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ABSTRACT
We discuss the screening of the external static Due to the well known Schiff theorem [1] for the neutral
electric field on the nucleus of the neutral atom. atom the external statjc homogeneous electric field js
It is shown that for the excited atomic states the exactly screened on the nucleus by the polarization of the
screening is not complete., electronic shells. The theorem js valid for the relativistic
electrons [2, 3] as well as with accounting of the radiation
corrections [2]. One can easy understand this theorem: The
homogeneous electric field does not accelerate the neutral
atom. Therefore the field acting on the nucleus js equal to
ZETD.
The physical arguments as well as formal prove of the
theorem are valid only for an atom in the stationary state.
) For the excited states which decay due +to the photon
emission the situation is not obvious. This problem is
connected with the radiation correction to the energy
-

levels.
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arguments in favor of the Schiff theorem violation for
unstable states*}, In the present work we will consider the
Hydrogen atom with infinitely heavy nucleus to avoid the
recoil. Let wus consider 2:;1{2— state which decays via
Ml-transition to the 1:5:11#2 (in the present work we are
interested in one-quantum transition only). In the external
electric field there is the mixing with 2p1z2— state which
decays via El-transition (Fig.1). We neglect the mixing with
2p3{2—5tate. The decay amplitude corresponding to Fig.l
equals
55
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Here ?} is the external electric field, " 1is the radiation
P

width of the 2p -state.
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is the operator of the radiation of the photon with momentum

k and polarization E a is the Dirac matrix. The using of
relativistic notations is technically convenient. Simple
calculation in linear in & approximation gives the angular
distribution of the photons averaged over the polarizations

of atomic states (see Ref.[4]).
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arguments were formulated.
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Here E1 and Ml are the amplitudes of 9y-transitions 2*01,/2_}

= 1 IX -
-5151/2 and Zsyz—:rlslfz. D= <2p1/2’ '—2—-|-ez[251/2, —2-> is the

amplitude of 2s-2p mixing, I‘Esz—;— mSIMliE is the one photon

width of the 2.51/2“ state. Let us stress that correlation of
flight direction with electric field k& in (3) is T-odd.
Just therefore A is proportional to [ . With angular
distribution (3) the photon takes away the ;verage momentum
directed along the electric field. The recoil force is
equivalent to unscreened electric field at the nucleus.
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If nucleus has an electric dipole moment d then one may

suppose that correction to energy level should arise.
=
SE, = - £ d. (5)

Now we would like to understand what the energy shift
(5) means and how it can be observed. Let us stress once
more that 8E ~ I‘pl‘za, l.e. it arises just due to instability
of the levels. At infinite mass of the nucleus the only



probe of an electric field at the origin can be the electric
dipole moment of the nucleus. The interaction of the nucleus

dipole moment with the external field and with the electron
i1s equal to
e s L P o’
H, = e dr/r-d&= — dlp, H), (6)
where
> - >
H=Ex},5 +Bm - Ed/’r -e Er (7)
is the Dirac electron Hamiltonian. This Hamiltonian takes

into account the external electric field exactly. T¢ ..stress

this point we will denote its eigenstates by the bar:

I
will denote by tilde: (H +Hd}jﬁ>=gqjﬁ>. Due to the Schiff

H|r_1>:E |n>. The eigehstates of the total Hamiltonian H+h":i we
n

theorem E =E . Treating H’c1 as perturbation one can easy
n n
calculate the matrix element of the radiation operator (2)

between the tilde states.
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We have used the representation of Hr.j in the commutator form
(6).

Now we can ask the question: Does the correction (5)
mean the shift of 2s-energy level which can be observed in
the resonant scattering of light on ls-state of Hydrogen? In
the leading order in h;:r the amplitude of the resonant
scattering is shown at Fig. 2, and due to the Eq.(8) it

equals

Pp” - <Is|h (k,)|2s><2s|h (k )|1s>
F=(1+ik d/e)(i-ik_d/e) g ey : (9)

where }_;1, Ez are the momenta of the initial and fina] photons.
The amplitude (9) depends on a,but this dependence is not
connected with any shift of energy. Moreover lif[2 is
independent of d However it is obvious beforehand that in
the leading order in hj the shift S8E (5) can not arise,
since SENFEETEP. One should take into account at least the
Lamb shift (Fig.3a), and even second order in the Lamb shift
(Figs.3b,c,d). Nevertheless one can easy verify that in any
order in the radiation correction there are no dependence on
d in the scattering amplitude except the trivial dependence
(9). Actually, let us consider for example the amplitude
Fig.3a. The insertion is the self ENErgy operator
5 SR e -
- J. d3q3 iZS[h?,[q}!n><n!hﬁ[q]]25>, g
n *(2n) E e

n

but due to the Eq.(8) dependence on d In the matrix. element
of h? exactly compensates that in the matrix element har In
the same way we can prove the independence of d of the
insertions in the diagrams presented at Figs.3b,c,d. Thus,
there are no proportional to d energy shift which can be
observed in the resonant scattering of the light on the
atomic ground state. Then the question arises: What the

formula (5) means?




To answer this question let us first of all to answer to
a more simple one: What is the usual pressure of light? Thus
without any external static electric field the laser shines
on an atom in the resonance with transition 151/2_}2’91;2' The
classical

interaction of an electron with the

electromagnetic wave is of the form (cf. with Eq.(2)).
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A is the wave vector potential. The rescattering is

isotropic and therefore the light pressure arises. This is

the static electric field acting on the nucleus. Due to
balance of momentum at small saturation parameter
<2p|V|1s>/T «l
P
> - rp 1 Ly l4) 2
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w =E £ «, [=x1/2 are the projections of angular

“0 “2p1/2 1s1/2
momentum. Similar to (5) the shift of energy proportional to

-3

d must arise. However we argue above (Eq.(10)) that there

are no corrections to the photon scattering amplitude

proportional to E Thus we can conclude that the photon
which prepares the unstable quantum state can not measure by
electric field (4), (12) nucleus.

recoil on the

itself’ the
However the different experiment is possible. Let the laser

field (11) prepares the unstable quantum state and the other

field probes the atom. Say using the radio frequency field

search the dependence of the nuclear magnetic

(NMR)
moment d. Just in such an experiment the recoil electric
field (4),
the Schiff theorem

one can

resonance frequency on the nucleus electric dipole
(12) can be measured and exactly in this sense

is violated for the unstable quantum

states.
The shift

electric dipole moment is equal to 6E=Tr‘(Hdp]+ Here p is the

of the NMR frequency due to the nucleus

density matrix of an atom in the laser field (11) and Hd is

defined by Eq.(6). The equation for the density matrix we

~

will solve by iterations in perturbation V.

. . e
(I' ot lrik) & %n W’p]ik' (13}

In the zero approximation there are only independent of t
components of p which correspond to the equal population of

+1/2>. In the first approximation the

the states |lIs
- 1/2

positive and negative frequency components of p arise.

~ e )
v }, pm ]

(IE) ik

pik +@ 2y + 1T
ik ik

(14)

The effect we are interested in arises in the second

. . 2 : 2
approximation. Time independent components of p{ ]are equal
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The further calculation is straightforward.

el s (2)_
5E—TI‘(Hdp J= ips0 Zk[p, H]kipik =
1

i - " =) = = I+
- —dTrllp, V e dlp, V' o ) =

dk Tr (Ie"mp“-}—pm}v{_}). (16)

After substitution of pm from Eq.(14) we really get 8E = -
-dé"m with éu from Eq.(12).

We now return to the Schiff theorem (formulae (4), (5)).
Here the situation is very similar to consideration of the
light pressure. However in this case the indexes S PR
density matrix P numerate not only the states of an atom
but the states of a photon as well. This is rather unusual
situation and therefore stress it once more. Usually in the
density matrix. description one averages over all photon
states and keeps explicitly the electron degrees of freedom
only. To catch the Schiff theorem violation (Egs.(4), (5))
we should keep explicitly the states of an atom with one
photon and average over the states with more then one
photon.

Let laser (11) is tuned to the transition 151;2-525”2.
It produces some population of the 251f2-level which
corresponds to stationary density matrix pm}. nay oat

saturation the populations of the all four states

1 1 : :
|1s 12>, |r'25:”, t-> are equal. We will solve equation
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(13) starting from p{m. First: of allilet wus take into
account the Interaction with the external static electric

-} n -
field U=-e&r which mixes 2511;2 and 2pw levels.

(
(1) kU pmjik
P me . (17)
; xS
ik ik
More explicitly,
<
R s|U|p> P p{: =ip:”]+. (19)
N AT P : P
sp p

(2) ; . :
d 2 and still is a matrix
Here s,p denotes 25'V2an P, psp
in the projections of angular momenta,
¥
Interaction with the photon with momentum g and pola-

rization & due to Eq.(2) is of the form

H (g8l =8 wn
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Here a' and a are the creation and annihilation operators of

the photon. In the second approximation

(RE)-sepd ). ) e ’
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Similar to Eq.(15) time independent part of ,f:rE : is equal to
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Analogously to Eq.(16) correction to the energy is of the

form
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o | g and therefore one can easy verify that at deno-

minators in this expression only d&-function survives: (w-

—wD-iD)_l—:’iné(wwD]. Using Eq.(18) 8E can be transformed to

the form

e
8 & 2% Rej 29 33 sw-w) Tr(p<p|h|1s><is|n’[s>). (23)
e [21!]3 0 sp

Trace in this formula 1is carried out over the all
projections of angular momentum. Comparing with Egs.(1)-(5)
we see that expression (23) identically coincides with the
energy shift (5) which is derived from the balance of
momenta.

In the conclusion we formulate the results of the
present work. The Schiff theorem (screening of the external
static homogeneous electric field on the nucleus of the
neutral atom) is violated for the excited (unstable) atomic
states. As a matter of principle this violation can not be
observed in the scattering of a photon at the ground state
of an atom. In other words there is no effect if one uses as
a probe the photon which itself prepares the unstable
quantum state. The violation takes place 'if the photons

(laser field) are used to prepare the unstable quantum state

12

and the other field probes the atom. Say using the radio
frequency field one can observe the dependence of nuclear
magnetic resonance frequency on the nucleus electric dipole
moment d. Just in this sense the Schiff theorem is violated
for the unstable quantum states.

We would like to pay attention of the reader to an
interesting principal possibility. We mean the using of the
light pressure  static electric field ~(12Y for the
experimental search of the nucleus electric dipole moment in
the nuclear magnetic resonance experiments. The advantage of
this method could be the absence of an any external static
electric field. This method is more suitable for the Ilight
atoms.

We are grateful to V.F.Dmitriev, M.G.Kozlov, J.Sucher,
V.B.Telitsin, V.F.Yezhov, and especially to V.V.Flambaum

and I.B.Khriplovich for the numerious helpfull discussions

and stimulating questions.
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Fig. 1. Amplitude of the 251 /2 —state decay in the external eleciric field. The
cross corresponds to the states mixing in the field.

VLL‘]«“ Q_ (.\/_\‘r\j\" E. V. Stambulchik, O.P. Sushkov
S
B

T Violation of the Schiff Theorem for

\E Unstable Atomic States

Fig. 2. Amplitude of the photon resonant scattering in the leading order in E.B. Cmambynouuk, Q1. Cyuwxos
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Fig. 3. Amplitude of the photon resonant scattering with the Lamb shift taken
into accoutt.
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