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ABSTRACT

It is shown that the classes ol exact solutions with
functional parameters and rational solutions of the
modilied Kadomtsev— Petviashvili (mKP) equation
and the Kadomtsev — Petviashvili (KP) equation are 1. INTRODUCTION
connected by the 24 I-dimensional Miura transiorma-
tion. The correspondence between more particular

classes of solutions of the mKP and the KP equations The Miura transformation [I] between the modified Korteweg-de
via Miura transtormation is established. Vries (mKdV) and the Korteweg-de Vries (KdV) equations has
played an important role both in the discovery the inverse scattering
transform (IST) method [2] and in the further understanding of
the properties of these equations (see e.g. [3—5]). It reveals a
deep interrelation between the algebraic properties of the mKdV and

KdV equations and their hierarchies [3 —5].
The 24 1-dimensional integrable generalizations of the KdV and
mKdV equations are given by the well-known Kadomtsev— Petvi-

ashvili (KP) equation

Uik Usrp - BUH; 3087 U, =20 (1)

and the modified KP (mKP) equation
Vit Vase—30%( - V2 Vi Vidz ' Vy 07! V) =0 (2)

, which has been introduced within the different approaches in [6, 7].
Here o®= +1. The mKP and KP equations are connected by the
24 1-dimensional generalization of the Miura transformation.

: Namely, if the function V obeys the mKP equation (2) then the
function

i =< lotgrty, o lap e Loy (3)
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obeys the KP equation [6, 7]. Similar to the 14 1-dimensional case
the Miura transformation (3) deeply interrelates the algebraic
structures associated with the mKP and KP equations [8].

In the present paper the properties of the classes of exact soluti-
ons of the mKP and the KP equations under the Miura map (3) are
studied. We will show that the solutions of the mKP equation (2)
with functional parameters are converted under the map (3) into
the solutions of the KP equation (1) with, essentially, the same
functional parameters. The Miura map (3) transforms the rational
solutions of the mKP equation into the rational solutions of the KP
equation. The interrelation between the plane solitons, decreasing
and plane lumps, nonsingular and singular, real and complex solu-
tions of the mKP and KP equations are established. Both cases
o= —1 and o®>= -+ 1 are considered.

2. GENERAL FORMULAE

The classes ol exact solutions of the KP equation, including
solutions with functional parameters, plane solitons, singular ratio-
nal solutions and lumps, are well-known (see e.q. [3, 5]). For the
mKP equation similar classes of exact solutions has been construc-
ted recently in [9]. All the details about the properties of the solu-
tions of the KP and mKP equations can be found in these papers.

The correspondence between the solutions of the mKP and KP
equations can be established directly in the terms of V and U with
the use of the map (3). But it is more convenient and transparent
to do this using the mKP eigenfunction y. The [irst linear problem
for the mKP equation (2) is of the form [9]

oW, 4+ Vit ol W, =0. (4)

The eigenfunction y(x, y, f; A) relevant for the formulation and sol-
ving the inverse spectral problem for the mKP equation is introdu-
ced via [9]

urﬂxexp(%+i). (5)

oAl

[t obeys the equation

_—
Oy e+ 24+ %’—Havxx:ﬂ. i

The function y(x, y, #; ) can be canonically normalized (y—1)

A—sco
and the reconstruction formula for the potential V is of the form
9]

2 8
Vi, yt) = e i (7)

where yo is the first of coefficients of the Taylor series expansion of
3, near origin:

A Y, 65 h) =xolx, y, £) +Mpu(x, y, £) +Aye(x, 4, ) + ... (8)

The equations of the inverse problem for (6) have the wide classes
of exact solutions which give rise via (7) to the classes of exact
solutions of the mKP equations [9].

The formula (7) is very convenient for the analysis of the Miura
map (3). Substituting (7) into (3), one easily gets

Tt ] |
UZ Py U{?En j;—_f_][xﬂ ]I-I {9}

that clearly demonstrates that U-is, indeed, the solutioh of the KP
equation. Moreover using the relation

Oy Xt 20,10V 11 0V 7 =0 (10)

which arises from the substitution of expansion (8) into (6), one
can transform the r.h.s. of (9) into the simpler form. Namely,

(d
paid g —(E)‘
ol | (11)

This formula gives us a simple way for the calculating the solu-
tions of the KP equation using the known functions xo and y; for
the mKP equation.

Il is easy to see that the Miura map (3) transforms the real-va-
lued solutions of the mKP-I equation (o=1i) into the complex-valu-
ed solutions of the KP equation (o=i) while in the case o=1 the
Miura transformation (3) connects the real-valued solutions of the
mKP and KP equations. The Miura transformation (9) maps the
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nonsingular solutions of the mKP equation into the nonsingular
solutions of the KP equation.

3. CORRESPONDENCE BETWEEN THE SOLUTIONS
WITH FUNCTIONAL PARAMETERS AND RATIONAL SOLUTIONS

The most general classes of exact solutions of the mKP equa-
tions include the solutions with functional parameters and rational
in x, y, t solutions. Here we will consider the correspondence bet-
ween them.

The solutions of the mKP equation with functional parameters
are of the form [9]

e 2 O ntdi AW _ (12)
o dx
where
Api=0p— —1;5‘;1 Epe i
2
KB4 -2-};@;' Eetiid (13)
and
yvo=det(A47"), qu=tr(BA™" (14)
where-
Bri=idy Ap— %’ék MNix - (15)

Here Ex(x, y, t) and ni(x, y, t) are the solutions of the linearized
mKP equation

L b Aot g L E=0 (16)
of the form
e, =) dL AR exo (£+L+5)
niny, ) ={f aAAdRgo. D exp (=444 55), (17)

where fe(A, &) and gi(A, A) are arbitrary complex functions. The
integral ;' in (13), (14) is defined in such a way that r.h.s. of
(13) and (14) exist.

Now let us apply the Miura transformation to the solutions
(12). The formula (11) gives

g 9 tr(A:AY

dx det(AA—") (56

Note that the matrices A, A7, 1—AA'—A, A" and 1—A A"
have the rank one. For the rank one matrices one has well-known
identity

det(14F)=1-+trF. (19)

Using (19) and another well-known matrix identity

ol i (FuE—!
axlndetFutr(ﬂF ) (20)

one gets:

tr(d:A"") _ det4+A,A"")—1
det(A4 ") det(AA~-")

— det(1—(1—AA'—A, A1) —det(1—(1—AA~")) =

—=tr(A, A" )= LindetAd. (21)

0x

“o we finally obtain the solutions of the KP equation

9* =
U=2—IndetA4 (22)

dx

with we functional parameters, where A is given by (13). The for-
mula (22) after the identification

EXP =8, P =y (23)

exactly coincides with the known formula for the solutions of the
KP equation with functional parameters (see e.q. [3]).

The linear parts of the KP and the mKP equations coincide. So,
the same set (up to the change (23)) of solutions of the linear equ-
ation (16) parametrize the classes of exact solutions (12) and (22)
of the mKP and KP equations, respectively. The Miura map (3)
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connects these classes of solutions without, in essence, change the
parameters & and me.

Similar situation takes place for the rational solutions. The
general rational solutions of the mKP equation are of the form [9].

2 i

Vit S det(AA~") (24)
where
v
n‘-’lm=ﬁk:(r = = L= !.2f ?) + (1 —0w) L:E -
Ao ik (25)
and
o= det (AA7Y, ypu=itr(gA™" (26)

where Zu=1 (k, [=1, ..., N).

The Miura map (3) convert the solutions (24) into the following

solutions of the KP equation

Lighdl MFATY
U_an det(AA-")" (&)

Taking into account that the matrices 1—A A7 gA-! and
1—A A~ have rank one, and using the identities (19), (20), simi-
lar to the previous case, one gets

U=22- tr(zdAT"): (28)

0x

Finally, using the properties of the matrix A (in particular,
(Aﬁq)rzapq), one obtains

a* = :
U=2—2|ﬂ det A (29)
0x
where 4 is given by (25),
ﬁkf=5u(x— 2y, — E—{*ﬁ) ~+ i(1 —ﬁkf]—"— (30)
Ghg gy g

The formulae (29), (30) coincide with the well-known formulae for
the rational solutions of the KP equation (up to Ae—>Ai') (see [3]).

8

4. CORRESPONDENCE BETWEEN PARTICULAR
CLASSES OF SOLUTIONS. CASE g —|.

Now we will consider more particular classes of solutions, inclu-
ding the real and nonsingular solutions.

4.1. We start with the case 6=i (6?°= —1). The real nonsingu-
lar plane solitons of the mKP-I equation are given by the formula
(12) with [9]

Ei=—2iR exp(F(A)), me=—2i exp(— F(h)) (31)

where Im R;=0 and F») ¥ T ly + 4” It is not difficult to show

using (22), that the real nonsmgular plane solitons of the mKP-I
equations are transformed into complex nonsingular plane solitons
of the KP-I equation. In particular the simplest mKP-I soliton [9]

o 81,/ 1M*) sgn R
i,-"_ oats !
e+ /A) (sgnR )’ (49

is converted into the complex nonsingular soliton of the KP-I equa-
tion

8L A [sgn R) (33)
el e (A/A,) e'sgn R)?
where
U =ix(A ™' —A D) —ig(A 2 —A ") F4it(h"2—A"H+In |R|. (34)

The well-known plane real-valued nonsingular solitons of the
KP-I are connected via Miura transformation (3) with the complex
nonsingular plane solitons of the mKP-I equation. In particular the
well-known one-soliton solution of the KP-I equation

255, 1
— S 35
|Al* ch®f f5)
is obtained from the cbmp]ex nonsingular soliton
2
Vo i 1, l (36)

A2 (e‘f—l—%e’) chf

of the mKP-I equation, where | is given by (34).




4.2. The solutions of the mKP-I equation of the breather type,
constructed in [9] are converted by the Miura transformation into
the periodic in x or y solutions of the KP-I equation. In particular,
the complex breather type solution of the mKP-I equation which can
be obtained by the technique of the work [9] is of the form

4 a T
P (l-— EJS_m IP) -+ ad (A% 4+ h3cos® ¢)
V=2i—In i

Ak
dx el o Rt &1
hplhl? {81 A%
where
[= —Tary+In[aR],
i E;}::Tf o g(liﬁ?;”ﬂ'” + arg (RA) (38)

and R some complex constant is transiormed into the following real
solution of the KP-I equation
. [ i 2 7
U:Q—'?-—fln{ (1— ¢ S}f”‘?) el 2(a§+a‘*}m52¢j} . (39)

2
ax & hR?-.r

The solution (39) is the real-valued, nonsingular solution of the
KP-I equation decreasing at y— =+ oo, and has a periodic wave cha-
racter in x, {.

4.3. Another complex breather type solution of the mKP-I equa-
tion which can be oblained by the technique of the work [9] is of
the form:

a 1 +aef cnstp-l—"—m—'_'vﬂjﬂazezf
V=2iZL1n NP (40)

; < 2
gz 1 4+ %ei(ﬁe"" L ”) -+ aTei’-F

Y1 Vi

where
== 1) a5,

oY) =y(~!; = %)

¥l vz

and a some real constant, is converted by Miura transformation
into '
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2 o Ty e
U=2a—in{ 1 +ael cos g+ L MEEI} ; (41)
ax* 16

Viva

This real, nonsingular, periodic in y and soliton type in (x, {) solu-
tion of the KP-I equation has been found in [10].

5. THE CORRESPONDENCE BETWEEN THE LUMPS (g =)

The KP-I equation possesses the real decreasing lumps (see [3,
5]) while the mKP-I equation has both real decreasing lumps and
real plane lumps [9].

5.1. The real decreasing lumps of the mKP-I equation are given
by the formula (24) with [9]

N=2n, A, =k

n

ke L »
Yi= _!?—i_ci, ?n_.ll_f: _L__{_ﬂ!' (42}

where A;(i=1, ..., n) are arbitrary isolated points outside the real
axis and ¢; are arbitrary constants.

It is not difficult to see that the corresponding rational solutions
(29), (30) of the KP-I equation are complex and nonsingular. In
particular, the real nonsingular decreasing lump of the mKP-I
equation [9]

o = .0 i?l.i'_!ld
20K AR X e

V= o e, e 0 (43)
(e 52) + (5 )

where

X=x~—%+%—l—cr

EZCR—}—H?‘,

is converted into the complex nonsingular decreasing rational solu-
tion
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122 2 72 2 g .
——£8 __2X° _2X —E—EHR—ELJ".X— 20X

Ut (44)
[0 B (3]

of the KP-I equation.

5.2. The real plane lumps of the mKP-I equation are given by
(24), (25) where [9]

Imk=0, v=—"t+e, Ima=0 (i=1,..N).

They are mapped by the Miura transformation (3) into the complex
plane nonsingular rational solutions of the KP-I equation. For
instance, the simplest plane lump of the mKP-I equation

2
( Ey_l_l;; )2+“£

V=

(45)

where o is an arbitrary real constant is converted to the complex
plane nonsingular lump:

%2_( _2y+ |2:+xﬂ)+m(x;_2_y+ 1ot ﬂ)

[(_Ey_i__lm‘_}_u)_i_n:?ﬂ]"

Er=—J

(46)

5.3. At last one can show that the real decreasing lumps of the
KP-I equations [3, 5] are obtained by the Miura transformation (3)
from the complex rational nonsingular solutions of the mKP-I equa-
tion. In particular, the complex solution

szi{ x+x| e X+X—-2in, } (47)
2 IAl! 14° 2 Wi
X1 * 4 0 X124 =5 yrY — |Al*—iAX 4 AX)

where

of the mKP-I equation is transformed into

12

BL_ox:—ok
(l |2 ”'-ld)
433

that is the well-known real decreasing lump of the KP-I equation
[3; 5].

(48)

6. THE CASE g=1

In this case the real valued solutions of the mKP-II equation are
transformed by the Miura map into the real-valued solutions of the

KP-1I equation.

6.1. The real plane solitons of the mKP-II equation are given by the
formulae (12), (13) with

E,;= —2iR, EXP[F(EG{)) 4
= —2pi ' exp(— F(ify)) (49)

where R, o, PB: are arbitrary real constants. It is easy to see that
the corresponding solutions of the KP-II equation are given by (22)
with

i ERA EKP[ {

A mais ent i o el Ml Ul gy

Br(@n ' —Ba )

that exactly coincides with the formula for the multi-soliton solu-
tions of the KP-II equation (with a, '—-A.) [3]. In particular, the
simplest real soliton of the mKP-II equation [9]

V—- . Q{r.‘l-;zﬂjg E . {5])
£ —f_ & f Fie :
(e ﬂbﬂ')[é‘ ee)
where
=3 i, 2 = iy bk 2RI
f=(a='—p~)x—(@ *—p Yy —4a " —p I+ In 2L
a=sgn(ﬁfa) (52)
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is converted into the well-known real plane soliton of the KP-II

equation:
s= (3= 4) "o (] o

where

2R o

Fmo=! BN x— (@ =y da —p-Ht | '
Jx —(a B™)y—4(x B nﬁ{ﬂ:—ﬁj

(54)

The function (53) is nonsingular not only for those values of para-
meters o, B, ¢ (e<<0, a/B=>0) as the mKP-II plane soliton (51)
but also for =0, a/B<<0 for which the soliton (51) is the singular
one. The properties of the KP-II plane solitons are quite different in
these two cases. Namely, the soliton (53) at e=> 0, a/B<<0 (type I)

possesses at o= —f the nontrivial 14 1-dimensional limit
2 g ~
UKdv=§Ch 2%1 q]=JF|u,=--{:!| (55)

that is the standard KdV soliton while at e< 0, a/p= 0 (type II)
the solution (53) has a trivial 1 4 1-dimensional limit Ul,—p=0.

So the Miura transformation (3) maps the bounded plane soli-
tons of the mKP-II equation into the type II (pure 2- I-dimensio-
nal) plane solitons of the KP-II equation and the singular plane
soliton of the mKP-II equation into the standard (type I) plane
soliton of the KP-II equation.

This last property of the map (3) is similar to the property of

the 14 1-dimensional Miura map Uz—é—lf"x——i—lf? which, as it

has been shown in [11], does not interrelates the rapidly decaying
smooth solutions of the mKdV and KdV equations. This is quite cle-
ar from the consideration of the 14 l-dimensional limit of the
2+ 1-dimensional case. Indeed, the 14 I-dimensional limit of the
solution (51) (= —pB) looks like

4 =5
le{,d\-":f‘Sh ‘29, q3=f|ﬂ=_ﬂ (56)

that is the singular solution of the mKdV equation while the corres-
ponding limit of the solution (53) (a= —pB) is given by (55). So
the 1.+1—dimensinnal Miura transformation maps the singular

14
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solutions of the mKdV equation into the soliton ol the KdV equati-

on.
Similar situation takes place for general multi-soliton solutions

of the mKP-II equations.

6.2. The rational solutions of the mKP-II equation are real-valu-
ed in the two casses [9]

|} N ==y ?‘uk+n:}':k, vifa= Tl

2y acbitrary N, v=igi{Imos=01,, | Ye=T¢-
But all these rational solutions of the mKP-II equation are singular.

They remain singular after the Miura transformation. In particu-
lar, the simplest singular plane lumps of the mKP-II equation

V= — 22“ - - (57)
Lt 2y 1zt '
4 (x-{- e a’ +an

where @ is an arbitrary real constant is transformed into the solu-
tion

el e : (58)

This the well-known singular solution of the KP-II equation [3, 5].

2 12t
Note that the singularity’s line x= — ?y—l— ?—1— % —xp of the
solution (58) coincides with one of the singularity’s line of the solu-

tion (57).

Similar situation takes place in the general case too. Comparing
the formulae (24) and (29), we see that the singularities of the
solutions of the KP-II equation are defined by the zeros of the det A
and that these singularities present only the part of the singularities
of the solution (24) of the mKP-II equation.
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