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ABSTRACT

Turbulence is treated as a collection of separated
vortical structures of different scales - vortons.
A kinetic equation for the vorton system is writ-
ten. A simple mean-vorton model of the inertial

interval is considered using symmetry arguments.
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A turbulent flow of an incompressible fluid has a large
number N of excited freedoms that increases as a power of
the Reynolds number Re for large values of Re. One hardly
could expect to get a theory of such a turbulent flow as an
exact general solution of Navier-Stokes equations. Attempts
are made to investigate the turbulence rather qualitatively
in order to understand main features of turbulent flows.

The study of laminar flows gives at least a .satisfactary
explanation of the source of large scale ‘turbulent motion -
large scale instabilities arouse for large Reynolds numbers
Re>Rec— see [l]. The smaller scale eddys are then believed
to be created by the larger scale ones via the Richardson
cascade. The problem is the creation mechanism. The picture
depends on the number of space dimensions. For 3D flows the
most important results of theoretical and experimental study
are summarized in the Kolmogorov theory: there exists an
inertial range of scales up to Kolmogorov scale RK=(kK)*1 o

RE_B, >0, and the spect- ral density of energy obey in this

range a scaling law

E (B} = Skl 5 k- (1)
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In (1), v denotes the Fourier - harmonics of the velocity

field. From physical arguments the value a = 5/3 is found.
Experiments rather confirm this value within the accuracy of
measurements [2]. For the vorticity w = rot v it leads to
<|w]l ST

The behavior of small scale component shows, that for
Re = infinity the instantaneous realization of vorticity (as
well as of velocity) is a singular field. To study this sin-
gularity, let us consider the average value Q, of vorticity

in a sphere centered in r
a

Sy =" BRI p W [r—ra]ﬁar. B

The integration in (2) is performed over a spherical volume

centered in point -r , R is the radius of ‘the sphere. One
2

obtains

S(R)= <|u[§> SaRTaTe, (3)

For R = RK;‘- O this quantity diverges. A property of the tur-
bulence in the Kolmogorov inertial range, that is related to

mentioned is the intermittency of the

field w (r).

The space intermittency of turbulence is not studied in

problems, vorticity

details at the present time. In what follows the basic as-
sumption is that at every scale R there are 3D islands
(vortons) of high vorticity in a 3D see of relatively low

vorticity of the same scale. The mean value of the ratio

M=R/L(R) (4)
a

S

of vorton size R to intervorton spacing L(R) is assumed to
be- a small number or decreases with R : T << [. |

To scan the scales the smoothed velocity and vorticity
fields has to be defined. The definition (2) is an example

of smoothing. A more general definition is
& ¥ i - 3+
w (r)= Sm_w (ry =T p(r-r) w (r) &7r, (5)

with an appropriate smoothing function pE[rJ. The smoothing
procedure is discussed in the renormalisation group theory
in phase transitions - see for example [3], If one study the
smoothed field w(r) then details of scales L<R are smoothed

out and R becomes the smallest scale left unchanged. Accor-

ding to (3) the magnitude -of vorticity increase with decrea-

sing scale, so the highest values of smoothed vorticity be-

that allocates the

long to the scale R. The operation AIR 2

scale R, 0<A<l, may be defined as

AIR wale). = SmE w (r) - Sm, (= (6)

AR
The field AIR w[r:) "is the vorticity at the scale R mentioned
above. Let us describe the properties of a turbulent fluid
according to intermittence hypothesis. For very small R<<RE
in the dissipation range decreases

the vorticity exponen-

tially. At the Kolmogorov length RK one sees the vortons of

smallest scale. At larger scales one sees new vortons as

well as smoothed contributions of vortons of smaller scales.
In the inertial range

the spacing between regions of high

vorticity of a given scale is large relative to the scale.

At the longest scale in the inertial
3

range the overlapping




of high .vorticity regions become statistically significant.
The role of coherent structures in turbulence and the possi-
bility to consider the turbulent flow as a collection of
spatially discrete vortical structures is widely discussed -
see [4]. We use the term <vorton> to stretch the particle-
-like proberties of the structure at every scale. A single
vorton is characterized by the vorton location E s inverse
scale k = Lr’!-?aL as well as other characteristics C(a). The
corresp;nding vorticity field is denoted as fkicfr—r‘a]. The
hypothesis formulated above allows to express the vorticity
field as a superposition of vortons of different scales and
positions
wir) =} fkjc(r—ra}. (7)

The key question is how a vorton of a smaller scale is
produced from the larger ones. In a 2D flow,the energy is
transferred from small scales to large scale structures.
The specific 3D mechanism that invert the sign of the enérgy
flux .in the scale coordinate is the extension of vortex

tubes. If the influence of viscosity is negligible one has

for the enstropy w® .of an element [1]

dw’/dt = vwe (8)
Loy
e is the rate - of strain tensor. The extension effective
ij
in enstropy production at a given scale is due to vortex

structureé of nearest scales [2].

Attem'pts to explain the mentioned singularity of the

flow realization in the limit Re = infinity as a superposi-
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tion of local collapses gives at the present time rather ne-
gative results - see [S]. Here, the local collapse is meant
as an evolution of a single vorton towards a singularity
without essential interactions with other vortons. No solu-
tion is found of that type. In what follows a mechanism is
described of a cooperative collapse in the system of many
vortons. A vorton of a given scale R moves through the sur-
rounding fluid interacting with other vortons. The most
effective is the interaction with high deformation speed re-
gions of near scales. The proposed low concentration of
those regions (vortons) leads to the picture of a vorton gas
and vorton - vorton collisions at every scale. A collision
changes the scales of the vortex structures of colliding
vortons and in general the number of vortons. A random walk
of vortons in the real space, in scale and in number leads
to a flux of vortons from largerto smaller scales. At scales
o RK the viscosity damp the motion. The density W(k, C, r)
of vortons with given k, C in a point r obey a kinetic equa-
tion one obtain by counting the changes of the number of
vortons in an elementary volume of vorton characteristics
space. Changes are due to single vorton motions and vorton -
vorton collisions. If one takes into account only two-vorton

collisions, the general form of the equation is

oW (w)/dt =L + L

¥

Ll = Lliu, ety Wkt ) a's (9)
L2 n J‘" LZ(“: 'U.J, .U.”] I"V [k:‘} W {“n] 3”13“#.
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In (9), the whole set (k,C,r) of characteristics of a vorton
is denoted as pu. Equation (9) reduces the problem of the
statistical theory of turbulence to those of finding the
quantities C€ and operators L1 and Lz. The most important
problem in such a treatment is the structure of a vorton.

Little is known about localized flows of a fluid. Vortex
rings and vortex clouds like the Hill vortex are known
examples of those flows [6]. If vortons are of that nature
of generalized vortex rings than turbulence is a gas of
vortons of different scales. An alternative picture is a
random network of vortex tubes. To describe and to recognize
vortons, the tensor moments technique may be applied - see
[7]. In equation (9) the term L1 describe the individual
evolution of a vorton. This term is the most important in
theories based on the ideas of local collapse of vortons
mentioned above.

To proceed with the theory the detailed study of single
vortons and vorton-vorton collision is needed. It involve in
the theory the basic equation of the flow. In what follows
we discuss a highly simplified model of a vorton gas. In the
model, vortons are characterized by their inverse size Kk
only. A vorton at every scale has a velocity L) that charac-
terize both the motion of the vorton relative to surrounding
fluid and the inner motion, and v is a given function of K.

The number 8N of vortons in a space region of -a volume V
having their inverse scales in‘ the scale interval 8A=38k/k is

written as

N = Vkn (k) 8k/Kk,
n(k) is the density of vortons in k-coordinate. The equation

for n(k) is a simplified version of (9):
on (Ky/6t =L + L,
1 2 \
Ll = 1 Llik; ki) mi kkfl), ak’, (10)
L2= J Lzl:k; ) n ik ) (N ékt gk

As mentioned above, one expects the interaction to be impor-
tant only for vortons with near scales. As a consequence,
the functions LIU{; k’) and LE[R; k', k" ) are essentially
nonzero only for small relative differences (k - k')/k,

(k - k”)/k. Let us expand n(k”) in series of (k - k’): ot

n(k’) = n(k)+(k’-k) 8n/8k+(1/2)(k’ - k)° 8°n/ok” +... (11)
With the help of (11) eq.(10) may be written in the form of

a differential equation

an/dt = S.c 8™n/8k" + £ g 8'n/8k" an"/8k", (12)
n mn
c (k) and g (k) are the moments of L and L
n mn 1 2
¢ = I Llik; k) gkt 65 J thk; Ef) kk-k"] K" (13)

gm:'? i ink; ktakf)iokhek,
- : (14)

g™ S =] Lz{k; ol k) Ak-akT.

The moment e changes the number of vortons in single vorton

evolution, as viscosity does. We suppose this term to be

important only in the dissipation range. The moments

C1’ Cz’ ... lead to a change of scale of a vorton between
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collisions. We expect this change to be negligible in the
inertial range, and take c,= O. The simplified model is
written in order to imitate and to illustrate the properties
_csf‘ a system of vortons described by equation (9). The
connection of the model to the Navier-Stokes equation is in
a special choice of quantities ¢, &, as functions of k and
vk. Namely, we demand the model to haJﬁ.re the same symmetry as
the turbulence in the inertial range. An important role in

the Kolmogorov theory plays the similarity of the

turbulence at different scales in the inertial range. The
proposed

intermittency is in contradiction with the

self-similarity of a turbulent flow at different scales- the

=ik

infervorton spacing L(R) in unites gize R is .1

of vorton
and depends on the scale R. The similarity ' of turbulent
flows is based on the symmetry of the Navier-Stokes equa-
tion. Namely,. the equations
gv/8t + (v grad) v =- grad (p/p) + v Av, div v = 0. (15)
are invariant under similarity transformation

o= er’, K = Z;lk’, tis Ztt', v = ZVV’,

| (16)
(p/p) = Zi{p’/p’], A VAR

v t . r

v=2zZ2Z v'. (17)

It is assumed that all the quantities defining the flow are
transformed simultaneously. For vortons in the inertial
range one expects the viscosity v to be an irrelevant

quantity- fluids with different viscosities have coinciding
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sets of vorton solutions. If condition (17) is neglected,
the symmetry (16) results in two symmetries =the Euler
invariant under (v-t) transformation (Z =1)

r
and under (k-t) transformation (Zv=l}. For the simplified

equations are

" model, the demanded (v-t) and (k-t) symmetries determine the

dependence of quantities gU upon k and the characteristic

velocity r of vortons at scale R = k . The resulting equa-

tion is

on(k)/8t = (v,/k) T h [(k 8/8k)' nl] [(k 8/8Kk) nl, (18)

h are numbers. In a stationary case ( dn/8t = 0):

1]

n(k) = n k? (19)
sh ¥ =o0. (20)
ij
Equation (20) has a set of solutions 7, o=, Zras,. Eors

responding solutions of (18) « may differ in stability and in
other characteristics. Further restrictions on the constants
hij comefrom the energy conservation argument. A vorton c;f
scale R = 1/k is a region of the size R=1/k, volume Fkﬁ: /<
characteristic velocity W and kinetic energy e(k) « vik_a.

The conservation of the energy in vorton collisions leads
to the equation for the energy density in k-space E (k) =

= g (k) n (k) of the form

8E (k)/8t = 8I/8k, (21)
where I(k) is the energy flux in k-axis. Multiplying (18) on
e(k) and comparing with (21) one finds

81/8k = (v° k1) (h n’+ 2h -nk 8n/8k + ...). (22)
e 00 01
1




The expected form of the energy flux I {n (k)} as a local

functional of n (k) is
q- .. =4 2
In) = (vk AR (a.mn + Zamnk an/8k + ...) (23)

with new constants a , a =a , a .... For the form of the
oec-. Tl - Tl

flux (23) to exist, constants h1 and the velocity v, as a

j
function of k mast obey some conditions. The easiest way to

get this conditions is to consider the stationary case
on/dédt = 0. For that case 8I/6k = 0 and I = ID = const., and
for the vorton density the solution of (20) gives n = nuk?.
The condition I o [vﬁk:}kzw= quI determine the velocity as a
function of k :

v 1-(2y)/3
Vit 5 vok (24)

The way vortons are described in the model resemble on
mean field theories in statistical physics, equation (24)
plays the role of a self-consistency condition in a mean-

vorton approximation. The final form of the mean vorton

mode] is
an/at = [v;zka) 81/8k,
I{n} = {vi )7 a [(k 8/8k)' n] [(k 8/8k) nl, (25)
alj = aji, Ly Gl Jrod s Nt
=y k@3
Kk 0
For n(k) = nﬂkr‘r one has for I{n}

L il

- i+]
I{n} = Vot k

T B0 1, ' (26)
1
and the characteristic equation (20) is

12

(o-y) = a__ﬁ‘“j s (27)
The solution ¢ = ¥ with nc:flxzem flux I exists automatically,
if the sum in (27) is nonzero for ¢ = 7%¥. Other solutions of
(27) are those of I = 0. Note the special choice of a_lj to
have the only solution ¢ = ¥ :
8n/ot = a (v /K)yn°~ n (k an/ak)l, (28)
I=-@2) (v K)n"

The stationary solution of (25)

% ¥ i 1-(2y/3) 59
n(k) = nnk » ¥ vﬂk (29)

means for the spectral density E(k) of kinetic energy
E(k)=<|v(k)| %> k°® ki I n(q}(qu-a]z g ok 51072, (30)

“1/3
)

The spacing L(R) is L « (kn(k) so the parameter 11 (see

(4)) is

H

M=RLR « K° &=2-7. (31)
The case 8 = O gives the value of ¥y = 2 and the Kolmogorov-
Obukhov low E(k) « k>’°. The condition T << 1 may still be
fitted for this value of & if 1 is small numerically.
Another possibility is a week dependence like M« In (k).
I am grateful to G.A. Kuz’min and to H. Mller-Krumbhaar

for helpful remarks and discussions of the turbulence.
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