is the motion frequency, T = anmn is the period of
the motion
a1
B dt
Seamd e Lol
5

0
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(8)

v

where the components of the transverse velocity of the

particle are v =a cos wt, v = b sin w t,
b'4 0 vy 0

p=72(a” + b)), a = (a’ - bI/(a% + b)),
e 1+p(1—sin2f/tz)f2, g = (p/2)[sin2t/2T - sinz*r/'rz].

1/2

/S51A, A = <vi>3’ ’

B = (48(6) <l 1%,

<..> means avaragin g over time, two last terms in brace in
eq. (4) are subtraction terms. Let us stress, that egs.
(5)-(7) are obtained as expansion in terms of yx, but are
exact functions of the parameter p characterizing multi-
polarity of the radiation.

In eq. (7) at « = O we have circular motion and at a=l
we have planar motion. For these cases the function kl{p}
(eq. (8)) is presented in Fig. 1. We use such normalization
of this function that kl[p] % 1 when p » 1, what corresponds
to magnetic bremsstrahlung limit. The curve 1 is for
circular motion and the curve 2 is for planar motion. It’s
seen, that deviation from magnetic bremsstrahlung limit is
larger for circular motion, but the interval between curves
1 and 2 is rather narrow and intermediate values of « is

lying inside this interval. For vcircular motion the
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Fig. 1. The function klip}'(eq. (8)) for circular(l) and

planar (2) motion.

asymptotic expansions of the function kl[p) are,

(112(6) "% /27504 | 5el
k (p) = (9)
1 + (114/275p) o » 1

Let us note, that the asymptotic expansion at p » 1 is valid
actually up to p=l1 (at p=1 the accuracy is better than 2 %).
Let us note also, that for arbitrary p the function
kl(p} ~may be presented by simple interpolation formulae:
1/2
kl(pJ= [1+1/p:| for the circular motion (the accuracy is
: 1/2 .
better than 27%) and kI(p]=[1+ln 2/,0] for planar  motion
(the accuracy is better than 1%). This may be useful for
numerical calculations.
Finally, we present the explicit form of the mean
intensity at the elliptic quasi-classical motion as a series

in powers of x which is valid for arbitrary p

v Ak g
<[> =—em |<x > -
3 16

<x3>k1(p} + 48 <x4>kz[p} 4109

where the function kl{p] is given by egs. (8), (9), and
k(p) = 1 + (49/40p(2+a”)) , | (11)

what follows from eq. (6) with allowance for eq. (8).
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3. Now, we will use different approach. We will start

from the quantum radiation theory at quasi-periodic motion
[9] which may be used for description of the channeling
radiation if one knows the set of the trajectories. In this
paper it's shown also that when p » 1 the general results
turn into formulae of the magnetic bremsstrahlung with
corrections « 1/p which control a transition to this limit.
classical radiation

Let us take into account that the

intensity is proportional to the square of acceleration
(quantum corrections contain higher powers of acceleration).
S0, on the strongly stretched trajectories the particle
radiates mostly in the region u}here acceleration is maximal,
i.e. on the small part of the trajectory. In another words,
the radiation is quasilocal. The least favorable situation
is in this sense for circular trajectories, as we have
already seen at the discussion of the function kltp] (see
Fig. 1). Therefore we consider the radiation intensity with
1/p corrections just for circular motion (see eq. (4.16) in

[9]):

dl = dIl - dI /p, (12)
; m
where
4ezm2udu- 1 d
dl = flu) — (kK (k) +
€ 15 v3 m(1+w)®] 3 dk 32

12

d
+ (flu)-1/2) — (kK (<)) |, (13)
dx

here dlI is the radiation intensity in the magnetic brems-
Im

strahlung limit, u=w/(e-w), w is the photon energy, f(u)=

=1+u2/2(1+u]. ﬁ=23'2viz, ¥ is the transverse pérticle velo-

city, e=y/m, Kv[z} is the MacDonald functions, k = 2u/3y, ¥

is the quantum parameter in our case x=/{E] wﬂe/mz, o is
the motion frequency in l-system. Let us stress, that this
expression is valid for any value of the parameter ¥, but
cnntﬁins only the first term of the expansion over 1/p.
Taking in (13) the integral over u we obtain the correction

to the total intensity:

4]

2e m
e |
15/31{

0

2
Tyu(3+2u+u”) KUB[Zu/G;g] +

du
+ u¥(3+u+2u’) K (2u/3y) £ (14)
2/3 5
(1+u)

where integration by parts was carried out. The integral in
this expression is of the type encountered in the theory of
the magnetic bremsstrahlung. So, using the standard methods
(see e.g. [4]) one can obtain the asymptotic expansion of IC

at small and large x. For yx«l1 one obtains from eq. (14)
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[ = e’m®x® 119 V3/20) - (98/5)x + ...1. (15)

Using known asymptotic expansion of the intensity of the
magnetic brems:strahlung at x«l (see e.g. [4]) we find with
allowance for- (12) and (15) the expression for total
intensity at x«l, which agrees, naturally, with (10), (11)

and (9):

55v 3 114 > 49
'x[l+-—]+48x [I-!-— +..]
275p 80p

2
I=- ezmzxz[l -
3 16
(16)
As known, the series (16) is asymptotic series, but the
corrections of the order 1/p, which control the transition
to the magnetic bremsstrahlung limit, have the coefficients
smaller 1. _
4. The parameters x and p entering eq. (16) are depen-
dent on local values of the field. So, for the calculation
of the radiation in crystals one has to do averaging as in

eq. (1). We will use the expression of the axis potential in

the form (for details see [3], [4]):

Ulx) = Vﬂ [ln(l+1/[x+n]) - ln(1+1/[xu+1'.')}]. (17)

-5
where x=p2/a:, ‘v’ﬂﬂZez/cl, d is the average distance between
the atoms in the chain, anuffa: : 1:.11 is the amplitude of
thermal vibrations. Then for the current values of the

parameters ¥ and p one has:

14

x(x) = :t:szv’_z_c' glx]), plx) = 4V e }cg[x]x’m2 - (18)

here g(x) = 1/[(x+n)(1+x+n)], the value X is defined at the

beginning of the paper. After averaging of eq. (16) we

obtain:
_ 8e’m%” 55v3 57V3n .
] = e FIS(y) = X R(n) - ——— A(n)+48x T(n)|(19)
3x 16 : 160ma
O g
e
where xu = rﬂ/as,

S(m) = (1 + 2n)In.({1+n)/7) - 2,

3 1
R{Tj}= 5
4 Yyp(l+n) ( v + V(1+m) )

Aln) = n_w ¥ (I+'r}}_1"!2 + 4 (V(1+n) - ¥q ), (20)

T(n)=4 [(1/1}+1/{1+T]}]/3—4 In [{1+n}/n][5n[1+n]+1] +20‘n+10].

The terms with the functions S, R and T are written with the
same coefficients as in the decomposition (16), the linearly
increasing with the energy parameter 7 depends on the field
on the screening radius. These functions are presented in
Fig. 2 in the interval of m within which are all the used
crystals. It’s seen that the functions R and T are larger
appreciably than S particularly for small amplitudes of

thermal vibration (mw). This means that the distances smaller

15




s() +k(1) ,7(n)
2

/

= e (cev)
5

Fig. 3. The mean radiation intensity at channeling divided

Fig. 2. The functions S(n), R{n}. and T(%n) in interval of the

parameter n within which all the used crystals are

by the mean classical intensity versus electron
energy at room temperature in single crystals: curve
1 is for Si (axis <110>), cﬁrve 2 is for diamond
(axis <111>), curve 3 is for Ge (axis <110>). The
curve 4 is for W (axis <111>) at room temperature

and curve 5 .at T=77 K.
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than the screening radius are contribute noticeable. From
above it .fnllows that the validity region of the expansion
(19), which is quite satisfactory if the corrections are not
exceed 10-15%, reduces in the crystals with small amplitude
of thermal vibrations. The correction «l/p gives the energy
independent term with the function A(n). Comparing with the
main term (S(y)) it forms (at room temperature): in diamond
4.7% and in tungsten 4.5% (for axis <111>) and in silicon 3%
and in germanium 2.8% (for axis <110>). Let us remind that
expansion over 1/p is valid up to p=l. Thus, in the validity
region of the exgan.sion (12} the contribution of the term
«l/p is smaller than 5% and is independent on energy. As a
reéult one can use magnetic bremsstrahlung description of
the radiation intensity and 1/p term can be estimated.

With energy increase the quantum corrections become
' (16) is

situation one has to put in eq. (1) complete expression for

large and expansion getting invalid. In this

the radiation intensity valid at arbitrary x (see, i.e.

[4]). One can use also the approximate expression for the

radiation intensity (the accuracy is better than 2% for any

x):

| -2/3
I(x)a&/a)ezmzxz[1+4,8[1+xlinf1+1,T;g)+2,44x‘°‘] : (21)

The result of averaging of this expression is shown in

Fig. 3 where the ratio T/Tcl is presented, where 1 is the

cl
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mean classical intensity, as the function of the electron
energy. The curve 1 is for Si, axis <110>; 2 is Ifc:ur diamond,
axis «<111>: 3 is for Ge, axis <HO>; 4 is for W, axis <11,
It is seen, that the quantum corrections E);ce,ed 107 at the
energy near S GeV in Si and diamond and at the energy near 3
GeV in Ge. So, for the energy up to 5 GeV considered in [6]
the quantum corrections in these crystals are rather small.
The experimental data for Si and diamond [7, 8] are known
for the energy near 1 GeV, where the corrections are a few
percent what is less than accuracy of both the theory and
data.

The situation is different for tungsten where already
at the energy 1 GeV (axis <l11>, room temperature) the
correction dependent on energy is 19% (the correction o« 1/p
is up to 4.5%). As the result, at the energy 1 GeV the
radiation intensity of electrons in ‘W for this conditions is
777% from the classical one. For energies 2 GeV and 5 GeV one
has 66% and 477 respectively. Thus, in W the quantum effects
in the radiation are very strong. Thej,' are still more strong
at low temperature (axis <I111>, T=77 _K. curve 5), where tha
energy dependent correction is 27% at 1 GeV (the correction
« 1/p is up to 6.5%). The experimental situation in tungsten

is still uncertain.
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