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ABSTRACT

A radiation of electrons and positrons in single crystals in
coherent bremsstrahlung (CBS) region has been considered for
the case when CBS has the most hard spectrum. Under this
condition a particle moves near a crystalline plane (in

fee(d) crystal for axis <001> this is the plane (110)) and
influence of the continuous plane potential should be taken
into account. This potential gives additional contribution
in soft part of the spectrum and affects on hard photon
emission. Observation of this phenomena at high energy is
discussed. :

@ Institute of Nuclear Physics, USSR

1. INTRODUCTION

The interaction of charged particles and photons with
single crystals has been wunder active theoretical (see e.g.
a review [1]) and experimental [2-7] investigation during
recent years for energies of projectiles of hundreds GeV.
The most detailed experimental analysis was performed for
initial particles incident along one of the main crystal
axes under channeling conditions or close to that.In this
case the radiation process is owing to the action of
continuous axis potential being a dozen times more intensive
than incoherent radiation which is due to the particle
scattering on potential fluctuations (the Bethe-Heitler
mechanism). Besides the primary processes of a photon
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emission by a charged particle and creation of an e e pair



by a photon the electron-photon showers formation [6] was

The characteristic

well. lengths of shower

investigated as

formation turn out to be much shorter in crystals than in

corresponding amorphous material owing to significant
enhancement of the primary processes in crystals. This
property can be used side by side with the specific

dependence of the shower characteristics on the angle of
incidence ﬂﬂ and initial energy to create [8] a small-size

detector of ultra-high energy electrons and photons with

angular resolution ﬁﬁﬂilo_z. Note, that the entire set of

experimental data obtained is in good agreement with the

developed the oretical description (1] of the phenomena
mentioned.
Concerning the radiation spectrum in the axis

pcitential, relatively soft photons are mainly radiated even
at particle energy € of hundreds GeV. For example at e=100
GeV the peak in intensity spectrum is situated for Ge <110>
0.05 ¢ (see fig. 1
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axis at the photon energy (frequency) w =

in Ref. [1]). Remind, that the hard peak in electron energy
loss distribution observed first in Ref. [3] is owing to
high photon multiplicity in a crystal of sufficient

thickness, i.e. to the successive emission of a few

relatively soft photons registered as one event.

However hard photons can really be emitted by high

energy particles in crystals at definite conditions with a

probability much higher than in corresponding amorphous

Compton

medium. It occurs at the angles of incidence ﬁﬂaﬁ EVn/m {‘Vﬂ
v

is the scale of ‘axis potential, m is the electron mass),

when the mechanism of radiation changes. At such angles of

use the rectilinear trajectory

the

incidence one can ap-

proximation to evaluate characteristics of particle

motion and the qualitative features of the radiation process

can be easily analyzed in terms of equivalent photons.

Really, in the frame of reference moving with relativistic

velocity along the initial particle momentum the crystal
field can be repres_ented as a set of the plane electro-
magnetic waves. As it was emphasized in Ref. [9], the most
important distinction between the equivalent photon spectrum

in ecrystal and that in Bethe-Heitler case 1is the

discreteness of the spectrum in crystal and connected to
that the existence of a minimal frequency of equivalent
photon. The radiation process can be represented as the

scattering of equivalent photons on a charged

particle. The known theory of coherent bremsstrahlung (CBS)
[10, 11] is exhausted by this picture both qualitatively and
e.x.  Eq.- (4.8) in -Ref. ~l]). “The

modification of CBS-theory going beyond the limits of first

quantitatively (see

Born approximation on crystal potential was developed in

Ref. [9].

particle moving in the field of a plane electromagnetic wave

The change of an effective mass of a charged

(a set of such waves in crystal) is additionally taken into

account in the modified theory. The 4-momentum conservation



in Compton effect yields:
s | (1.1)
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here y=e/m; ﬁph is the angle between the momentum of
outgoing photon and the initial particle momentum '13;
s=2(qp)/m>, [qp]ﬁque-aﬁ. The momentum q, of an initial
(equivalent) photon is in the crystal case one of reciprocal
lattice vectors El} taken in a corrasponding frame of
reference. In the crystal c.m.frame one has: s = 2€|q"]/m2,
qQ = (q_}p_)]/]pa|. The CBS intensity spectrum has the peak
situated just at the boundary (according to Eq. (1.1))
frequency mb=es/(1+s}. For different angles of incidence a
crystal is characterized by certain set of waves, every one
having its own value of the quantity q- The position of the
most soft peak in the CBS intensity spectrum is cdetermined
by the minimal value Iqll[min dependent only on the geometiic
factors. It turns out that at given angle of incidence to
the axes o the parameter jqf[]mln takes a maximal value,
when the particle momentum p_} is in the (110) plane forming
the angle 190 « 1 to the axes <001> for fcecld)-structure (C,
Si, Ge) and to the axes <110> for bcc-structure (W, Fe).
Thus, other things being equal, one gets the most hard CBS
spectrum when particle is moving under plane channeling
conditions or not high above plane potential barrier. In
this connection the’ influence of the field corresponding to

the continuous plane potential on the radiation process

—ﬁ
| | |

should be taken into account. This field in the first place
leads to an ordinary radiation at planar channeling giving a
contribution to the soft part of the spectrum and secondly
affects the emission of hard quanta. ' |

The influence of an external field on Compton eff ect
was considered in Refs. [12-14]. Haﬁev&r, the results
obtained in (12, 13] can not be applied directly to our
case, in particular, because of the initial plane wave was
assumed to be unpolarized, when in a crystal equivalent
photons are in general polarized. In the next section a
straightforward derivation is given of the formulae for
radiation spectrum taking into account an action of the
external field and the change of the charged particle mass
in the plane wave field. The c¢orrespondence of this formulae

with the results of Ref. [14] is established.

2. DESCRIPTION OF THE RADIATION
SPECTRUM UNDER PLANAR
CHANNELING CONDITIONS

Let us start from the general formula derived in
Ref.[9] for the radiation spectrum at sufficient high energy
for arbitrary crystal orientation:
iam” 3 g -3, =
¥ = J- € rﬂ F(F—'},'\'} ) a% - [ Z G[q ]ql
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here B=c/c’+e' /€, €' =¢c-w; q_=[q_>v_;] ,ﬁ;) is the mean velocity
I -
of the particle traversing a crystal; ro(t)=r + tv_;; a=1/137

is the fine structure constant; the crystal potential is

- =
used in the form of U(r_})=EG[q—}}e_Lq =
2 — -, sin(q + q’ )t
A= i‘-;ﬂf{ﬁ 3 G( q )G( q") (3 _q}’}[ GSS o
%%; 2 L + 1 £
q,4" mqgq (g + q')7
o I I
sin(gt) sin(q’T)
I I -i( 4+ ¢’ P[) ;
- : g = (2.2)
e - alx ;
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The function F(7, 6 ) in Eq. (2.1) gives the coordinate
distribution depending on the parameters of the incident
beam and generally speaking on time. Below the crystal is
~assumed to be thin i.e. the kinetics of this distribution is
neglected. As it was shown in [14] the problem of a photon
emission by a charged particle in simultaneously acting a
plane wave field and an external one can be solved
analytically only if the radiation in a pure external field
has the magnetic bremsstrahlung nature. For that in the case
under consideration .the parameter P¢=2U0€/m2 where Uu is the

potential well depth should be large: pc» 1, and the angle ¥

m

of the particle velocity ?ﬂ to the plane should satisfy
the condition ¥ = UU/m. When the angle ﬁn of the vector
_?}u to the chosen axis is small, the contribution to the sum

_§ is given by the vectors _q}t situated in the plane

q
perpendicular to this axis, i.e. all the sums become two-

dimensional. The continuous planar potential corresponds to
the terms in the sum with ﬁt perpendicular to the plane.

To separate this contribution we split all the sums into two

(), (W) (F)
%

" %‘
arts: £ — Z= , where the sum
p L 2= & E contains q,

q L a, q(.
for which q — 0 when ¥ — 0, and the sum Z ) contains all
the others J‘i. The functions contained in the sum Z[F} can

be expanded in powers of |q |t « 1. After that this sum is .
i
expressed in terms of continuous planar potential Ul(y)

= _% G( Tffy} e-iqy}f’ where y is the coordinate perpendicular

q
y

to the plane. Carrying out these transformations and

changing T — Te/m° we get from Eq. (2.1):

o~ immz dz —_— dt 2, — —3.2
e Py F( pu,ﬁﬂ}j [1+{31: ST N }]x
dx 2nE S{, ¢ =10
)(exp{*iur [1 +1° 2/3-4( AN B)? +p2 + & ]} o e

= 2 : - =
here pﬂ is the coordinate vector in the plane perpendicular
to the chosen axis, Sn is the area per one axis, over which

coordinate averaging is carried out, the quantity B is de-



termined in Eq. (2.1), u=0 /¢’, x=w /¢,

R if (s)/s
= | _ AWl 2 >

e '"_Z: Ok g1 0, it ?t?}{t] L) ,
7o q mq isf (s)/2

t I

s=2q e/m°, s’'=s(q’)
i i

f1[5]=25in{5'r/2]/5‘c. f2[5]=f.vud{5tf2) —flﬁs}, (2.4)
=L edrd ey, p2= T 160 i/mlA( T g P
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m - —3 i
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F v oo 26030
t £, Sy i
- - (4.4 ][f (s+s5’)-
q,.q 2 ’ ; i
t Mg g
[
T S 5y
“6—}+—)‘ u]e_l-{ I‘[t}.qt qt] !
d+ 4,
Note, that ]x_)| = em_ade/'dﬂ = em_ajeE[}r][ = eIE(y]|/(mED},

where E(y) is a maguitude of the electric field of the plane
at the distance y from it, Enmmzfe ¢1.32-10"°V/cm is the
critical field. This coincides with the standard definition
of the quantum parameter x characterizing the properties of
magnetic bremsstrahlung. If we denote time averaging by
<...> , then the parameter ps2 characterizing in particular

the intensity of an electromagnetic wave can be written in
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the form of

(w) -
pr2=<. ¥ G( q,)G( q”) L,

- -3, - (4 q t
Tt L, 2 ' t ot

i.e. the average value of the first term in the double

sum E{W] in Eq. (2.2) has been isolated in Eq. (2.3). Note

more, that the average value of the quantity z is equal to
zero. The Eq. (2.3) completely corresponds to Eq. (8) of
Ref. [14], if we substitute in the latter a set of crystal
waves in place of one wave and let EE=U, since in Eq. (2.3)
an initial particle is assumed to be unpolarized. The
exponential function in Eq. (2.3) can be expanded in the
wave fields (terms containing E[W]}. At ﬁﬂ » 'ﬁv such
expansion is valid (see discussion in section 4 of Ref. [1])
at arbitrary photon frequency. When |s|»l it is valid in a
neighbprhoud of the hard peak position for ﬁna ﬁv as well.

Carrying out this expansion, we find after time averaging:

oo

: s
ii?far P j 4 Ff}',ﬂ{}] J.
dx 2ne d e

X

dt
T-i0
pl

Xexp [—iur [l+px2+rzxzx3]:| *{1+!3sz2+
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+E{w}|(}(_q)t}|2_}2 = : -
_q} . mzqz q, [[1+Br X ] - [iurflis]—éml{fz{s)utu} ]+
t I

(2.5)
+A- [sin(srzZ]Miuﬁlrzuzsf 2( s}] -sin(st/2) ,

here dprI is the distance between the planes, near which the
motion occurs; !a1=2{ _;i:}"ﬁ}t}z/xz _q}:, pu=x/|s|. In what follows
we assume the parameter s to be positive: s » |s|=2£:lq" |Xrn2,
since the integrand in Eq. (2.5) is an even function of s.
In the case of one wave considered in Ref. [14], the
parameter hl has the following form: h1=1+hacos(2¢l), where
¢1i5 the angle of the wave polarization vector to the
external field direction, and }‘3 is the degree of wave
linear polarization. A comparison of this expression for hl
with one obtained in a crystal case proves, that equivalent
photons in a crystal are completely polarized (?«3=1] along
the direction -at. The parameter p characterizes (see Ref,
[14]) the strength of an external field in the sense of it's
influence on the Compton scattering of wave photons (on the
coherent radiation in a crystal). The order of magnitude of
the parameter p is the ratio of the momentum transferred by
an external field to a charged particle on the wave length
to it's mass.

By integrating in Eq. (2.5) over T it is convenient to

go over to the variable z=|s|t and to carry out the

12

integration by parts of terms containing high powers of

T. All the integrals are taken by means of the formula:

o [a4]
2 e
S {_i?o ciFAZ A B Y de K (x) + ﬁ{—t][ i-
ML il 1 T["]‘S—‘ 1
S . a 3
: (2.6)
oo
1
-_S_J'dx[ 1(x) + 1 ltxl]]
a <3 i

and relations obtained from it by differentiating with
respect to t. In Eq.(2.6) Jv are the Bessel functions of the
first kind, and Kv are the Bessel functions of the third
kind (MacDonald functions); a=2t"%/31. The integration over

Tt in Eq. (2.5) yields:

dw 25 =
AR n:m_‘l‘ y F{y,ﬂ[}] {1+p/2]-B*Kz[zﬁ]—Idx Kl{x] +
dx nev 3 dpl = G s
0
e 2 a o
ey 4 {( ldx K (x) - 2g |dx K (x) +
Z 2 2 9, g1+va S g1J-XLX
> Jx q“ 7 3 zZ -3
qt +
[r] (54
(g,- v}[ﬁ{u—uDJJ}ix K, (x) + nﬁa(uﬂ-uz[l- %-_-J'dxul(xn
Z g z ‘3
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1/3
0

+] 1[:c;}]]]+ pv(Sxeu]ua [(g4+4vg2]21”3 Kl{z+}-2ﬂ[1—h1]z
g 3

T
KL[ zo]+{ g4-4vg2) [ﬁ[u-uullfl_i z )+ f—éf{un-ul[ Jl_{ zm)+~_l \ (z) ]]

3 3 3 3

1k i Sl 2/3 2/3
z ]+v (3x/2u) [(gz-gs)z+ Iiz_{z+}+2[g2+g3}zﬁ KEEZU} +

" , a

+(g2"galz_2_"3[ﬁ(u-uD)KE{z_H %3_13[110—11]{.1_ 2[2_]—12(2_)]]]} ;

3 3 F

(2.7)

here ®(z) is the Heviside function: ®#(z)=1 for 2z>0 and

#(z)=0 for z < 0, the notations are introduced:

3/2 e
z =(2u/3x)(1+p/2)"" ", z,=2 (1 * u /W) ™7, u= |s|/(14ps2),

2 2 e -
g = Bra+ v (1+4p/2-4A u } % .- hll B(1+ps2)-1] , (2.8)

2
33=1-4ﬁ1f3u ) B, B(1+ hll , v=u/|s| .

The terms in Eq. (2.7) outside of the sum E[w) represent

usual magnetic bremsstrahlung in the field of a plane
slightly corrected owing to the presence of waves.In the
argument z_ this correction is reduced to the substitution:

: : =3
: mz-——:’: mzr = m2(1+p12} since the parameter ¥ ~ m . The same
e
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correction happ_ens in the parameter -un, determining a boun-

dary of the Compton spectrum at given frequency of an

initial photon (at given value of the quantity q in our
I

case). A transition from Eq.(2.7) to the case of one wave is

provided by the substitution: Z(WJ|G{ _q}t] _cit|zfmzq2——} pr2. =
I

-
= gu
change of the mass m to the effective value m . is not taken
c

into account, by the additional expansion of the terms

, wWhere f::i is the intensity of this wave, and if the

describing the magnetic bremsstrahlung in ps2. An expression
obtained in this way 1is consistent with the results of
Ref. [14]. In the case of a strong external field (u=y/s»1)
the Eqgs. (2.3) and (2.7) are reduced (see Ref. [14]) to the
formulae of the magnetic bremsstrahlung, where one should
add together vectors of accelerations induced by an external
field and a wave field, to determine the parameter .

In the case of a weak field (u«l), which is prac-
tically more interesting, it influences most strongly on the
coherent radiation spectrum near the intensity peak of the
latter, i.e. at u = U, The Eq. (2.7) implies at u « 1 the
spectrum variation of the order of unity for photon
frequencies satisfying the condition fu~uﬂ| < u“°. This is
physically explained by the fact, that the length of cohe-
rent radiation formation 1w-~«|u--uu|“:L (see [14]). Then the
length iw becomes larger than the corresponding formation
length in an external field 1f~x"{1+x/u1” * at sufficiently

small distances from the boundary frequency. This means the

15



change of the radiation mechanism within the mentioned range

of frequencies. The considered change of the intensity

spectrum is illustrated by Fig. 1 in one wave and weak

external field case. Then the probability (first Born ap-

proximation in wave) can be represented as:

(F)

dw dwW aw' W

(2.9)

where the first term describes the magnetic bremsstrahlung
induced by an external field. Note, that Eq. (2.7) has the

same form, but in contrast to Eq. (2.9) a set of waves is

substituted, and as it was explained above, the term
dWéW]/‘dx is slightly changed. The part of the probability

proportional to EE in Eq. (2.9) can be interpreted by usual
rules in terms of a cross-section:

SMuE dW{W]" :

¥

de =

(2.10)
4

m s
i.e. we can discuss a change of the Compton scattering in an

field. - Eq. (2.7)

at p tending to zero is reduced to the ordinary Compton

external that this

implies, cross-section

formula multiplied by the factor

o

f(u]mnljdx K
w3 :

1

1(:{] + ﬁ[uﬂ—u][l— T

dx [.I (x) + J [x}]],

1
3

B o sy
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3

in the narrowing (at

which noticeably differs from unity

p—0) neighborhood of the point u=u, where f[uﬂ]=1z3. The

) 2 (w)

function I(wﬂ gﬁ-x dwg /dx is shown in Fig. 1 for two

values of the parameter p=x/s. It was calculated taking into

account all the terms in the probability dW';w] It is séen; -
that oscillations arise in the mono-tone (at x=0) spectral

curve, the peak is lowering and moving to the left from the
point u=s, and the tail of the distribution appears in the
kinematically prohibited (at ¥ = O) frequency domain u > s,
The scale of these alterations increases with increase of

the parameter pu.
3. DISCUSSION AND CONCLUSIONS
in Introduction we

According to what has been said

consider the radiation process for initial particle velocity

??D being nearly aligned with the axis <001> for the
crystal structure fcc (d). Let o be the angle of the
and qbﬁ be the
(001) to the

Remind, that 1 is the lattice constant and a=2ﬂfi'{m, n, k),

angle of the
(110).

it § .
vector 5 to this axis,

projection _\r}ﬁ onto the plane plane

where m, n and k are integers. For the axis <00l1> the

have the form:

gquantities T;I}t and q
I

‘_q}t :Z_H[mjn,o} 5 e sinﬁu{{m+n}c05¢n+(m—n]sin¢a0] :

1 2 %

Similarly, in the case of the crystal structure (bcc) we

17
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Fig. i. Intensity spectra x - dW;m/dx for s =4 in the absence (x=0) of an
external field (dotted), in the presence of the field (heavy solid), and
their ratio (solid) at y = 0.04 in Fig. laand aty = 0.3 in Fig. 15.
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consider the radiation from particles nearly aligned with
the <110> axis. Then ﬂﬂ is the angle of velocity _ﬁ} to this
axis, and ¢'o is the angle of the projection _v}ﬂ onto the

plane (110) to the plane (110), and

‘aﬁ —z—zi{m,*m,k] : qsi= Z—Tsinﬂﬂ{k'cow; mv2 sinqbﬂi ;

Let us start with the ordinary situation, when the
influence of the plane field on the radiation process can be
neglected. In general, for *&ﬂ« 1 there is always a plane
containing the chosen axis and having the angle ¢ to the
velocity _v}ﬂ less than the corresponding critical angle of
planar channeling yfrc. However, it is possible to avoid the
main planes. For example, at sin ¢>D=0.25 (see Fig. 2) the
angle  to the plane (350} for GD=0.3 mrad is only 2.34 prad
being less than corresponding :,bc value. But as far as this
plane is very weak (Unﬁ 1.2 &V, o 0.037), it’s field
influence on coherent radiation is small, roughly like that
shown in Fig. 1la. Therefore the calculation. of curves
presented in Fig. 2 was carried out for u=0 (¥=0), when Eq.
(2.7} coincides with the expression (see Eq. (4.1) in Ref.

[11) obtained within modified coherent bremsstrahlung

theory. It is seen in Fig. 2, that the peaks become harder,
and, their heights diminish, when the angle ﬂo is increased.
‘The peaks shift to the right due to the proportional in ﬁn

'inchéése of the parameter s (see Eq. (1.1)). The diminution

19
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Fig. 2. Enhancement (solid) and linear polarization degree (dashed) of the
radiation from particles moving close to the <001> axis of a diamond
crystal at £ =200 GeV, sin by = 0.235; for 8,=0.3 mrad in Fig. 2 and
for Bﬂ={};5 mrad in Fig. 25.

20

v

-

'should take

of their heights is owing to the increasing strength of in- .
teraction (increasing value of the parameter ps2). The ari-
sing radiation has an essential linear polarization. “The
spectral distribution of the polarization degree is also
shown in Fig. 2. Note, that the maxima of an enhancements
(peaks) are situated at the same frequencies as the minima
of the polarization degree. The enhancement means the ratio
of the theoretical

spectrum calculated for crystal to the

value of the spectrum in the corresponding amorphous
material.

The similar change of the shape in the hard part of the
spectrum occurs at increasing angle -ﬁu, when particles are
moving close to the strong (110)-plane. It can be seen in
Fig. 3. The calculation of curves presented in this figure
was carried out by Eq. (2.7) for uniform distribution, i.e.
letting F(y, ?0)=1. The particles moving over a potential
barrier approximately have the distribution like that. The
angle ¢ of the vector ?ﬂ to the plane (110) is expressed by
means of the angles ﬁn and ¢0: Y = '&nsiﬁ ¢u. The calculation
shows, that the shape of the spectrum is practically not
changed by the variation of the angle ¢G, which remain valid
the inequality l,{ic*(lj! < UD/I'n. On the other hand for ¢ < x,ftc one
into account the particle flux redistribution
(F(y, ?ﬂ]*l], while for wb-Uu/rn the radiation induced by the
plane field necessarily looses it’s magnetic bremsstrahiung

nature, and the developed description of the field influence

21
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on coherent bremsstrahlung becomes inapplicable. The hard
peak in Fig. 3even though for ﬁn-:ﬂ.z mrad is situated to the
right of that in Fig. 2 for ﬂﬂmD.S mrad. This obviously
illustrates the assertion about the maximal hardness of the
radiation at the movement close to the (110) plane. For x=
w/e < 0.5 the radiation induced by the plane field gives the
main contribution to the intensity spectrum. This is seen at
comparison of the summary curve 2 in Fig. 3a with the curve
1 representing the contribution of the magnetic brems-
strahlung in Eq. (2.7) and Bethe-Heitler (incoherent)
spectrum. The inclusion of the latfer explains, why the
enhancement given by the curve 1 is tending. not to zero but
to unity at increasing photon frequency. As far as the
parameter s is proportional to g, the hard peak according to
Eq. (1.1) moves to the right proportionally to s/(l+s) at
increasing energy. But since the value of the parameter s is
already not small {smmﬂ 3 for £=200 GeV), this shift turns
out to be non-linear with respect to €. On the contrary, the
soft peak, as it should be at magnetic bremsstrahlung, moves
to the right linearly with respect to £ and becomes wider.
These changes of the spectrum shape are seen in Figs. 3a, 4.
We emphasize, that the heights of the both soft and hard
peaks are practically independent of the energy €. This
assertion holds at least up to the energy of order of a few
TeV.
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Fig. 3a; at e = 300 GeV in Fig. 4a and £ = 600 GeV in Fig. 45.
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It is well known, that the radiation from channeled
electrons and positrons turns out to be different, since
they move in different potentials. Channeled electrons are
focused arcund the planes (flux redistribution) moving - on
the average in the stronger field. On the contrary the
coherent radiation from eiectr_ons and positrons is usually
the same. In the case under consideration the field of the
plane causes a difference in the radiation from e’ and e in
the hard part of the spectrum as well. The spectra from e’
and e are shown in Fig. 5 for Ge and W crystals at ¢D=O
(y=0). The difference of two spectra (from e and e) is
about (10-15)% in the vicinity of the hard peak position
being maximal for W crystal. The magnetic bremsstrahlung
~ contribution is negligibly small in this frequency region,
therefore the mentioned difference is completely stipulated
by the- influence of the field on the coherent radiation
process, which is actually Compton scattering of equivalent
photons on particles of the incident beam. The experimental
observation of this difference could verify the possibility
of the external field influence on one of the fundamental
QED-process, what has not been seen up to now. High
crystal quality is necessary for an experiment of such kind,
in particulaf* the mosaic spread and the accuracy of the
angle ¥ measurement should be a few times less than the
critical. angle l,fic. The requirements are not so rigid for an

observation of the spectra like these in Figs. 3 and 4, but
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Table
7 4 o : -1
et e R T

type |urad urad lmr-ad A s

¢ 15.3|46 0.2410.2 |4.3 |0.71158.416.1
fcec(d)

Si 14.6142 .10 12,110 32322 - D129
fcc(d)

Ge ' ' _

18.21 65 0.28/0.4 |4.4 |0.76]11.816.1

fcc(d) '

Fe 26.21135 |0.55/0.35|11.8}0.77120.3}13.5
beccec :

W  l36.5/250 |1.28/0.5 |29.9]0.81|14.4]46.2
becco

Parameters characterizing continuous potential of the (110)

plane and some properties of the radiation from particles

moving close to this plane at € = 200 GeV; v,bc is the
critical angle of planar channeling, Un is the depth of the
potential well, 2 is the maximal value of the parameter

X ﬁﬂ is the angle of the incident particle momentum to axes
(<001> for fcecld) structure and <110> for bec structure),
L is the radiation length under indicated conditions,

ch

X = w /e is the hard peak position, r is the magnitude
max max

of the enhancement-at x=x , w is the magnitude of the pro-
max :

bability d*W/dx dl at x=x
m

ax
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in every case the mosaic spread should not exceed the value
Uﬂ/rn. The values of the angles wc and Uu/m are listed in the
Table for the (110) plane of some crystals. Some
characteristics of radiation calculated for uniform
distribution (F(y, _v}ﬂ]=1] are also given in the Table.

An increase of the nucleus charge Z leads for identical
crystal structure- to decreasing enhancement for all the
frequencies, so that the maximal enhancement is achieved in

diamond. The magnitude of the radiation probability in the

'vicinity of the peak may serve as more objective characte-

ristic of a crystal fitness for hard photons production. It
is seen in the Table, that this probability has not monotone
behavior with respect to Z being maximal for tungsten. The
maximal values of the parameter Y depending on a distance
from the plane are also given in the Table. It is clear,
that the effective y value at averaging over this distance
is less than xmu. Note, that the field of the plane
accounts for about 2,3 of the quantity L;:; characterizing
the rate of particle energy loss for all examples in the
Table.

Thus, the most preferable situation for hard photons
production is realized, when incident particles move close
to the (110) plane of a crystal. If the soft part of the
spectrum arising under these conditions is undesirable, the

crystal orientation can be chosen like that used by

obtaining Fig. 2, i.e. one should avoid the main planes.
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The éxperimental investigation of the phenomena
discussed above is highly desirable. It could allow one to
conclude on the possibility of hard photon sources based on
the considered effects, and to verify our understanding of

QED processes in strong external fields.
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