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ABSTRACT

The 2+1 dimensional Regge gravity is quantised. canonically
in the triad-connection variables in the limit of continuous
time. The first class constraints are generators of gauge
group of the system and form the algebra w.r.t. the

commutators. The general form of the Euclidean functional
integral in the full discrete theory is described which

leads upon Wick rotation to the canonical gquantisation
anzats in the continuous time limit whatever direction Iis
chosen as ‘time. It is parameterized and specified by the

choice of a subset of links fixed by hand. Some interesting

consequences of this formalism are discussed, in particular,
mechanism of . arising divergences in the continuum theory,
nonquantisability of timelike links and one-dimensionality
of time in the pseudoRimannian manifolds.

@ Institute of Nuclear Physics

1. INTRODUCTION

The (2+1)D general relativity is recently known as an

exac':tly soluble system on both qlassiéal and quantum levels

 [1-4]. The graviton is absent in three dimensions and the

only nqntr_i_vial content of the theory may be topological

degrees of freedom as shown by Witten [4]. Witten has also
shown in this work that (2+1)D gravity possesses
renormalizable perturbative expansion. An issue point in

this analysis was the triad-connection form of gravity

action,
--f ='_£ J E;.ll-’?t'e Eal {fi‘ .m'bc-_ 5 'bc:+ { ! ]hc 3
8] bl VRO el 1Ak (1)
Here mahﬁzsamm | 15 S0(2.1) ccﬁnneétion e is a. triad, the
: : u F_ll:. ) ; . ¥ ¥ “ ¥

frame {Latin] and world (Greek) indices run cﬁrer g 1 e

012 ! : ;
€ =+l.. By setting n°= 2c’e’, w'= -h®, e’= -N*/2 where
i T 1 T
Lol 2, € =+]1 this can be br_ought to the canonical form
2i i : : : -
I = f o (aiu‘ + mixﬁ}i).dax, (2)

(vector notation refers to the frame indices). Here
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| o
2= J R (' Byat') d, (3a)

. e e S S 3 3b)
BRI = J l'\)l[ﬁlwz 8w+ wxw) dx, (
are the constraints whose P.B. (Poisson brackets; signs are

such that symbolically {w, m} =+1) obey the Lie algebra of

ISO(2,1) (rotations and translations) group:

{C(R), C(R" )} = ClAxA"),
(CR), RN = RAEXN), (4)
- {R(®), RN ) = 0.
These first class constraints require the same number of
gauge conditions to be impased; since this number locally
coincides with that of caﬁonical pairs (mr, w) the local
degrees of freedom are absent. |
It is . interesting .to ask if there is an analogous
formalism in the (continuous time) Regg_e- calculus [S5] which
is' the general 'relativity for the piecewise-flat: manifolds.
Regge caléulus in. three d.i-mensions has bEEﬂ considered in a
number of works [6-11]. The main pmhl.em is that the
constraints become generally not firsfc class ones. (This is
the problem inherent in usual lattice. discretization of
ordinary field theories). Then the proced‘ure of counting the
degrees of freedom. changes and some. superfluous ones can
.arixse usually referred to as ’lattice artefacts’. This means
that .there is neither smoeooth transition to the continuum
N :

theory nor a regular perturbative éxpansio_n about flat

4

spacetime (the criterium of smoothness can be taken as
azR << 1 where a is a typical lattice spacing and R is a
typical curvature of the triangulated smooth manifeold; from
this it is seen that flat and smooth limits in Regge
calculus are equivalent).

Here we formulate (2+1)D continuous time Regge calculus
so that it leads to the system of first and second class
constraints similar to those suggested by Waelbroeck [12].
For that we use the triad-connection formulation mf Regge
calculus. The triad-connection formalism (together with 4D
such formalism) takes it’s origin in the works by Bander
[13, 10] and was further developed in the works [14-16].
Besides, we perform some further extension of the phase
space. The resulting first class constraints are generators
of all the continuous symmetries of the system and form the
algebra of commutators analogous to (4). Thereby as shown by
Waelbroeck only global degrees of freedom are present
identical to those in the continuum theory.

The question of local degrees of freedom is not SO
simple if we return to the completély discrete theory (and
thi;s is the thing which we are going to do), because there
is neither canonical formalism nor the notion of the degree
of freedom without notion of the continuous time. But
remarkable is that the Euclidean functional integral measure
exists which results in the canonical quantisation if we

choose any field of directions in Regge manifold, make Wick



rotation and perform the continuous time limit by bringing
the neighbouring 2D leaves of the foliation (2D Regge
submanifolds themselves) together along these directions.
All possible such measures form the family each element of
which corresponds to a definite choice of physical
measurement (triangulation) process. Namely, Regge links of
some field of directions should be fixed by hand while
others fluctuate quantum-mechanically. Local triviality of
3D gravity shows up in the fact that in special case of
iranishing link lengths (it is the case of the most detailed
triangulation) the functional integral is up to boundary
effects the product of independent measures on separate
links. This factorization takes place for quite general
structure of linking (supposedly for any structure), and
these measures have universal form. They are positively
defined and thus adopt probabilistic interpretation. The VEV
(vacuum expectation value) of link Iength ‘raised to any
power excéeding (-2) is finite and nonzero. Moreover, if
a"nalj,rtical continuation to pﬁeudoEuclideaﬁ signature is
made, invariﬁnt intervals for links fluctuate still in the
spacelike region. This means that the only possibility for
the link being ﬂmelike is to. fix ‘it ‘by ‘hand.. In  other
"words, time is not quantised and, due to one-dimensionality
of the f‘ield.nf‘ directions along which links are fixed, time
is no more than one-dimensional.

The paper is organized as follows. In the next section

triad-connection f ormulation is introduced and continuous
time limit is considered. Canonical quantisation in the form
of the functional integral is obtained in sect. 3. In sect.
4 the general form of the full discrete functional integral
is found, it’s properties are studied and it’s continuous
time limit 1is shown to correspond to the canonical
quantisation. The results are discussed in sect. 5 where

also some comparison with the continuum theory is made.
2. THE TRIAD-CONNECTION 3D REGGE GRAVITY,

Let us consider 3D Regge manifold of the Euclidean
signature (+,+,+); the problem of analytical continuation to

the timelike signature will be considered in subsection 2.3.
2.1. Full discrete theory

Here we collect some results concerning the triad-con-
nection formulation of Regge calculus [10, 13-16]. The set
of variables are link vectors I;l and connection matrices
Q;"E which are finite SO(3) rotations. The subscripts o
label n-simplices (vertices, links, triangles and tetrahedra
for n = 0, 1, 2, 3 respectively) of the Regge manifold. The
vector £;1 is defined in a local frame corresponding to some
tetrahedron containing the link o'. Connection Qi% relates

the frames of the two neighbouring tetrahedra @3, o sharing
e



the triangle o’ According to whether ﬁ@z transforms vectors
from r.r? to 0‘2 or vice versa we shall speak of ﬂ@z as being
oriented from -:r? to 0‘2 or inversely, respectively. Also to
each link ¢ the curvature matrix R?f can be attributed
which is the product of connections ordered along the loop
enclosing this (and only this) link.

Although the following analysis is valid for rather
general Regge manifold, it is convenient from the notational
point of view to illustrate it by the example of Regge
manifold of a particular structure. Namely, let the Regge
simplicial complex be topologically equivalent to the
collection of cubes each divided into six tetrahedra, as in
[17]. To label the simplices is sufficient to do this for
the simplices of a cube erected from it's definite ' vertex
and obtain others by translations. The links of a cube will
be denoted by multiindex M running over seven unordered
combinations of unequal indices « = 1, 2, 3 (the edges), «B=
=12, 23, 31 (diagonals of the faces spanned by the edges
‘o,B), ofy = 123 [(body diagonal). The twelve triangles will
.then be labelled by the erderéd pair of multiindices MN with
empty intersection: it means the triangle spanned by the
links M and MN. The objects and quantities referred to the
neighbouring cubes can be obtained by action of the operator
of translation T -

) J
‘The specification of Regge action amounts to attributing

along the link M.

to each link M the tetrahedron in which ?M and RM are def-

T i —— T ——

ined and choosing orientations of the connections for each
triangle. The action takes the form

.I= E z I.M-sin"1 5t f;d RM” s

cubes 21 i

A e g

abc

The sence of this is that upon excluding Q’s with the help

of equations of motion it becomes indeed the Regge action in

terms of purely link lengths [14]. There is some ambiguity
in this equatiﬂ_n”. If R is a rotation around [ by an angle
¢ then sin_' in (5) reads

sin  (sin ¢) (6)
which is ¢ or m-¢. Of these only ¢ leads to the known Regge
calculus expression for the action. Therefore one should be
careful dealing with this action and consider only that
branch of sin™' which is small for connections Q close to
unity.

Having chosen one such representation (5) we can pass to
another one by means of the following discrete symmetry
transformations:

Iy—f ME_}M :

Rye = Daalagbing

44

for some links M and

) : £
1 am grateful to referee of my previous work [14]
who has drawn my attention to this circumstance.



SN = Sun

for some triangles MN. The I' , is the product of matrices

M
taken along the part of the loop enclosing link M: RM:

=TM.... Consider the choice close to the previous my work
[14]:
= O r G T T () .
Rl QlZ{TBQSJ]{TESde}(Tf EIJQISQM :
T (T O T &5 9 .
Rz szkTiﬂm]{Tslgdz}wagm} 21Q2d :
Ra i QBl(TZQES}{TIEQdS][TiQISJQBZQSd ;
R-=Q (70 0 O
23 32 -1.3d -23 .41
Ral - LlE{TZQEdJQSIQdE :
Ro=D9UT O K0
12 2173 3d  12-d3
B =0 00000 " (9)
123 2d d1 3d d2 14 d3 :
index ld (d means ’'diagonal’) stands for MN at M = 1, N = 23
= = ;
g ¥ i TM— TM'

2.2. Continious time limit

The aim is now to pass to the continuous time limit. Let
us choose direction of links 3 as a future candidate for the
timelike one and begin to -bring together the neighbouring 2D

leaves along this direction. The link vectors are

g

A3 :

o

T = &N , : (10)

3

vere o o=4. 2, d = 12) labels -links in the 2D laver and
£—0. As for the connections DMN one should differ between
those on the timelike triangles MN = 43, 34 and diagonal MN=
=id, di, i=l, 2 and spacelike ones MN = 12, 21. (Let us call
these  timelike, diagonal and spacelike connections,
respectively). Of them diagonal and spacelike ones are
analogs of the continuum connection for the parallel vector
transport at a distance O(e). Therefore these connections

are infinitesimally close to unity:

2 =1 ef MN= 12, 21, 1d, dl, 2d, d2, (11)

MN MN’

MmN

The action should be the sum of O(¢) terms and upon

g ‘MN :

‘identification e= dt be reducable to integral over dt. First

consider contribution from the diagonal link 43. Up to O(e)
terms corresponding curvature is the product of two

appropriately oriented timelike connections Qfla’ Qgﬂ:

=00 R =B g B oaaa (12)
13 1373 23 3223 123 ad d3

With the same accuracy ]1'“3 is equal to unit operator and

RaeR-uvps Bop oimg i (13)
1 13 2 23 12 123

Therefore O(1) contributions from spacelike and- diagonal
links cancel each other. As for the O(e) terms, there may be
those proportional to ﬁ‘q. They are given by contribution of
ltink A3 and are proportional to the O(1) part of RAS (12).

Therefore variation of these terms w. r. t. ﬁﬂ gives RA_ RA=

11



= Ole), that is, R, = 1+ O(e) T

Q =0 =0,0 =0 =0 0 =0 =0 (14)
31 13 1 a2 23 2 ad d3 d ;

with the same accuracy.
Consider other terms in the arising Lagrangian L. Time
translation is converted into the time derivative of Ql, 5'22,

Qd. The infinitesimal connections f enter L being summed

MN
over infinitesimal prisms whose bases are the triangles AB =
= 12. 21 and TGAB:

(o ¥l B e B R 4s)
These equations give infinitesimal connections for parallel
vector transport to the neighbouring leave. The hAB become
multipliers at the constraints expressing the closure of the
spacelike triangles. They are discrete version of the
Gaussian constraints. Finally, contribution of the timelike
link 3 is

N'R

B 3
N sin SN (16)

¥
Differentiating this w.r.t. N gives R, = O (which implies
2)

R3 = 1, see footnote ). Let us add this constraint to L

with I\)I now as a Lagrange multiplier. Resulting L is here a

sum over periodic cells (squares):

' Another solution 1R=—I+O{E:},(P:HH;’[E][}}I“D?idEd by ambiguity
of the function sin (sin ¢), now inversed to (6)) should be
disregarded as not relevant to Regge calculus.

12

squares
i # 2 : 3 - e e * E e
28 ?l (2 Q) ?2 (Q,9)+ ?d (Q, Q)+
i 812(h12} $ E}21['11121] = R[ﬁ]'

8lz{hlz) -t ?1 2 TlnE?E 2 Qd?d ) hl;?. .

821”121] £ -TEQI?I _?2 5 ?d ) S
R(N) = R QT2 )T Q)T )mal (17)
2.3. Wick rotation

Contrary to the Minkowsky signature (-, +, +) in the
Euclidean case connections belong to the compact group
SO(3). This allows us in subsection 3.2 to extend
integrations over them in finite way on the whole orbit of
local rotation  gauge subgroup. Thereby fixing the
corresponding gauge is avoided and functional integral can
be written in the explicitly SO(3) invariant form. At the
same time due to unboundedness of the gravity action the
monotonous Euc]idean_ exponential factor exp(-I) leads to
divergences. Fortunately, the region in complex plane of
field variables exists which results in both the compact

rotation group SO(3) and oscillating exponent exp(il). It

can be obtained from the Euclidean formulation by passing to

the purely imaginary links, 1°— - 12 This may be conven-
tionally referred to as a signature (-, -, -).
13



The suggested region in complex plane of variables is
also convenient by that each coordinate of the local frame
has the timelike nature and may be used as a time for the
canonical quantisation. Therefore it will be used hereafter.
Notationally, Euclidean region differs from this one by only
absence of the factor i at the action in the exponent. It
will be considered from the viewpoint of analytical
continuation. In turn, it will be continued to the Minkowsky
region by substitution Aoy e Top o the otime
components of tensor (w.r.t. the local frame) field variab-
les. In the cases of signature (+, +, +) or (-, -,. -) the
terms ‘'timelike’ and ’spacelike’ will be applied to the

simplices (links and triangles) of measure O(eg) and O(1) at

£ — 0, respectively.

3. CANONICAL QUANTISATION.
3.1. Extended phase space and gauge algebra

Thus obtained the continuous time 3D Regge Lagrangian
(17) is up to notations that suggested by Waelbroeck [12],
and we can introduce

L }“[‘q}; 5 n;d=P;C{n{1)=-n{d]=o, n(2)=1) (18)

as independent variables and write

2f = E ):PA 1asCop(h)=C, (h )-R(N),

squares

14

C (h )= z tr h (QP-T.P.Q-PQ),
) L | B e | | EEEr d d
sgquares

C (h )= Z tr h (-TPQ+QP+QP),
21 i oo P i d=id

212t
squares
Wle e S (T o VT = -
R{N)= L ir NQI{TzﬁzldeQd]{Tlﬂl)QEQd = (19)
sgquares
Here LN is the matrix N o £ 2 N°. Also the two constraints
2 anc

should be added ensuring that ! is orthogonal and P has the

form (18):
” H_
0 = p(M):= Z ZtrMQAPA,
: squares ;
ok :
0 = o(S)= Z E tr STQQ, - /2. (20)
squares

The matrices MA, S are symmetrical while h , N are

a3

antisymmetrical ones.

Consider the Poisson brackets defined w.r.t. the
canonical pair P, Q so that simbolically {Q, P} = 1. On the
surface of constraints &=(C, R, u, ¢) only {u, u} and {u, ¢}
do not Ivanish; ®=(u, o) is the second class system and

1.2
|

det (9, 9} = det {u, o}|, = L. (21)

3
Upon resolving and excluding p, ¢ canonical structure is

described by the Dirac brackets
-1
B, 20 s (@, ‘1_’3} - (¢, 0} {9, 9} {8, @) (22)
which are the P.B. projected onto the hyperplane normal to

the surface ¢=0 in the simplectic space. On this surface the

15



D.B. of C, R turn out te coincide with P.B. and equal to

{Cﬂ[ ﬂ] Gﬂ,{hé, ]}D - Sﬁﬂ,()ﬂ([ ﬂ’ ]}
{Cﬂ(hﬂ], RfN]}D = 5ﬂﬂﬂR[[hﬂ’ ND,
{R(N), R{N"J}KI = 0, (23)

Here A, A’ are triangles for which Gaussian constraints are
considered, ﬂ.ﬂ = 12 is the triangle in the frame of which
the R™ is defined. This is to be compared with eqgs. (4) of
the continuum theory.

Thus Cﬂ, R form the algebra of symmetry generators of

the system. These act as the 5 R L

{Clh), QI}D 2 thlz i {TEth}Ql :

2D 13258 2. 21

{C(h]}, Qd}l} = *hlzﬁ = B h

{c(h), ?A}D =-h 8, +h (- am]]f’ﬂ : (24)
{R(N), QA}D =)
N), T) =R-TaooR
1D 123
(RN, T} =0N - TaR,
=B d L
RN, T} =QN-T(TQ)dR (25)
d D d d g PR | ST
hiere Cth) = € (h. ) + C th ). The RN generates
A il b

translations of vertices whose finite form does not differ
from (25). There N is the displacement vector defined in the

frame associated with the triangle 12 where also R is

16

defined. The matrices appearing in front of N in (25) serve
to transform N’s at the different vertices to the same
frames. As for Cﬂ[hﬁ}, these generate rotations Uﬂe S0O(3) in
the triangles so that

(
5'2 — UﬂQAU&, - (26)

for the two triangles A, A’ sharing the link A (QA' acts from
A’ to A) and

?—-}U?

Abg o (27)

for the vector ?J-l defined in the triangle A.

3.2. The functional integral

Our issue point is the known expression for the
functional integral measure for the system subject to the

set of second class constraints & [det{i 3} # 0):

1/2

du = exp(iI) det{d, &} ®) Dy, m:= (P, Q) (28)

If the set &=(9, ¢) includes both first ¥ (C, R in our case)
and second class ¢ constraints, then & = (¢, x) follows by
adding gauge conditions x by the number of y’s. Eq. (28)
takes the form ' :

d,ux= exp(il) det{e, 9} “s(o

xdet{y, x}mmaiwiaix] Dm . (29)

If y’s form the closed algebra w.r.t. {-,:)} it is the

peg) ’
algebra of generators of symmetry and eq. (29) differs from

Faddeev - Popov anzats by only the factor det{®, ©}''% &(9)

17



provided by the presence of second class constraints o. It
can be interpreted as the naive (with non-fixed gauge)
exXpression

1/2

dpﬂ = explil) det{v, @) a(v) s(y) Dn , (30)

divided by the (constant) volume of gauge group generated by
{w,'}ﬂ.
In the continuum theory Witten [4] has suggested the

following gauge:
a"w? = o, (31a)
" :

a“e; = 0. (31b)
In the full discrete theory where we are going to construct
the measure all integrations over connections are compact.
Therefore there will be no need in the analog of (3la).
However, the subgroup of translations is noncompact and some
gauge condition f on links is required to break the
translational symmetry. The latter means that the system 8 =
=(il, ¢, R, ) is second class one while € or, more general-
ly, some combination of €, R remains first class thus
ensuring the residual local rotation symmetry. Then the

completely gauge-fixed measure (29) can be written as

2 5(3) s(C) Dn, (32)

djuf = expl(il) det{®, )
divided by the (constant) volume of local rotations gauge
subgroup. Thus (32) is the desired analog of (30) where now
only local rotational symmetry is exhibited explicitly while

the translational one is gauged away.

18

Practically, let us choose as gauge condition fixing any

link vector per point, say, _L)d:

f(F) = tr (Qde . o2 E (33)

2 : 2 > Lo
Here A, F are antisymmetric matrices and A4 b=cc~nst=£r . ld.
. a apc

The Clz commute with f on the surface of constraints while

C , R do not:

21
(¢, (h), f[F]}[@,ﬂ = tr A [h, F],
{R(N), f‘[F}}[@’” =tr FQNQ - T (IND)], (34)
F={rama
-l 4

Therefore the first class constraints become C]2 and

6‘21(1‘1] = Czl(h} * R(NhJ, (35)
where Nh is implicit function of h via

T ATNE) — ﬁdwnd =14, hl. (36)
The sence of this is that local rotation in the triangle 21
is accompanied by the translations of vertices in order to
compensate for the change of ?d. The 612, 1'.2"'2I form the
algebra w.r.t. the P. B. (the same as 612’ CEI in (23) do).
Equally to say, Clz’ 621 (unprimed) form the algebra w.r.t.

x

the D B {-,-}ma} where one can put R = O in the strong
sence i. e. before calculating these  brackets. Therefore
Faddgev - Popov anzats for this first class system is valid
and we come to (32) by multiplying (29) by the rotational

gauge subgroup volume.

19



It remains to calculate det{g, 3}. This turns out to be

unity. Indeed, it can be represented as

det{n, o) det{R, )%, (37)

where the first factor is already given by (21) as unity and

det{s, ﬁ}lg =

det{R, £} J m n &TIN-3a8 R (38)

t vertices
Here N can be subsequently integrated out giving 1 under

appropriate boundary conditions.

Now as usual the arguments R, C of &-functions in (32)
can be raised to exponent with the help df Lagrange
multipliers N, h integrations over which are provided. The
remaining d&-functions of second class- consiraints TR
result in the left- (right-) invariant local fneasure over _f,
(2:

J S0P+ Paraten - 1y drdae f d°T D, (39)

where DQ is the Haar measure on SO(3). In the exponential

parameterization (Q = exp(r:ﬂ w,))

k L
e o i “”"2] % _[ DQ - (40)
4’ S0(3)
The resulting measure is :
d”l 3 EXP{LIJI? --:nnst
XMoo dT dr daﬁ Do D m dRaR: o (328)

t vertices
If the values are averaged with this measure such that no
divergence occurs when integrating over _?d we can consider

also anzats (30) with no gauge fixing at all which reads
20

9

du, = dp AT . (32b)
Here ?d is considered as variable. Finally, consider one
else form of du which will be important. Let us fix N at
finite times. That is, we impose the constraint R only as
initial condition. This is sufficient due to conservation of

the first class constraints in time. We have

dp = exp(iI)x

xfdl a1l &7 Da . Po dh dR ., (32¢)
1 d ;ST TN e 12 21
| = 1.
t=-00
The forms (32a) - (32c) will be used in constructing the

full discrete measure.

4. THE FULL DISCRETE MEASURE.

4.1. General form

Integrations over daﬁ, d’N can be considered as a

particular case of those over DQ, d°T if one sets

O =eh ;% =Eh,?=€ﬁ, (41)
12 12 o | 21 3

as £€ —>» 0 and rescales DQ, a7 by e°. Then the only
maximally symmetrical measure which has a chance to be
reducable to the canonical one du in the continuous time

limit takes the form

e
dmg exp(il) Fiacis

g€ ¥

~ 1 *
I=> ) LR | (42)

links

21
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Note that here not action I but I stands in the exponent.
The I differs from the action I by the absence of sin .
Another peculiarity of this formula is that integrations
over links of some family ¥ are deleted. This has appeared
as a consequence of the Bianchi identity. Let us consider
this point in more detail. If dM contained integrations over
all the links attached to a given vertex & [D.Hsimplex] they

would result in

Mgcr 3 {RM - RMJ. (43)
0
(Here only the root R., = 1 should be. taken as corresponding

M
to Regge calculus; cf. footnotez}l, Being transformed to the

same local frame these RM satisfy the Bianchi identity [5,
18]: their ordered product is unity (expression of R in
terms of Q is, in fact, .SG*lLl'tiDI'l to the Bianchi identities).
If therefore all but one of these matrices are unity this
one is unity too. Therefore (43) contains singularity of the
type 63[{}]. Thus integration over one of these links is
superfluous and this link should be fixed by hand. Such
links constitute family ¥ and will be reffered -to as fixed
links.

Let us outline the structure of ¥. As we have seen each
vertex should belong to some fixed link but ¥ should be
minimal in order to take into account all the degrees of
freedom. How should fixed links be arranged to meet these
requirements? The isolated fixed link with ending points not
shared by any else fixed links is unacceptable. Indeed,

integrating over other links meeting at it’s two ends gives
22

(e

twice the &-function of curvature on this link, that is,
again 63{{}]. For the same reason unacceptable is (closed or
unclosed) line consisting of finite -number of fixed links.
On the other hand, the vertices shared by three or more
fixed links should be absent as resulting in the nonminimal
#. Thus we arrive at the following picture. The family %
consists of mutually nonintersecting infinite or semiin-
finite broken lines passing through all the vertices. By
it’s sense each ¥ corresponds to a definite physical measur-
ement (triangulation) process which creates it’s own quantum
measure d?fﬁ?.

It turns out that d']ﬂg indeed possesses the true
continuous time limit but we postpone proof of this till
subsection 4.3 when some properties of this measure will

have been considered.
4.2. Factorization _

Since continuum 3D gravity doesl not describe any
particle propagation. neither on classical nor on quantum
level it is natural to expect something similar in quantum
Regge calculus. It turns out that in the latter this
property developé as factorization of quantum measure under
appropriate conditions. Namely, we show this for the
particular case of arbitrarily small links of family %.

The idea is to pass from the set of connection variables
2 to the set of curvature-connection variables where some
independent (that Iis, not

Qs are replaced by the

constrained by the Bianchi identities) curvatures R whose
23



number in our particular Regge lattice is six per point.

Jacobian of this change is unity in the sence that

m { i m}= m [n i?R] [ﬂ i}n]. (44)

cubes 12 faces cubes 6 links b faces

Indeed, let us insert in the LHS of (44) the following

representation of unity,

9 9 w
| = I T @ &8R- R R, (45)
cubes b llnks
and integrate over some Q’s according to the formula &
J d’R J $°(R - R 8%E0n - 1) d°n =
9 9 6, = 9
x J- a°R j 8°(R - R(Q)) *REDR®) - 1) d’RQ) =
6, = 9
=I5{RR+1]dR:II)R. (46)
+
Here R(Q}=F‘IQ'1F2 with l"l, 1"2 being some products of connec-
tion matrices Q’ other than Q orthogonal due to the factors
Sa[ﬁ’ﬂ’—l} entering DQ’. The possibility to eliminate by
(six per point) (-integrations all the &-functions of (45)
is equivalent to the rank of the linearized system ?3 = 3[3}
£ 3 *
(R = expl(- q_g], =expl- ) being just the number of indepen-
dent curvatures. For instance, for our particular structure
of linking this system is
=% B o3 f
€1, 12 iy 8
BB Band wd
P 50 23 2d - Yp &
3.3 -3 +3 47
3 32 31 3d 73
A e e
Y2 12 21 da %

a
B

s - - e >
P T e dodn g
=i 23 32 d1 23

¥ =0k vt e
u 31 13 d2 31’

= - - - - - > -

@ s iR G 8 N R e AR SRS SR ; (47)

v R 2d 3d d1 dz d3 123
- = . :
- The y are sums of w’s obtained by the backward translations

along the links 1, 2, 3. These 3 can be considered as those
constituting the preceding layers. The rank of (47) is six
per vertex (as a consequence of the Bianchi identity the
algebraic sum of egs. (47) does not contain ©’s apart from
those in :fr'"s referred to the preceding layers). Omitting one
equation the system can be subsequently solved from layer to
layer for some properly chosen six s per each cube.
Corresponding Q’s under suitable boundary conditions can be
subsequently integrated out from (45).

Now suppose, as we were going, that fixed links are
arbitrarily small. Then connections enter I in the exponent
only in the form of independent curvatures aﬁd, besides, 1
is the sum of terms referred to separate links. Therefore
integrations over Q’'s which remain after change of variables
(see RHS of (44)) are trivial and drop out (of course, it is
assumed that the measure is defined as functional on the

space of functions of only link vectors and independent

curvatures). The measure becomes the product of
: % _
exp [._é_ 7 R] a7 DR, (48)
referred to separate links.

Note that if fixed links were not negligible or dE!H? were

defined on the space of functions of all curvatures then not
25



only the measure would be nonfactorizable but also we could
not trivially integrate over any connection. The reason is
that Bianchi identity does not uniquely express the
curvatures purely in terms of each other but also includes
dependence on connections required to transform all the

curvature matrices to the same local frame. It locks like

S
m TLRIIF£ = 1, (49)
oo

where the (ordered) product is over the links | sharing a

0 .
vertex ¢ , and I', are the products of connections.

l
4.3. Continuous time limit

Let us consider three basic choices for F consisting of
spacelike, diagonal or timelike links, % = {112}, {1123} or
{53}, and show that limiting procedure exists® which reduces
dfmg to the continuous time canonical measure in the forms
(32a), (32b) or (32¢), respectively. Roughly speaking, this
amounts to the formal substitution @ = exp (eh) for the dia-
gonal and spacelike faces, T = eN for the timelike links and
rescaling the measure by a power of £ to get finite expres-
éion at £ — 0. More accurately, some preparative work is
required. The whole procedure consists of the following
three steps.

(i) Fixing the gauge. Upon integrating over six
connections per point (six is the number of independent
curvatures) the result’ does not depend on the remaining six
connections. (Therefore the latter can be fixed by hand

making integrations over them 1trivial). This assertion

26
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becomes evident if one makes change of variables of the

preceding subsection. Then integrations over part of

connections are substituted by those over independent
curvatures and under suitable conditions give the result
independent on other  connections. The term ’suitable
conditions’ means that measure is defined on the space of
functions of link vectors and only independent curvatures
and fixed links have vanishing lengths. These are not very
restrictive conditions in the considered aspect. Indeed, in
the continuous time limit spacelike and ~.‘.di::1gr::snti51tl links
Therefore the number of° curvature

become coincident.

arguments of the functions describing quantum state of the
system in this limit may be smaller. As for the fixed links,
these can be chosen in a way convenient for us.

Let us fix the following connections:

Q =Q =Q =Q =1, (50)
1d 2d 12 21

for F = {112} or {13} and (50) together with

g =1 (51)

3d d3
for F = {1123}. The requirement these gauges should satisfy
is that remaining connections parameterize independent

curvatures in a nondegenerate way. In other words, the rank
of, linearized system r,_o} = 3(3] upon imposing (50) or both
(50) and (51) should remain six per point. It is easy to

check that this is indeed so: (50), (51) is admissible

gauge.
The role of the conditions (50) is that they anticipate
introduction of spacelike infinitesimal connections h;;:.' hEl
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which play the role of Lagrange multipliers in the canonical
formalism. The matter is that there are three spacelike or

diagonal infinitesimal

connections f in each

infinitesimal

prism whose bases are successive-in-time spacelike
triangles. The f’s enter Lagrangian in the form of sums (I5)
only. Therefore integrations over them dre divergent. The

eqs. (50) just leave only one infinitesimal connection per

each such prism.

The eq. (51) will ensure that

independent timelike connection for the 2D link d in the

limit € — 0 (it will become Qd in the canonical formalism).

For the other two choices of & this will follow by

integration over diagonal link ?12:5 in (ii).
(ii) Integrating over diagonal links and over half of
connections on the adjacent timelike triangles. There are

integrations over

3 3 : i
d ?13 Dol e (52)
if & ={l } and over (52) and
123
d ?m e, (53)
. e
if & {hlz} or {13}. We have, e. g.,
L > = 3 :
f it [ 2 ?13 RIS[QBIJ} 5 ?13 DQB] g
o L v 3 Ll ) i
_[ =R [ 2 f)13 RlS} : ?13 Dﬁlﬂ 3
% Bl .3 ~ T |
=(4 Bt P
(4n)7 | &8 [RIS 13} @ng 5 - (54)

Thus instead of ﬁﬂz’ Qafl there 1s only one independent

timelike connection for 2D link A; let QH = QA :
3
23

there is  only one

i

P

*

(iii) The continuous time limit itself. Let

b

Q =1 + €h
d1 21
8 =1 -%¢h = (55)
a2 12
T = eN )
3
Upon this formal substitution and rescaling by a power of ¢
the corresponding I, d}f are reduced to dsﬁ, daﬁ. At the
same time
e Q (56)
MaA e TR
at £ — 0 because of (51) or R = 1 according to (ii). The

A3

g

I in the exponent becomes the continuous time action with

the Lagrangian (17).
4.4. Positivity

Naively, Euclidean (signature is (+, +, +)) measure dang
seems to be positive as it is the product of the Haar and

Lebesgue measures and of positive monotonous exponent. If,

however, it is considered in the sence of analytical

continuation from the region of imaginary Ilinks (thought of

as that of (-, -, =-) signature) where exponent is

oscillating, the question becomes not so simple. We show
such the positivity for the case of vanishing lengths of

fixed links (of family ¥). In this case dlli__ factorizes and

F
we have to deal with the measure (48) for each (nonfixed)

link. It turns out that (48) defines positive measure in the

Euclidean region on the space of functions of i

a

polinomials in ! as testing functions. On

Consider

integrating over d°T the 8-function
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3 (1 - B R B By e g
o [i— (R R}] =0 ( {p——tp], : {1}

and it’s derivatives arise. Here only the root $=D should be
2 : :
taken (see footnote”)). Due to isotropy it is sufficient to

consider only polynomials in 1 and find that

2k Gy o P 5 ot ]
kTR DRt el T -~1}1
I

H

52 > T
i3 2 k S
k. Fi2Es2) 4"
= (-1) : P (58)
C{k+2) T(k+1) &
The backward Wick rotation from (-, -, -} to (+, +, +) gives
sensible positive VEV’s:
2 .-k
2k CF{2k+2) 4 -
) = . (59)

F'(k+2) T'(k+1)
These are defined, nonzero and finite at k>-l. Moreover, in-

versed Laplace transform of

(analytically continuated to

complex k) eq. (59) leads to positive measure:

; dc::! 57
AL = j —— {,f{?] vil) di,
A
0
[d
e R f F 3
LJ{I = — | BN - s g la, E
e Sl o J dy (60)
The v(l) is 2I at 1--0 and {alls off exponentially at [—>
It is proportional to the integrs i modifiled Bessel func- )
tion.
|
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S. DISCUSSION

1hus & quantum measure exists in the Euclidean 3D Regge
gravity which , on the one hand, results in the canonical
quantisation in the continuous time limit and, on the other
hand, is positively defined at least when the links fixed by
hand are arbitrarily small.

The results may be continued to the Minkowsky signature
(-, +, +), and here welstill have, & g., the formula (593
for the link metric invariant, but now Iz is Minkowsky (-,
+, +) interval. The egs. (59), (60) say that 1* fluctuates
remaining positive. Thus, whatever links are chosen as fixed
these turn out to be the only candidates for having the
timelike intervals [° < 0. In other words, timelike links
are not subject to quantum fluctuations and are fixed by the
physical measurement process. This is quite natural
requirement implicit in introducing the notion ’time’ in  any
quantum field theory. Interesting is that it arises in three
dimensions as a consequence of quantum gravity. Moreover,
time cannot be more than one-dimensional since the family of
fixed links # structures. In

consists of one-dimensional

latter is the of  the Bianchi

Thus,

iurn, - the consequence

identities. one-dimensionality of time and it's
nonguantisability can be traced to the Bianchi identities!

The choice of fixed links of & being 'arbitraril}r small
means the maximally detailed process of triangulation. At

the same time the question is open whether all said here

remains valid when fixed link lengths are nonvanishing. In
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particular, positivity of the measure in this gase; - il
proven, would mean the well-defined concept of quantisation
in discrete time.

The triad-connection formulation leads to some new
content of quantum Regge calculus as compared to usual link
lengths formulation. This shows up in apparent contradiction
between separate quantisation- of links and triangle
inequalities. The matter 1is that the triad-connection
formulation provides the closure of links into triangles
only as a consequence of the equations of motion for the
connections, 1. & - oun - the _classical - levél. .. Since . the
functional integral over Q is nonGaussian such the closure
is violated virtually.

Allthough the analysis made was shown as applied to Regge
manifold of a particular structure, it naturally extends to
quite general -such manifolds. The results show that link
VEV’s are finite and nonzero and do not depend on the
structure of linking. This means that functional integral is
saturated not by smooth manifolds (which would correspond to
the formal Ilimit of zero link lengths) but by the
piecewise-flat ones. How can this effect be matched on the
level of continuum general relativity? It develops itself
througn ill-definiteness of some continuum VEV’'s. Let us
consider the triad bilinear VEV at coinciding vpoints,
(ei[ﬂ)e}i[()]}. It is given by the only perturbative diagram
of Fig. 1 with contracted legs (at least in the Witten’'s
gauge [4]). From symmetry considerations for the background

metric g the answer has the form
HY 19

{e;e:’) = c(lgngwn“ , (61)
where nab is the frame metric, A is an UV momentum cut off,
and we have restored Plank length Lg. If it were € = 0, we
would have unphysical unbroken phase e = 0. It is, however,
not difficult to verify that C # 0. To look for an analogy
with the discrete formulation one should compare with <12>
not (61) but ([edx}z) The difference in the factor dx —0
is just compensated for by A -— .

Thus the Regge calculus operates with the objects which,
seem to be more adequate to the description of gravity at
the distances of the order .-:nf Plank length. Roughly
speaking, it issues from the very beginning from the
correctly chosen scale of physical quantities.

The results of this work seem to be of the same type and
supplement those of the previous author’s work [19]. In that
work some (1+1)D model of Regge calculus is considered where
one coordinate is timelike and another one corresponds to
the 3D degenerate manifold. For the timelike Regge areas the
quantum eigenvalues are shown to be positive integers in the
Plank length units. In four dimensions analogs of the
Euclidean  link lengths of the present (2+1)D model will be
spacelike areas. So we can expect that in the physical
(3+1)D case Regge areas will either possess discrete
spectrum, if tiﬁelike," with lowest eigenvalue of the order

oy or, when spacelike, simply have nonzero VEV’s of such
£

order.
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Fig. 1. The (only) diagram for the VEV e:eﬁ(ﬂ)eg((}) > in the continuum
theory with Lagrangian (1) and gauge (31).
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