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ABSTRACT

Two dimensional t-J model equivalent at t » J to the Hubbard
model is considered by the variational method. We suggest
the compact anzats for the mobile hole wave function. The
dispersion of this hole on the Neel and RVB background is
calculated. It is shown that the doping induce transition
from the Neel state to the spin-liquid RVB state. At 1=t/J=4
the transition point is at hole concentration x ~ 0.1
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The investigation of strongly correlated two
dimensional Hubbard model is of interest in connection with
the problem of high temperature superconductivity. In the
Ref.[1] Anderson has suggested to use the Hubbard model as
well as the picture of resonating-valence-bond (RVRB)
spin-liquid for the description of this phenomena. It is
well known that at half-filling and at strong repulsion the
Hubbard model is equivalent to the Heisenberg model (see
e.g. Refs.[2,3]). There is Neel ordering in the ground state
of two dimensional Heisenberg modell4,5,6]. This picture is
in accordance with the experimental data. Magnetic phase

diagram for the compound L32 Sr (L'uCJ'4 is presented in the
=X X

Ref{7]. The wvalue x=0 corresponds to half-filling and
actually there is the Neel order at x=0. However at doping
by the holes the order disappears at x ~ 2-4 10 °. The
peculiarity of two dimensional Heisenberg model on square
lattice is the closeness of the RVB spin liquid state to the
ground Neel state. The difference in energy is about 2-3%
[4-6,8-11]. It is evident that the melting of long range
Neel ordering at doping is due to this small difference.
Nevertheless the problem is still unresolved. One should
calculate the hole energy at doping away from half-filling.



Just this calculation is the subject of the present work. To
study the dynamics of holes in doped antiferromagnet (AF)
numerous approximations have been proposed [12-21]
Calculations based on the moment method of Brinkman and Rice
[12] are carried out in the limit U/t3e [13-15]. Calculation
of Trugman[l6] is an exact diagonalization of Hamiltonian
within a retained portion of the Hilbert space. Approach of
Dagotto et. al. [l17] is an exact diagonalization on small
lattices. We wuse variational method which is somewhat
similar to the approach of Ref.[16], but our calculations
are not restricted by the Neel background. The 1trial wave
function (WF) is generated by the powers of hopping
Hamiltonian. This way of WF generation is analogous to that
used in Ref.[17] for the perturbation theory in large J/t
limit.

In the large U-limit, the Hubbard model can be
transformed into t-J model with Hamiltonian[3]
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where-n = a a . The a is the hole creation operator.
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The other notations a%e standard. We will set below J=l.
Appearance of factors n__ in Ht is obvious. They forbid the

hopping at half-filling. It is useful to rewrite Ht in the

following form [21]-

H = 1) [:afir SIS+a + a: S:S_a + H.c.) ' (2)
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where S' = a a , S = a a (8 .= l[ + a —aJ_' a ). Due
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to Egs.(1),(2) the holes in an AF background cannot move

freely but couple strongly with spin excitations.
Let us forget that (1) is originated from the Hubbard

mctdel. Then we can consider it for any t. At t ¢ 1 it is
quite natural to suppose the WF of the hole above
half-filling be of the form
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Here [0> is the WF of Neel AF background with the
half-filling. In further calculation we wish to consider the
dependence of background spin-state on the doping. Thefefore
below we do not fix the spin structure of 0>, It can be
Neel or RVB state. Real ground state corresponds to minimum
of the total energy. It should be noted that for any |0> the
condition Ht[DhU is fulfilled.

Due to the spin quantum fluctuations there is admixture
of crjther‘ components to the WF (3) even for t=0. Nevertheless
(3) is good zero approximation. Treating Ht as perturbation

one can find the hole dispersion,
% ik
£ = <§ﬂkT].Ht]wkT> = 2(1+4P1][005kx+005ky3s (4)

where g <O|§i§j]£}> ¥ -0.33 is the neighbor spin

correlator. In agreement with Ref.[17] further calculation
shows that simple formula (4) is valid only for very small
tc: t =0.05. Here it has accuracy about 30%. We remind that
It 1s not regular perturbation theory. Even at t=0 WF (3) is
n-:n't exact due to the spin quantum fluctuations. It is
evident that (4) is violated at so small t due to the

smallness of coefficient %[1+4p1}m-0.16
Acting on the WF (3) by Ht one can find the components

:::?“ ¥ which are generated by one step hopping. After the
simple commutations we get
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The notations *x, %y correspond to one step on square
lattice. The states |[1> -|5> are linearly independent only
due to the spin quantum fluctuations in the background state
|0>. Without quantum fluctuations {Sz=il/2.) Ji==t1> for

2<i<5. Now the set (6) defines variational Hilbert space of
the dimension N=9 and we can calculate the energy by
variational method. The only complication is that the set
(6) is not ortonormalized. For the background we suppose

%<O!'§ l0>> = 0 {(7)
In

Double brackets mean averaging both over quantum state and
over the lattice sites n. Then the calculation of
normalization matrix is straightforward. By commutations the
matrix elements can be reduced to the combinations of

background spin correlators.
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pl,ql,and plmrrespond to neighbor sites i, j; P9, and p

correspond to next neighbor sites; a ' ;
sites; nd :

Pyrdy . Ps

correspond to next next neighbor sites. We suppose that the
n:ext and next next neighbor correlators are independ.ent on
the path between points i and j. It had been proofed that
the hole energy is not sensitive to this supposition.

Instead of Heisenberg Hamiltonian HJ let us introduce

H with subtracted background energy:

<ilH |k> > <i[H |k>=<i|H_|k>-(<0 |H [0>-4p )<i|k> (10)



The calculation of <i|H [k> and <i|H |k> is similar to the

calculation of normalization matrix. Similar to Eq.(7) we
suppose vanishing of the three and five-fold correlators.

<<D|§§ g

n n+i

0> =0 | (11)

n+i+i

It means that |0> is T and P-even. For the four and six-fold
correlators the ground state factorization is supposed. For
example

=

Zz £

0I5 - g9 8§

n-y N n=-xX Nn-2x

josre0 |8 s |0p<0}S® ST ¢ |Op=2q p U2)
n-y n Zx e RIS

n=x -

Similar procedure had been used in Refs.[13-15]. This is
rather crude estimation, but the hole energy is not very
sensitive to these high correlators. Thus the calculation of
<i[ﬁj|k> and {ilHtib is straightforward, but the final

matrices are rather cumbersome. Therefore we present here
only a few typical matrix elements as an example (Ht in the

units t).
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The further calculation is direct diagonalization of
the Hamiltonian matrix <i[Ht+HJ|k> with the normalization

condition (8). The only 1input 1is the background spin
correlators. We consider the three types of background. The
first is AF state without quantum fluctuations (S%=+1/2). It

L n
is the ground state of the Ising model and we denote it as
Ising state: |0>=|I>. The second is real Neel state |N> and
the third is RVB spin liquid state |SL>. Spin correlators
for the Ising state.are ‘trivial. For the Sk we wuse the
result of the numerical simulations [8-11,22]. For the Neel
state following to the standard approach (see e.g. Ref.[6])
5 3 z 2 L, Wi L
S 5 =58+ 058 , =1 and
i3  da -3
treat the « term perturbatevely in the leading order in «
for each correlator. Thus we get

we split HJ into the two parts:
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SL:  p =g =-0.105, p_=q =0.0469, p_=q_=-0.029.

The eigenvalues of the normalization matrix (8) are as
follow

F o PR & M e § G ¢ A 0 o 0

N: 0.96 0.43 0.43 0.43 0.30 0.032 0.032 0.032 0.010 (15)
SL: 0.98 0.35 0.35 0.35 0.18 0.057 0.057 0.057 0.027

In accordance with the remark below Eq.(6) the rank of

normalization matrix for Ising state is equal to 5. For N-
and for SL-state the rank is equal to 9. Nevertheless there




are very small eigenvalues, especially for the Neel state.
Moreover by a small variation of parameters in (14) the
smallest eigenvalue can be made negative. Surely the norma
is positive and appearance of a ghost state is due to the
approximate calculation of correlators. Anywhere, very small
eigenvalues of the normalization matrix indicate that the
Hilbert space is almost degenerate. To do the calculation
reliable and stable with respect. to small variations of
parameters in Egs.(14) the combinations of the basis states
(6) corresponding to these small eigenvalues should be
eéxcluded from the trial wave function. Practically we do the
calculation in the following way. First of all we
diagonalize the normalization matrix (8). Then we take M
eigenstates corresponding to the largest eigenvalues and cut
the rest of a Hilbert space. Selected in such a way M states
define a new variational Hilbert space. For M=9, i.e.
without any cutoff, the calculation is unstable just due to
the degeneracy of the Hilbert space. For 5=M=8 results of
the hole dispersion calculation are practically independent
of M. (Surely for the Ising state only. M=5 is possible.)
They are presented in the table 1. In accordance with the
gefs.I16,l'?I the band minimum is located at the point
kn={l,h] Azn/2, and hole dispersion near the bottom is of

the form.
<3 1 2 2
E{k]=eﬂ+£{,‘3“ Sk +B k) (16)

' - A _.;
Directions are parallel and orthogonal with respect to k.:,'
The values of € By, and quasiparticle pole residue Z (the

weight of the state |[1> in total wave function) are listed
at the table 1. The value of B, is zero for Ising state. For
Neel and spin liquid state g,~0.1 at l=t=4. s

From the table L one.see that for N- and SL-state z:ﬂ)E}

at t=0. Surely € can not be positive. The wrong value is

10

due to the inaccuracy of Heisenberg energy calculation using
factorization estimation (12) for high correlators. However
this error is relatively small- (it should be compared with
the total Heisenberg energy of the cluster corresponding to
trial WF (6): EHZIZRR’*M. Moreover this error is completely

negligible in the difference in energy between N- .and
SL-state which is crucial for the problem of Neel ordering
melting,

According -to the table 1 there is no dispersion for the
Ising state. This result is obvious. Actually anzats (6)
includes only the hole hopping to closest neighbor, but this
mean the hole localization for the Ising state. The energy
corresponding to this <case can be easily derived
analvticaily
e, = 3/4 - V 9/16+4t" (17)

Thus with the trial function (6) practically there is
no difference in the hole energy between N- and SL-state. We
should go further and extend variational Hilbert space by
considering the two step hopping. To do it similar to Eq.(5)
one should act by ’f—lt onto states ii> defined by the Eq.(6).

Ir};1 tql}lis way the new types of operators appear in .addition to
A . These are the sixteen next neighbor spin operators

+ z - + -
(for example a S Sa el ...) and 48 double spin
Na N+HX+Y n; n-2x
0 &
+ . z + - +
operators (for example e s e 38N :
ﬂ..T\ N+A N+X+y ]'l.T. n+x n+xX+y

7 =g ). The dimension of Hilbert

a5 8 SRS s
H‘L n+x n+xX+y n\l, Nn+xX nN+X+y
space is N=73. The further calculation is similar to the
previous one for N=9. The only difference is that for N=73
algebraic work on the calculation of normalization matrix
and especially of the Hamiltonian matrix is very large.
Therefore the special algebraic code was created to
calculate all commutations and spin pairings.

The results of numerical diagonalization of Hamiltonian

11



matrix for Hilbert space cutoff parameter M=17,52 are
presented at the table 2. We remind the reader that the
cutoff excludes the combinations of the basis states
corresponding to very small positive and negative
eigenvalues of normalization matrix. (Negative eigenvalues
are due to the approximate calculation of high spin
correlators.) For the Ising state the rank of normalization
matrix is equal to 17. Therefore only M=17 is possible. We
would like to point out on the sizable gain in energy for
the I-state at t=0 in comparison with N=9 case. This is due

- to the double spin-flip components of WF. The I-state is not

eigenstate of Heisenberg Hamiltonian and these components
correct the WF of background without any hopping. The second
new point for the I-state is appearance of longitudinal
dispersion (B;#0), which alsoc is due to the double spin-flip
cump%nents of WF. The minimum of the band is located exactly
at k0={1rf2,n/2J, and still there iIs no transversal

dispersion: B =0.

For the Neel and SL-state calculation becomes unstable

at M>52. However at 40<M=52 results are pr%ctically
independent of M. The minimum of the band is at kﬂ=[?t,?t]

=n/2. The transversal inverse mass By~ 0.1 We think that

our calculation is wvalid at t=3 - 4. At higher t the-

overlapping between wave functions obtained at N=9 and N=73
becomes small and it means that the variational Hilbert
space should be extended. All our results for N-state are
very close to that obtained in Refs[16,17].

From the table 2 one see that at 1=t=4 and M=17 the
band bottom for the Neel state is lower than that for the
spin liquid state. However at M=52 situation is opposite.
One can easily understand it qualitatively. At M=17 the part
of the Hilbert space which is due to the background spin
quantum fluctuations is cut out. In this situation the

double spin-flip components of WF like a' S S’ are

N N4X D4X+Y
more effective for Neel state and even for the Ising state.
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background quantum
Hilbert

At  M=52 ‘all- sizable - effects of
fluctuations are included inte the variational
space. For the spin liquid the fluctuations are larger and
therefore the variational volume of Hilbert space is larger
(cf. the eigenvalues of normalization matrix (15) for N- and
SL-state at N=9). Just this give a gain in hole energy for
the spin liquid. According to the table 2 the gain in hole
energy for spin liquid state with respect to Neel state at
1=t=4 is roughly independent of t, and it is not very large:
ﬂzoﬁ0.3"0.4. However if we take it seriously as well as

sE N
difference in background energy [4-6,8-11] P, P, ~0.016, we

can estimate the critical concentration of holes at Neel
ordering melting point

1 SL _N '
-1 i 18
x = ~Ae flp "-p ) # 0,1 (18)

1
i

Our results for Neel background are very close to that
obtained earlier in Refs.[16,17]. However our conclusion
concerning the Neel ordering melting is in disagreement with
the works [13-15] based on moment method of Brinkman and
Rice in the limit t/Jse. The relation of those works with

the present approach is at present not clear.
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Table 1
t |state €. By z
I 0 0 :
0 N | 33 0 0.87
SL | 0.46 0 0.87
I S 99 0 0.68
R Rea e 0.8 0.60
SL -1.27 0.9 0.60
I “3. 32 0 0.59
5N -3.44 1.6 0.54
&F++3.36 R 0.55 |
I %30 0 0.56
3 N -5.59 20 0.52
Sl kS, 46 2.8 0.54
I 0 L O 0.55
s _7 75 3.3 0.51
J SL -7 .58 4 sl 3 By oL

Parameters of quasihole dispersion caicglated fc:r_ ;['.sing,l

Neel, and spin liquid states at the dimension of var*la_tlf::-r‘la1
: - ' g nima

Hilbert space N=9, and cutoff 5=M=8. The e s mi

energy of the band, f3 is inverse longitudinal mass, and Z
is the quasiparticle pole residue.
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Table 2
!
m=17 m=52
tistat
B E Eg B i Z € 0 B i Z
I -0.89 0 0.79 — = s -
0 0.36 0.97 05 0 0.51
SE 0.12 0 0.90 .04 0 0.94 ¥
I -2.22 .54 ‘%8s = i £t O.P. Sushkov
1 N o =N G - .
: Sl b 0.67 0.40 On the Ground State Structure
B =1 350 . 0,68 0853 e .91 Tt 42 of Two-Dimensional Hubbard Model
| i ] on Square Lattice.
. U810 .43 o o s Quantum Melting of the Neel Ordering
2 N =3 Th 1.40 0.49 -4 .40 e S T,
> B -3.49 Lean - A56 -4 .72 -89 . 0D.39
I =514 8,91 0.38 o - i 0.11. Cyuxos
J N a5 2 201 O 85 g By i 6% D, 37 : C
f TPYKTYPA OCHOBHOI'O COCTOSHHSA
SL 2.70 1.43 0.53 = HiSb - 2859657 pByMmepHOM Mopenu XabGappa.
I g R R T T i 1 e ' KpanTopoe NNaBlIcHHE HEENICBCKOTo YIOPANOIeHud
4| N -8.77 &bl 043 =970 et B e
SL -7.94 1. B0 D.51 =108 3.29 .36
Para i : : @
Neel mEtEE?E F’f 'qU?-SIthE @ =persion calculated for Ising, OreercrBennbid 3a Beinyck C.I'. Ilonos
ine ’ taﬁ spin liquid states at the dimension of variational
eri space N=73, and cutoff M=17,52. The £ is minimal Pa6oTa nmocrynuia 2 oktabpa 1991 r.
; 3
energy of band, is in e A Hopgnucano B nevars 2.10 1991 r.
13" verse longitudina] mass, and Z Popmat Gymaru 60x90 1/16 O6bem 1,1 new.n., 0,9 y4.-usm.m.

Tupax 160 sxs. Becnnarno. dakas N 101
Poranpuar HAP CO AH CCCP,
Hoeocubupcx, 630090, np. axademuxa Jaspenmveea, 11.

1s the ¢ ar ~ticle pole residue.

16



