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ABSTRACT

We present a kinematic method of classification of
high - vorticity regions  (vortices) by  their
integral tensor moments. The simplest moments are
shown to represent the high vorticity region
either as a vortex ring or an element of a vortex
tube. Higher order moments contain more details of
the vortex structure and of its deformation. The
most noticeable modes are the rotation of the
vortex by its own vorticity, deformation of the
fluid volume occupied by the vorticity,
deformations that twist the vortex. The high order
moments are very sensitive to small scale
perturbations. We study the space distributions of
low order tensor fields for relatively simple
vortical structures.

@ Institute of Nuclear Physics, USSR

1. INTRODUCTION

Turbulent motion of a fluid is a result of a joint action
of nonlineﬁrity and dissipation. To a certain extent,
effects of this action are rather contradictory. Both
coherence and chaos are revealed in turbulent flow, the for-
mer being manifested by existence of organized or coherent
structures (Townsend 1976, Cantwell 1981, Hussain 1986), and
the latter being represented by their chaotic motion. The
large scale coherent structures produce the noticeable part
of turbulent energy and of Reynolds stress. Small scale mo-
tions are less studied. They are known to be highly inter-
mittent and to occupy regions of small total volume (Monin &
Yaglom 1975). The intermittency signifies a marked coherence
in the motion at small scales. It was conjectured, that the
turbulent flow may be treated as a system of relatively
stable vortices. This idea was formulated at the early

stages of investigations 'of turbulence. Recent studies make

this idea all the more likely.

At large Reynolds numbers R, vortices of different
scales fill in the very wide inertial range. The large

number of these modes N « R (Monin & Yaglom 1975)
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considerably complicate the investigation of fully developed
turbulence. The problem become more tractable if a modeling
of turbulence by a finite number of chaotically moving
vortices of various scale is possible (Patashinskii 1991).
The problem may be simplified by considering the acts of in-
teractions separately (Kuz’min 1991). After that the statis-
tical study of the full system may be hoped to perform,

Evolution of some particular vortex configurations,
which are similar to those occurred in the turbulent flows,
were recently investigated on supercomputers (see, for ex-
ample, Kida & Takaoka 1987, Melander & Hussain 1989, Pumir &
Siggia 1989). To describe more complex systems, one needs a
simplified description of the inertial range vortices. The
tensor space moments, which are described bellow, are inten-
ded to give a reduced description of small scale motions.
They are useful in problems of recognition and description
of complicated motions. Such a problem arises when analyzing
the flow field obtained in computer simulations or by a di-
rect multipoint measurement. The methods of recognition and
investigation of local flow structure are quite limited.
Usually one restricts himself to a visual study of the flow
pictures.

We note that the problem under consideration is related
to those considered in the information theory, where a gene-
ral technique of recognition and also of description of pos-
sible structures in presence of fluctuations is developed.

The basic notion of the theory is the feature space, which
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is the space of quantitative characteristics of the structu-
res. For the practical use of the theory, the number of in-
dependent characteristics should be as limited as it is ne-
cessary to recognize and to describe the flow structure.
There exist a resemblance of the present theory to that de-
veloped for the local structure of condensed matter (Mitus &
Patashinskii 1981,1987). The feature space for vortex struc-
tures 1is the space of tensor moments of the flow field
(Kuz’min & Patashinskii 1985, 1986). The similar moments
were defined by Melander, Zabusky & Stychek 1986 for two-di-
mensional flows.

In section 2, we define the feature space for two-dimen-
sional vortices, and describe the simplest vortex structu-
res. The 3-dimensional flow configurations, which are res-
ponsible for transfer of the turbulent energy to small sca-
les, are reviewed in section 3. The tensor moments for the
3-dimensional vortices are defined in the section 4. The mo-

ments for simple vortex structures are calculated in sec. 5.

2. OUTLINE OF APPROACH
TWO DIMENSIONAL VORTEX STRUCTURES
2.1 Isolated Vortices :

There exist a fluid motion, in which the flow along an
axis is suppressed or is less essential than the flow along
the other two axes. One may mention the large scale
geophysical flows, the flow of conducting fluid in a strong

magnetic field, the mixing layer, the flows in soap films
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and so on. In many respects, these flows are similar to
strictly two dimensional ones.

The typical structures of a two dimensional flow are the
solitary vortices (the regions of high vorticity of any
definite sign), the vortex pairs (the bounded states
composed of two solitary vortices of the same sign) and the
vortex couples (the bounded states of two solitary vortices
of different signs). More rarely the more complex bounded
states occur. The portion of vortices of a certain type
varies in space and time.

The known quantitative characteristics of an isolated
vortex are the multipole moments (Batchelor 1967)

G = J- w dA, P=e_ I x (x) d4, J=- }2- J x’w (%) d4, (2.1)
ij :

t = J’ (20050 xzﬁij] w () dA. (2.2)

The vortex charge C determines the circulation of velocity
around the vortex patch. The vector P is the vortex momentum
and J is the angular momentum. The tensor tij describes the
difference of the vortex form from the circular one.
Parameters (2.1), (2.2) are the simplest irreducible
tensor moments of vorticity distribution. The full set of

irreducible moments is written as
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where x is chosen so as the satisfactory description of the

vortex structure be achieved by as few tensor moments as
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possible. For the solitary vortex and for the vortex pair a
vorticity centroid is defined at

Sl
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C im m
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X=1 J' 0 (X) xdA =

For the vortex couple C=0, and the vector P do not determine
the vorticity centroid. The plausible expression for the

vorticity centroid is

1 2
o [P
: [ 5 Snialyt elekaj] /P (2.4
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where Tij= xixjm(x]dﬂ. In particular, for a couple of point
i >
vortices w=k[8(x)-8(x’) one obtains the natural expression

from (2.4)

X=(x + x')/2.
H, i Turh, }?’20, the vorticity., centroid has to _be
determined from tensor moments of higher order.

The moment N{m] is the projection of a vorticity field
on the basic set of functions. The radial and the angular
dependence of the basic functions are determined accordingly
by r' and by

(m)
lm i g log r/ér. ...ﬁri
e, 1

L m 1 m

S

The tensors S{m} are known to be the eireular harmonics of
integer clegree.'The components of the tensors s are equal
to *cos m¢, *sin m¢ in polar eeerdinate system with the
origin at the point x. Therefore, each irreducible tensor
N{n] has two independent components. One parameter is a

characteristics of orientation of the vortex structure,
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while the other determines its form. Thus the invariants of
the tensor moments can be treated as the formparameters of

the vortex structures.

2.2. Organized Vortices of a Given Scale

The vortex structures are naturally described by
smoothed fields. The smoothing is to be performed over a
scale A, which is small when compared to the main scale |l of
the flow, but is large in comparison with the Kolmogorov
scale m, I>a>m. It is worthy to note, that the similar
smoothing is performed when the hydrodynamic equations are
derived from the equations for the fluid molecules. As a
result of such a smoothing, the microscopic molecular
characteristics are replaced by the fluid velocity, density
and viscosity. The fluid motions and the microscopic ones
are separated by by a wide spectral gap. The Ilarge
difference between the smallest hydrodynamic scales and the
molecular ones implies that the physical point in fluid
mechanics is isotropic, that is, the fluid is described only
by scalar characteristics (density, enthalpy and so on).

On the contrary, the smoothing of a vortex structure
inevitably divides the motions of near scales. So the new
physical point whose effective scale is A>>n contains the
motions of slightly less scale than A. These internal
motions are described by nonisotropic tensor-type

characteristics. One may say, that the Navier- Stokes
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equations describe a motion of a scalar fluid, which is
composed of physical points without any internal structure.
The smoothing over scales A>>7n gives a nonisotropic fluid,
which has tensor properties at any point.

To extract the vortices of a given scale A, let us
consider the integrals (2.3) over the circular region of
radius A. By moving the center of the circle in space, one
may reveal the structure of the flow in the vicinity of any
point x. The moments (2.3) are now the tensor functions of
the position %. The formulae (2.3) may now be considered as
a filtration of the vorticity field. The Fourier transforms
of the kernels overlap, so the information about the vortex
structures of the given scale A is duplicated in various
moments.

We consider the projection of the vorticity field only
on the functions with the zeroth radial number n=0 and low
azimuthal numbers m. The full set of moments may be used for
a detailed investigation of the vortex structures after
their type and situation have been established. Let us use
the polar coordinates with the origin at the point x. The

moments can be written in the complex form

N (%, a)nj wlx + re()] expim)dA(P). (2.5)

r<ai
The squared modules I;“.l'mt2 are the invariants of the tensors
(2.3), so they describe the form of the vortex structures.
The phases of complex moments N describe the orientation of

Imn
the vortex.




Let us consider the simple examples. The group of point

=2 =

vortices of strength K i=1,2,...k, at the points Pl
inside the circle, induces the set of moments '

k
N {;:}=E k. explime).
m 1= i

For a solitary point vortex

2
N = k expl(im¢), so [N |z s e [
m Im

For k=2

% L i
Ile =K+ K+ 2K1Kz cos [m({;"a‘l ¢2]]

=(c + s-.z)z— 41cllc25in2[m[¢2— 9 /2] . (2.6)

If x is situated on the line connecting the two
vortices, then -:;51— ¢:2=in. From (2.6) one sees, that for
vortices of the same sign this line is marked by the minimum
of the invariants of odd order and by the maximum of the
invariants of even order. On the contrary, for vortices of
different sins, the line connecting them is marked by the
maximum of the invariants of odd order and by the minimum of
the invariants of even order. These properties may be useful
when searching the vortex structures of the definite Kkind.
The low order invariants are of the primary interest,

because they are less sensitive to small scale variations of

the vorticity field inside the vortices.
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3. REVIEV OF VORTICITY STRUCTURE
AT SMALL SCALES

‘x{arious terminology is wused to name the vortex
structures. The term ‘“coherent strum;*:.re” means the
vorticity organized into coherent clouds. It is kept in mind
that a certain configurations occur more frequently than the
other ones, and these structures are the preferred modes of
the flow (Hussain 1986). When one says ‘"organized
structure”, he means that this vortex is reasonably
described by a deterministic solution of hydrodynamic
equations (Cantwell 1981). Some vortex configurations are
neither coherent nor organized structures, but may be
favorable to induce the small scale motions. The probability
of such "key structures”" may not be very distinguished, but
these structures, if any, are noteworthy.

There exist several scenarios of energy transfer towards
small scales in three-dimensional flows. One should mention
the generation of small scales due to a cascade of
instabilities; the (stochastic or deterministic) stretching
of vortex tubes and sheets; the spontaneous ge:r.leration efsa
singularity in ideal three-dimensional fluid.

The stability considerations are plausible to explain,
why a laminar flow is destroyed at the near-critical
Reynolds number. But these considerations are questionable
when describing the large scale vortices in fully developed

turbulent flows. Some more questions arise when one speaks
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about generation of small scale structures due to a cascade
of instabilities. Of course, almost all realizations of the
turbulent flow are believed to be unstable. But this merely
signifies that the statistic considerations are necessary to
explain the properties of such a realization (see, for
example, Lichtenberg & Lieberman 1983).
When analyzing the inviscid vorticity equation
> >
%0 =22+ (@ = @GN,
the idea of generation of small scale motion due to a
stretching of vortex lines arises. The vorticity equation is

similar to that for a material fluid element af (Batchelor

1967)

d(sl)

= (3IV)u
xF = LL <5

The mean squared length <{6l]2> is believed to grow as a
resultof stochastic stretching of sl by the random velocity
field u. The asymptotic form of an infinitesimal fluid
volume element will be a small sheet or a small rod,

according to the properties of the def ormation field

D = 8u/dx + 8u/dx (3.1)
1] i j ] i

From these considerations it was proposed by Batchelor &
Townsend 1949, Corrsin 1962, Tennekes 1968, that the
vorticity is concentrated in vortex sheets or in thin vortex

tubes. The smallest scale of these vortices is equal to a

12

viscous scale m and .the characteristic curvature radius is
of the order of the main scale L. The model of a turbulent
flow as a system of chaotically distributed and oriented
vortex sheets and tubes explains the high intermittency at
small scales, but gives the turbulent spectrum that differs
from the Kolmogorov one.

Lundgren 1982 has pointed out, that the vortex sheets
have the tendency to be wrapped into spiral structures. He
sppposed, that just those structures determine the small
scale properties of turbulent flows, and derived the
Kolmogorov spectrum. Some support of the spiral model give
the visual studies of turbulence, performed by Schwartz
1990.

Apart from the mentioned above structures, the vortex
rings may occur in turbulent flows (Kutateladze et al 1986).
The ring formation as well as their merging and
disintegration requife the reconnection of the vortex lines.
The experimental study of reconnections in vortex rings were
maid by Oshima 1977, and some details of the reconnection
process were simulated on computers by Kida and Takaoka 1987
and also by Melander and Hussain 1989. In the computer
simulations, the partial reconnections of vortei tubes were
observed, after that a bridge composed of vorticity is left.
In the bridge, an additional reconnection may occur and the
vortices of more small scale may be generated.

Other types of interactions between two vortex tubes

were also observed. Two antiparallel vortex tubes of equal
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strength may give a set of vortex rings (see Widnall 1975).
Parallel vortex tubes may merge, giving a - spiral vortex
structure in a transverse section. If the vortex tubes are
curved, the merging of their nearest pieces does occurs
first. After that the merging process propagates along the
tubes (Siggia 1984). If the intensities of the tubes are
different in their order of magnitude, the weak tube is
wrapped around the strong one (Zabusky & Melander 1989). It
was observed in a shear layer that the interactions of this
type lead to intensification of longitudinal vortices. The
greatest enhancing of vorticity occurs in the stagnation
points of the flow, where the tensor (3.1) has its maximum
value.- The general theory of organized vortex structures in
terms of critical points of the flow field was developed by
Cantwell 198l.

When the nonlinearity 1is sufficiently strong, the
processes of self-amplification are possible. A  known
example of such a process is the wave collapse. The similar
effects were looked for in vortex flows at high Reynolds
numbers. Possibility of a vortex collapse follows from the
estimation for the mean squared vorticity (Monin & Yaglom
1975)

<mz> x £/V,
where € is the mean dissipation of energy density, v is the
viscosity. From the estimation, a singularity in the flow
field seems to be possible at v » 0. The reasons, that this

singularity may occur at a finite time, has also been
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adduced (Rose & Sulem 1978, Frisch 1984). If such
singularities do occur at a finite time and are essential, a
great deal of the small scale phenomena such as intermit-
tency may be associated with a spontaneous singularities in
flow fields.

Pure mathematical methods has not been able to give the
final conclusions in that area (Frisch 1984). The
possibility of a finite time singularity has not been
confirmed by direct computer simulations of various flows
(Pumir & Siggia 1990). If the vortex collapses were
essential in turbulent flows, they had been observed in a
large variety of configurations. In particular, they should
not require of a fine tuning of the initial configuration.

From the above examples, one may conclude, that the
great variety of small scale phenomena can not be attributed
to-.a . vortex collapée or ..to  any other  single:  vorfex
structure. Possibly, the small scale vortex evolution does
not follow a typical scenario.

To reveal the relative role of the various small scale

phenomena, a great deal of theoretical and experimental

investigations have to be done. To describe the vortex

configurations, one needs a method that must not be a very
special one. Only the most essential character.istics of the
vortex structures should be taken into account. Those
characteristics are described by the integral moments of low

order.
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4. TENSOR MOMENTS FOR A 3-DIMENSIONAL
REGION OF HIGH VORTICITY

4.1. Low Order Moments

Let . us consider the structure of a high ' wvorticity
region. Suppose a visual study has indicated a closed volume
of high intensity vortex motion. We shall briefly name such
a structure  as "vortex". Generally, the  vorticity
distribution inside the vortex is a complicated function of
space and time. To classify the vortices, one has to define
those parameters of the vorticity distribution, which are
relatively stable under the influence of external as well as
present the

internél small fine scale motions. We

classification of the vortices by their integral tensor
moments. The following moments are believed to be most
important:
a) The integral vorticity

Q=[ oadv. (4.1)
The integration is performed over the volume of the vortex.
For an isolated vortex 5:0, otherwise this characteristic

represents the vortex as an element of a vortex tube.

b) The vortex momentum (Batchelor 1967)

> 1
P 2
represents the vortex as a vortex ring.

N
rxw dv (4.2)

c) The angular vortex momentum (Batchelor 1967)

> 1 S 3 2
g = 3 rxrxw dv (4.3)
16 |

-

d) The tensor
t = _[(r [Pl + r[rx@l) dv - (4.4)
1j i J \| i

describes the deformation of the fluid volume occupied by

the vortex, and

e) The moment

a, = J{ri[?x{;xﬁllj+ r PPN ) av (4.5)
describes the deformations that twists the isolated vortex

(Kuz’min & Patashinskii 1985,1986).

4.2. Toroidal and Poloidal Components

of Vorticity Field

We consider the tensor moments in some more details.
Because of the condition div o =0, one needs only two scalar
functions to describe the vorticity distribution inside the
vortex. We wuse a decomposition of vorticity field in

toroidal and poloidal components (see Moffat 1978)

-3 = >
Ww=w+w
L JRPE
- R 3 - - -
where w = curl curl(rP)= curl(rxvP), © = curl(rT)=-rxVT. The
p -
poloidal and toroidal potentials P,T are determined by the
equations
o -+ 9 N 2 -
L°P=(r.w), L°T=(r.curl w)
where L = irxV is the operator of angular momentum. The

e

eigenvalues of L% are the numbers l(l1+1), where 1=0,1,2,...,
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and the eigenfunctions of L® are the tensors
(1) + 11 -
Y (elm(=1) £ e e (4.6)
1771 1 g
3 =
where e=r/r. In particular,

(2)_ e
: : Yij —SEIEJ Sij, (4.7)

(3)
= -
Y”k 15eiejek 3(elajk+ ejam+ ekaij) (4.8)

The components of the tensors (4.6)-(4.8) are the wusual
spherical functions. Therefore we have to consider the

moments of toroidal and poloidal vorticity

{n) - (1
B1n1 1[.13<:]= I rY’ } i[%:}}[?:.cllrl $(§+;]] dv,
1 z... 1 11... i
1+1 >
=J Ay @ye.ale+r)] dv, (4.9)
1ol j
g
(n) ¥ 1 -
s () =J- Y (@26 av (4.10)
12771 T
where n, 1=0,1,2,.... It is convenient to choose the point Y,

so that the vorticity field is described correctly by as

minimum number of moments as possibly.

4.3. Tensor Moments in Terms

of the Vortex Momentum Density

3 =3

The vectors P,J are, respectively, the resultant force
impulse and the resultant angular momentum of the force
required to generate the motion from rest (Batchelor 1967).
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The similar interpretation is possible for the moments of
more high order. We define the vortex momentum density,
which is equal to the density of the force impulse, required
to generate instantaneously the specified vorticity field
from rest (Kuz’min 1983, 1984). We substitute the impulsive

force ?‘ = ai[*..‘)::*;r into the vorticity equation

4

g_? +H(UV)e =(@V)u + vAw + curl F .

Integration of both sides over the infinitesimal time
interval (-g,e), €20, gives w=curl c"} Therefore the field r_:}
differs from velocity u by the gradient of a scalar
function, E}=rj+?x. We choose the gauge function x so, that
the finite vortex «cloud is represented by the finitely
distributed vortex momentum density a Owing to finiteness
of the region, where E‘:r is non-zero, the moments of the
vortex momentum density are well defined. It is easier to
imagine, what the fluid motion is represented by the
specified moments, when these moments are written in terms
of the force impulse c} So we substitute t"j;:ncur‘lc_;jr into (4.9),
(4.10) and integrate by parts. Let us consider the moments

of poloidal vorticity (4.10) of low orders.

= j[;a}db’ = (IKZ}IB(rzmj}/ﬁrde =04
ni”: J ri(;::)dv = J[?x?;]_dv =J , (4.11)
1
A J{Br S e
1] L3 1]
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== BJ{ Foca] R - 3
ri[rquj rj[r:(q}i} av 2 du : (4.12)

The low order moments of toroidal vorticity are

B J[;.curl ) dV=0

(1) > -
) =J' r (r curl w)dV = j[;x:r]idv & zJ‘ q dv =2P, (4.13)
1

(2) Ao
=) =J-[3r r-r’_ )r curl aldV:EJ{r_[rXM] + rrxwl) dv
J L k] i j j i
—3J.[r g L lrg)s ] disat

From (4.11)-(4.14), the physical sense of the moments become

(
more clear. For example, Hiz}=[3/4]du is the moment of the

force impulse, that tends to twist the vortex. The moment
Elij=3tij describes the  quadruple deformation. We see, that
the lowest order moments (4.11)-(4.14) are proportional to

the moments (4.2)-(4.5). Higher order moments describe more

fine details of the vortex.

5. TURBULENT VORTICES OF A GIVEN SCALE

5.1. Moments of Vortices of the Given Scale

The turbulent flow consists of vortices of different
scales. The small scale vortices can be considered as
fragments of a large scale one. Consider a spherical volume
of radius A in a turbulent fluid. The integrals (4.9),(4.10)

over the volume r<A give the structure of the flow in the
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region of scale A near the point X. One may scan the flow
field by moving the center X of the spherical volume. In
such a way, the vortex structure may be revealed in the
vicinity of any point of the flow.

The tensor moments (4.9),(4.10) are the projections of
the vorticity field on the basic set of functions, which is
especially simple in the spherical coordinates. The radial
dependence of the basic functions is determined by the power
factor r. The angle dependence is determined by the
spherical harmonics (4.6). The
(4.9),(4.10) have 21+

irreducible tensors

independent  components. Three
parameters give the orientation of the vortex. The remaining
2(1-1) parameters give quantitative characteristics of the
vortex which do not depend on its orientation. These

characteristics can be considered invariants I (s=1,2,...)

of irreducible tensors (4.9), (4.10). :

Knowing the distribution of invariants inside the volume
of the system, it is possible to isolate parts of the fluid
occupied by corresponding structures. It is possible to
identify the type of structures by comparing the fields
IS{;] with standard ones, based on specially created
vortex-disturbance  types (vortex rings and vortex
filaments, vortex pairs, etc.). In doing so, it becomes
possible to set up a spectroscopy of structures according to
their invariants. A comparison of structures according to
their moments of low order is the comparison of classes to

which these structures belong. It is possible to expect that
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invariants for small order moments describing the most
large-scale deformation of the volume in flow are not too
sensitive to fluctuations inside the structures.

Identification of the vortex structures in turbulent
flow consists in comparing of its moments and invariants to
that of the standard configurations. The moments (4.9),
(4.10) for n = 0 and for low numbers !l are first to be cal-

culated. The full sets (4.9), (4.10)

can be used to reveal
the fine details of the vortex after its type and situation

have been established.

5.2. Low Order Moments

for the Elementary Structures

‘We consider the line vortex configurations in {rz, ra}
plane which model the vortex structures considered in
section 2. The moments (4.9), (4.10) are reduced to line

integrals. The coordinate system is shown in Fig. l.

) 3 A T

Fig. 1.

Coordinate system

Fig. 2.

Vortex pair

Pl 3

Vortex couple

The integration region, which is the sphere of radius A
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is shown schematically by dots in [rz, rB] plane. The sketch
of the vortices is shown figures 2-5. The first vortex stru-—
cture is the vortex pair (Fig. 2).

The vorticity distribution is W= w2=0; w_= K.S[rl}[a{rz—
- b) + 8[r2+ b)]. Simple calculations show, that

s (0)
¥ =4kbs |V A°/b°-1- arctg VA"/b —1\; = 0;
1
0”=0; 8= l2xbA Parctg VA*/b®-1,
1
where ﬂ“‘m}: 8 8 + 8 & determines the angle dependence
ik il km im kl

of the moment. The vortex couple is composed of two anti-
parallel line vortices (see Fig. 3) 0= ws= 0; ). == K3 {rl} X
X [S{rz- b)'= 6{r2 + b)]. The low order moments for the vor-

tex couple are

(0) 2,3); _

H“‘”:Q; m"'=-12xb g_k i +log(1+ =B /A %))
1

i ik

4]
0'@=4xbs logll+v 1-6°12%); ©%= 0.
i il ik

The next two structures are the configurations given

either by
mlmo, U2=K3(F1]5(?‘3], w3=x6(r1)6[r2},
or by
mlzo, w =K sgn{rz}ﬁirlla{rsl, w = K sgn(ra}ﬁirl]ﬁ[rz)

(see fig. 4.(a, b)).
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Fig. 4. FLgswDy

a) Intersection b) Cross Vortex ring

For the structure shown in figure 4.a

H[mﬁﬂ, n[ﬂ}:HfD]= 2K, T[fm=0; B{ﬂ]= E](D} 6.
1 2 3 ik i ik

For the structure shown in the figure 4.b,

1 i R 3k
For the vortex ring of radius b, placed at the origin of the

coordinate system

(20)=0; [exw] = 8 ka(r-b)d(r ), so N =0,
i il 3 {

i}

(0 (0)

0 V- omkba . B = 0.
i1 ik

1
Let us consider the two surface vortex configurations.

shear with the

The ¢ first-¢<one: iris  the layer vorticity

distribution
W=t =0: w =xd(r )
| i 1

The low order moments for the shear layer are

(1,2)

2
(0 _1 (0) (0)_ (0)_ 3
pig -

M '=-nmkA 8. ; I =0; © (3: . B8 —rm?azﬂ
G REL i3 ij i ik 2

The second one is the front of vorticity
w=w=0w=w for r »w=w for r<O
12 - 2 3 - 2
For the front of vorticity
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10 B 0 sas il e n sy A
| s + - i3 ik 4 U T

The zeroth values of the moments, which are summarized
in table 1, indicates, that the corresponding structures are
in the origin of the coordinate system. This sign can be

used to search and to mark the centers of the structures.

Table 1
Moment |Angle dependence of the moments
(0) (0) (0) (0)
Structure Hi Hlk Bi @ik
Pair 1o 0 0 ﬂ[ e
i3 ik
Couple 0 T4 3 0
ik i1
Intersection 1—6_1 0 0 0
1
0SS 0 0 0 0
Ring 0 0 611 0
Shear layer Is) 0 0 ﬂ.fl’zl
i3 ik
Vortex front &) &_[2’3] o) 0
i3 ik il

The non zeroth moments describe the form as well as the

orientation of the structures. The quantitative

characteristics of the form are the invariants of the

moments which do not depend on the orientation of the axes

Each stricture’ s -

of the coordinate vortex

characterized by a certain set of the invariants.

system.
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