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INTRODUCTION

Dur‘iﬁg the past twenty five years fifteen
electron-positron storage rings have been built and
commissioned all around the world and a substantial progress
in luminosity has been reached. Now a design consideration
of a new storage ring is well approved both theoretically
and experimentally in all aspects except one. This exception
is a problem of the beam-beam interaction, which is a
subject of the present paper. Our knowledge here is quite
rich, but not at a level of good understanding of the
phenomenon. It remains still unexplained why the beam-beam
limit is so small for the most existing storage rings.

The lack of the good theory can hardly be compensated
and this review of the beam-beam effects is not an
exception. A choice of the material for a review and the
accents on the relative importance of different questions
were done rather by intuition than on some systematic basis.
For a more complete study of the beam-beam effects one needs
to apply to the additional information. Some of the

excellent reviews can be found in the reference list.
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1. EVALUATION OF THE BEAM-BEAM KICKS

Here we find the integrated transverse angular
deflection received by a particle crossing a charged beam.
The coordinate systems used below are shown in the Fig. 1.

We assume that the distribution of the charge, Ne, in
the oncoming bunch is Gaussian in all three dimensions.
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where a, b, c are the standard deviations in x, y and z.
It has been shown [1] that the electric potential produ-
ced by this distribution is
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For a convenience of the reader we present the
evaluation of the potential in the appendix. The transverse
electric and magnetic fields of this bunch moving with the

speed of light ¢ along z-axis are given by:
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where 7 is the Lorentz factor and ¢, ¢, o are the
x v z

standard deviations in the laboratory frame.

It is easy to calculate the transverse Kkicks by
integrating the corresponding component of the Lorentz force

over time T:
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We assume in the beginning that the variations of o and c:ry

with z on the interval of * o, are very weak and find
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where r 1is the classical electron radius.
e

We consider the beam-beam effects, associated with the
finite bunch length, in the section 5.

Equations (1.9) can also be written [2] as
S



B - S 28 B e ), (1.10)
¥ 2 2
&x = ¢y

L R SR T S P ) (1.11)
¥ 2 2
OCx = Oy

where a condition o > ¢ is assumed and
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Here W ( ) is the complex error function.
In the two extreme cases of a round beam cross-section
(0 = ¢ ) and a very flat beam cross-section (¢ » 'T}r) the
X Vv > X

formulae (1.10) and (l1.11) can be simplified significantly.

Directly applying the Gauss law for a evaluation of Ex, E.v

one can obtain for round beams
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and for flat beams in the region of |y| << o
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is the error function.

2. LINEAR APPROXIMATION

We can already obtain several useful results considering

small oscillations with |x| << ¢ and |y| << o . Equation
xX

(1.9) becomes
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In this approximation x and y motions are decoupled and we
can consider one dimension only. Let it be y dimension.
Due to the linearization the beam-beam kick is

equivalent to the effect of a thin quadrupole with the focal

length f
. S0 o 2Nre
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The transformation of the (y, y’) vector through one

beam-beam collision to the next is described by the matrix

r =

cos (u + Au) B sin (u + Ap)

sin (u + An)  cos (u + Au)
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where B, B are unperturbed and perturbed beta-functions at
the collision point and p is the phase advance of betatron
oscillations between two interactior

If the perturbed motion is stable, than

cos (u + Ap) = cos p = 2n€ sin p,

(2.4)
B sin (p + Ap) = B sin p,
where
Nre B
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For Au << 1 .one can find for a tune shift of the betatron

oscillation: (2.6)
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Therefore the parameter €& is often called as

beam-beam tune shift. The relationship (2.6) is only valid

for tune values not too close to the half integer. The exact

dependence of Av on € and p is shown in Fig. 2 [3].

The evident conclusion from this plot is the following.

For a fixed value £ one can have the benefit to have smaller

Av if choice the  Dbetatron tune slightly above a

half-integer.

From the equation (2.4) we can also find [4]
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The beam-beam force pinches the beta-function and

consequently the beam size at the collision point to a

smaller value if p/2m < 0.1. It is so-called effect of the

dynamic beta-function [4]. For large u/2m the reverse is

true. This means the luminosity would also benefit from

having the betatron tune slightly above a half-integer.

Several examples of the dynamic beta hbehavior are shown in
Fig.3.
From considerations above we can f .-ure out a
recommendation for choosing betatron tune< slightly above a
verification for this rule

we find in SPEAR-I data (5] (see Fig. 4). However to follow

half integer. Some experimental

this strategy is not easy in practice. The cause is single

beam synchrobetatron resonances.

Beam-beam strength parameter £ is much more relevant for
a calculation of the luminosity than the number of particles
in the bunch N. The maximal & value is correspondent to the
maximal possible perturbation in the particle motion when it
remains stable. Therefore a standard luminosity formula

NZ

L=f —w—,
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(2.8)

where f is the collision frequency, must be rewritten in the

form, including &:
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This presentation of the luminosity formula is
consistent with the experimental observations of luminosity
and £ behavior with beam intensity for many e'e  storage
rings. (See, for example, Fig. S, where CESR data is
presented [6]). At low currents the luminosity is
proportional to the current squared and the beam sizes are
constant. At a ‘certain current the vertical tune shift
saturates which forces the beam size product to grow in
proportion- to the current. Thus, the luminosity also grows
linearly with current. Non Gaussian transverse tails develop
on the beams and subsequently increase linearly with
currents until fhe aperture limit is reached. At that value
the beam lifetime is significantly reduced.

Equally with the parameter & the luminosity is
determined by three others: crossing frequency, f, vertical
beta-function at the interaction point (IP), By, and the
beam dimensions ratio, r = c-y/a*x.

Though the beam-beam subject is usually consider as the
dynamics of the beam-beam interaction and concerns the
problems of € limit, we can not totally pass by these
additional parameters. Attempts to increase the luminosity
with the use of some of them are very often limited by &
reduction. Therefore at the appropriate points we shall

return to the consideration of these parameters.
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Nevertheless, we will be most interested in various possible
mechanisms that cause the beam-beam limit.
w
3. AN ISOLATED RESONANCE IN TWO
DEGREES OF FREEDOM

As our first beam-beam picture we consider the two
dimensional motion of a single particle interacting with the
charged bunch at the collision point and performing free
betatron oscillation between the collisions. This is so
called ‘weak-strong’ case. The periodicity of the motion and
the nonlinear character of the interaction are the causes of
two important effects: an excitation of the nonlinear
resonance and tune dependencies from the oscillation
amplitude of the particle, which will end up with tune
spreads, if a weak beam contains a distribution of particles
of various amplitudes.

We begin with the Hamiltonian

K X T Ky -

0
Bowele 45t +J’2 +V (x, y) ) 8(z-kC), (3.1)
k=-00

where Kx, Ky are usual focusing functions, x, x’, y, y’ are

betatron coordinates and canonical momenta,normalized on the

stasidard dewviations, o, ¢ .,, ¢, & ,, € is the periad
X y \'g

x
between interactions and the potential
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is the perturbation, while f, *fF are dimensionless
x y

beam-beam forces., In this notation the beam-beam kicks are
described in the form

hx =g F,
x =
(3.3)
By, ==& T .
y " ¥
The transformation of the Hamiltonian (3.5 to

action-angle variables (x, x', y, y') » [@x, I ¢, ) can
¥ ¥y
be accomplished with: the generation function

=1
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which yields the transformation equations

gi= V 2qu3q cos (tbq},

(3.5)
B
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and new Hamiltonian H
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where z has been replaced by a new dimensionless variable 6=
= 2nz/C and
; o
SM (8) = z cos k6. (3.7)
fo=—00

Then, the problem can be reduced with the expansion of the
potential V in the Fourier series

0o
V= Z z Vﬂ,m COoS (Etﬁx] Ccos (m@y]

E,m:-m
and averaging of the Hamiltonian over the ‘time’ 6. Only two
term are retained in the Hamiltonian. They are a phase

independent term

21
1
i Jff vV do do (3.8)
(2m) oS
0
and a resonant term V cos (€& + m3+ - kU), where
¢m % v
2T
V, = 1 J.J Vecoséd cosmd dédd. (3.9
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All other Fourier terms are assumed to have phases which
oscillate rapidly and can thus be averaged to zero.

Thus we come to the truncated Hamiltonian

<H > = + !
. vxl'x vny + Ifm+ ng cos (E@x + m@y k6). (3.10)

The effect of VGG is to make the average frequencies of os-
cillation dependent upon the particle amplitudes defined as

/ 21 B, / 21 B

A = - -
A - A — : (3.11)
X ¥

According to the standard definitions of the nonlinear

tune shifts [7]
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one can get from the substitution of (3.2) and (3.8) into

(3.12)
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The Hamiltonian (3.10) can be reduced to the one dimensional
case by wusing a canonical transformation to a rotating
system in phase space. The generation function of this

transformatio_n _is
F (¢, ¢, K, K, 8)=({2 + mdb - k6)K +(£d - md )K . (3.14)
2 x v 1 2 X v 1 X y 2

The relationship between old and new variables is

V=0 + md - ke, v=¢ - md,

1 x z 2 X 2
(3.15)

I =¢K+ K ), I = m(K- K ).

X 1 > y 1 2

The new Hamiltonian becomes
H=({y + mv - R)K+ v - mv )K+V (K, K) +
2 b ¢ Y 1 X Y. 2 00 1 2

+ Vr:m (KI, Kz] + Fﬂm {KI, KE) cos !L‘l. (3.16)

Since this Hamiltonian is independent of 6, it is a constant

of motion. In addition, it is independent of *Pz. Therefore,
14

the new action

K = PR (3.17)

is also an invariant.
As a result the second term in (3.16) may be ignored

since it just represents a constant energy term.

H2={va+ my -k) K1+ VGD(KI, K2]+ Vﬁm[Kl’ Kz] cos 'Ifl. (3.18)

o

Suppose we define Kr as that action which yields the

oscillation frequencies at resonance

dVﬂﬂ
v + mpv + = Kk | (3.19)
e B dKI K= K

1 T

After expansion of Vm close to K we get from (3.18) and
r
(3.19)

av’

Hzﬁfﬁv +my -k)K + é 20
AN i dK’

2
[Kl-Kr) +V&n{Kr,K2}cos tIfl. (3.20)

Here we can omit once again the first term, which is now
the constant energy term. Applying the third transformation
with generation function

F3 = (KI - Kr) ‘{‘1, {3.21)

we finally come to the pendulum like Hamiltonian

H3 = —g- + Vﬁm cos ‘L’l, (3.22)

where nonlinearity a is

15



szﬂD , v 30V , 8

o i ¥ X

o = . e +2m£"ﬁ“+£'§r' (3.23])
dKI v X X

The phase space diagram for a pendulum is shown in
Fig. 6. This plot was reproduced from Ref. 8.

Because the energy of pendulum is constant, the
resonance width, which is equivalent to the size of the
separatrix, can be easily found. It is

V

S (3.24)

Ap = 4 s

We shall consider Eelow the flat beam case and will use

the beam-beam forces in the same form as in (1.14) (See,

also Ref. 9)
f =dwva F_Ixh 2
X D
o - (3 25]
0o (Bel7* > % S NI,
One can get after substitution of (3.25) in (3.13)
2m
Av (4 ,4 )=£ —2——[ F (A cos d:-x/v' 2 Jcos & do , (3.26)
X X ¥ x*x T D x X X
0
Ai a° A° A ad®
- e . s e
ﬂvy[ﬂx,ﬂy}—gyfu 7 ID 7 +I1 7| |exp 7 « §3.21

where ID and Il are modified Bessel functions of =zero and

first orders.
The example of the tune spread (beam footprint)

corresponding to the equations (3.26), (3.27) is shown in

16

Fig. 7A. This footprint placed in the tune plane amongst the

resonances is shown in the Fig. 7B. (These figures are taken
from Ref. 10).

We can see from Fig. 7B that the resonance lines insid“e
the footprint are  satisfied by  different amplitude
conditions. It means that the resonances can equally be
presented by the certain lines in the amplitude plane. Their
location within the amplitude space is determined by the
resonant condition (3.19):

v+ Av (A, A)l + mlv + Av (4, A4 )=k, (3.28)
b 4 X M ¥ y ¥ X b

where ﬂ.vx and ﬂvy are taken from (3.26) and (3.27).

An example of the resonance in the amplitude plane is
shown in Fig. 8. The resonance width here is measured by the
value of the maximal beating of the amplitudes, which goes
in the direction determined by the invariant (3.17).

In terms of amplitudes 4, 4 the nonlinearity « from
X y

the equation (3.23) is presented in the form

2
m aliv A
3 B:«* v, 4 Ex 'Iy ) ahux ; p? aﬂyz
4 &2 dA A £ - m 8A 2 JA
Y{FF ¥ X Vv x X T
In the case of very flat beam and in the region of moderate

(3.29)

X

amplitude of vertical oscillation the first term in (3.20)

is dominant. Therefore in light of (3.27) one can get

mzﬁy Ai + Ai 4° A
o EY 32 exp 3 IU g J’1 e s (3.30)
o
y v

We can also rewrite equation (3.9) for m # O in the form

17
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The integrals in (3.31) can be evaluated for fy taken in the

form (3.25). The substitution (3.31) and (3.30) into (3.24)

gives for resonance width [11]

ﬂﬂy = 2 /Gﬁiﬂx} Fm{f-ly], (3.32)
with the functions GE (A ) and F (4 ) determined as
x i y
(4]
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m { 4 2 m 4
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Note, that A4 do not depend on £ .

y y
The consideration above is valid for Ap << Kr or for not
too small nonlinearity «. Another important approximation is

the approximation of single isolated resonance.

4. CHIRICOV OVERLAFP CRITERION

In the reality the set of resonances turns out to be
everywhere very dense. See, for example, Fig. 9, reproduced
from Ref 12.

It turns out that a fairly general mechanism for arising

instability of the motions is the so-called overlap of
nonlinear resonances [7]. This instability has a rather
peculiar nature resulting in an irregular, or stochastic,
motion of the system. A plausible condition for the
occurrence of the stochasticity seems to be the approach of
the resonances down to the distance of the order of a
resonance size. To be precise, the overlap of resonances
begins when their separatrices touch each other. How to
calculate the condition of separatrix touching taking into
account a deformation of the separatrix by a neighboring
resonance? The simplest method, suggested by Chirikov, is to
consider each of the resonances as if another one were
absent. It is just what one means when talking about the
overlap criterion. Being a quite rough one, this criterion
is fairly efficient especially in the case of rather
complicated systems.

According to the overlap criterion to avoid the chaotic
behavior in the simple one dimensional case one need to have

v << v - v, (4.1)
1 2

where o&v is the resonance width in the tune plane,

ov = wAp = 4 Ea-FEm (4.2)

and v, v, are the frequencies of two neighboring resonances

calculated as
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v==n; v=n;, (4.3)
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with nm’ - n"m = + 1.

Using (4.2) and (4.3) we can rewrite (4.1) in the form

1
/“Vem' << eyl (4.4)

Equation (4.4) sets a limit to the validity of the isolated
resonance analysis. This condition requires that
nonlinearity « not be too large since in this case the
resonances do not separate.

The application of the Chirikov overlap criterion is
very convenient for a numerical study of the beam-beam
effects. Using the computer it is easy to observe the
modifications of the phase space particle trajectory when
the parameter £ is increased and to check a moment, when
the isclated separatrices become touch each other and a
regular motion is destroyed. The examples of the phase space
with the regular and irregular motion for one dimensional
case are shown in Fig. 10. These examples were reproduced
from Ref. 13,

The overlap criterion has been applied by several
authors to the determination of critical value Ecr (See Ref.

13-15). In the Fig. 11 £ is shown in the dependence of the
cr

fraction part of the betatron tune. These calculations were

done for one dimensimn_al beam-beam model.
The 'resulting data is much too high compared with real

experimental observations.
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S. ADDING LONGITUDINAL MOTION

Including the synchrotron oscillations into the
consideration will bring to the new effects. We will show
that the interaction of the particle with the opposing bunch
produces a coupling between synchrotron and betatron
oscillations.  This coupling drives the multiplets of
synchrobetatron sideband resonances near the primary
beam-beam resonances. There are three regimes which can
characterize the resonance system now [16]. (See Fig. 12). in
the first regime new resonances are still isolated and do
not overlap. In the second regime the distance between
neighboring resonances is smaller and they overlap. Strong
instability arises here, when the overlap distance extends
to the distance between primary betatron resonances. In the
third regime all resonances of the multiplet merge together.

It is clear that the overlap of the synchrobetatron
resonances can decrease the value of the beam-beam limit.

There are several beam-beam longitudinal-transverse
coupling mechanisms. We begin to consider them from the
so-called force modulation. Such a modulation arises due to
the. variations of the pB-function at the interaction, which
are dependent from the synchrotron motion. There are two of
them. They are B-function dependence from the longitudinal

deviation
2

B (z) =8 (5.1)

Z

R

y ¥l B
yO
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and from the energy deviation AE/E:

dp
a&1 y O ‘E‘.E
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where By(} is the B-function at the IP and dBYU/d[ﬂ.E'/E] is
the lattice dependent term.

Here, we will concern ourselves with the flat beam case.
The round beam case will be considered in the next section.
For a flat beam all modulation effects are much more
significant in vertical direction.

In principle, second term in (5.2) can be made
negligible by a proper choice of a chromatic correction
scheme in the storage rings. Therefore, we shall not include
it in the consideration below.

The longitudinal motion of a particle within the weak
beam will be assumed to have the following properties. It
undergoes linear synchrotron oscillations with the

synchrotron tune, LN
s =S cos v, (5.3)
0 S

The longitudinal beam-beam impulse is assumed negligible;
the direct effect of the RF cavity system on the motion of
the particle is not considered. We shall also assume for a
moment, that the opposing bunch has no longitudinal extent.
Therefore if a particle within the weak bunch has a
longitudinal offset s from the synchronous particle, it

receives its transverse beam-beam kick at a distance z=-5/2
from the IP.

22

The equation (5.1) leads to £ dependence from the
y

longitudinal coordinate of the particles

1/2
&2
§ =g il (5.4)
y yO -
45
v0
After substitution (5.3) in (5.4) we get
e )2 : 2 -]1,«'2
=
= 5
Sy gﬂ 1 + 2B AZ COS USGJ ) (5.5)
| ¥y
where A4 = SD/G‘ is the amplitude of the longitudinal
z z

synchrotron oscillations, normalized on the bunchlength o .
Z

For small A and ¢ ~ 3 we can write
z z vO
42 5 2
Z .
gy_ gyﬂ L+ 7 21’3},0 (1 + cos ZUSBJ : (5.6)

This means an existence of two sideband resonances

my £ 2p = & (. 7]
v s

In the case of the large longitudinal oscillations a
number of the dangerous resonances is increased and we will
have the following resonance conditions:

nwy ¥ K, (5.8)
where m and n are even.

The force modulation results also in the tune shift
dependence from the longitudinal oscillation. It directly

follows after substitution (5.5) in the equation (3.13).

This effect Jleads to the dependence of instantaneous
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betatron tune on the parameters of longitudinal motion:
2 1/2

Az cosz v e ; (5.9)
z S

a

vV = v  + Ap 1 +
y yO0 y0 283
w0

It also drive the synchrobetatron resonances (5.8) [17].
The result of the numerical simulation of the effect of
force modulation is shown on Fig. 13. It presents a

significant  dependence of & on the

cr

amplitude of
synchrotron oscillations.

Another source of the longitudinal-transverse coupling
in beam-beam interaction is so-called betatron tune
modulation [18]. This type of modulation arises due to the
particle longitudinal oscillations, but attached importance
of this modulation is connected with the low B-function at

the IP and large accompanying betatron phase advance nearby

it:
S/2
dz
Ab = J- . (5.10)
. By{z}

While the instantaneous betatron frequency is

S

0
. vw HEB_ sin v 8 (5. 11)

we can write for a canonical phase & in the Hamiltonian
(3.10)

S

v 8 + —2-5— cos v 8. (5.12)

Mo
]
Sy
e
3
Il
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The substitution of (5.12) in (3.10) yields new resonance

conditions

v +mv +nv =k, (5.13)
X Y S

with £, m, n being even numbers and new resonance harmonic

amplitude
"TZ
Vﬁnm:vﬁm“fn m 8 flz, (5.14)
y
where Jn is the Bessel function of the order n.

It was shown in the recent studies [19], that for
relatively small amplitudes of the longitudinal oscillations
the consideration of the finite longitudinal extent of the
bunch results with an additional reduction factor

ma

1 z
v
in the resonance harmonic amplitude V . It is connected

¢mn
with the effect of the beam-beam kick averaging in the

betatron phases and with the reduction of the kick strength.
Two things contribute to the reduction of the beam-beam
kick [10]. The deflection experienced by the particle during
the interaction with the opposing bunch is proportional to
the average charge density of the opposing beam over the
length of interaction. Therefore, due to the B-function
variation nearby the IP the deflection produced by the
integrated kick is less than the impulse - like kick at the

symmetry point where B-function is at a minimum. Next is for

7




particles  with small displacements. As the particle
trajectory places it closer to the center of the opposing
beam core it experiences less beam-beam force., Summed over
the length of the interaction the net deflection is less.
Fig. 14 shows the result of calculation of particle
trajectory for both the impulse - like and integrated kick
cases.

Numerical studies of the tune modulation effect on the
critical value &er usually show the significant reduction of
gcr, when the depth of the modulation is increased. In Fig.
15 such an example, taken from the Ref. 17, is shown.

Non-zero chromaticity is also the source of tune
modulation. But it is usually compensated to a very small
value.

In principle, the dependence of the rotation period on
a particle energy leads also to the excitation of the
syt hrobetatron resonances. But this source of the effect is
a v=ry weak.

The next source of longitudinal - transverse coupling in
beam-beam interaction - non-zero dispersion at the IP - will

be considered in the separate section.

6. COLLISION OF ROUND BEAMS

An idea of a collision of the round e‘e” beams has been
circulated since early storage rings. Also nowadays it has
been studied intensively and considered as a very promising
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attempt in the advance towards to high luminosity. What is

so attractive in the round beams?

First is the factor of two in luminosity, which directly
follows from the luminosity formula (2.9) at .:ry e with
all other parameters being the same as for flat beams.

Second is the absolute elimination of the force modula-
tion effect, when szﬂy. It follows from the independence of
g from the beta-function in the round beam case

Nr
e

5= dnye ' (6.1)

where € is the beam transverse emittance.

Third is the reduction of the beam-beam problem from
three to two dimensions of freedom. Equal vertical and
horizontal emittances and betatron tunes are implicit
initial conditions here.

The simulation of the beam-beam effects in the round
beam configuration in a ‘weak - strong’ case with the finite
bunch length taken into account was carried out by several
authors. The typical result consists in a rather big maximal
value of g, determined by a threshold in a beam core blow
up. See, for example, Fig. 16 reproduced from Ref. 20.

However, the maximal & for a particles with large
longitudinal excursions from a bunch center is substantially
lower. The deterioration is connected with the effect of
tune modulation, considered above. For a large amplitude of
longitudinal oscillations, a strong longitudinal-transverse
coupling appears that results in a fast loss of these
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particles on the aperture. The maximal attainable value of €
in the dependence of a given longitudinal amplitude is shown
in the Fig. 17 [20].

We should mention here, that the realization of the low
beta function in both directions as low as in the flat beam
design will demand approximately two times stronger sextuple
lenses for a chromaticity correction. This fact reduces the
attraction of the round beam concept if one takes into
account the possible effects that can arise due to the
interference of the beam-beam effects and machine imper-

fections.

7. NON-ZERO DISPERSION AT THE INTERACTION POINT

For a long time among the accelerator physicists there
is a firm prejudice against the dispersion at the
interaction  point. It is confirmed by experimental
observations and by simulations as well.

All these studies were carried out when the

contributions of the energy and betatron oscillations to the

total transverse beam dimension in the dispersive
direction were comparable, I. e. the m- mitude
o
A = F” : (7.1
xf3
(where o _ is the betatron beam size, ¢ = |¥| ¢_ is the
x.’g xs

synchrotron beam size, ¥ is the dispersion at the IP and 2
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is the beam energy spread) satisfied the condition
A €1, (7.2)
The adopted conclusion is as follows. The dispersion at the

IP causes the excitation of the synchrobetatron resonances

bv + mv + nv = k, 1 7.3)
X v s

with m and (£ + n) being even numbers and results in the
deterioration of the maximal €.

What happens, if one makes

' xSl (7.4)

Is the deterioration process continuing?

To answer that question, the analysis of this case was
carried out in Ref. 21. A method for a creation of a big A
was assumed, where not only a big dispersion at the IP was
used, but a low beta function and very small emittances as
well. This approach results in a very flat beam

configuration at the IP

= 250 (72.5)

A
4

y

and a large difference between € and €
v X

gy
= =8 (7.6)
3
X
For the case of A >> 1 the particle excursion from the
center in horizontal direction is

A

X = -i—x cos ﬁx + A cos @ 7 d)

]
B 8
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where X is the coordinate normalized on the total beam size

-1/0* + o2 and A is the synchrotron amplitude, norma-
Xs s

llze::l bj,r condition

_ |¥] AE/E

] o
Xs

N (7.8)

where E—E- is the energy deviation.

It was estimated in Ref. 21, how the width of the
resonances (7.3) depends on the parameter A. We can do this
in a similar fashion to two dimehsional case, considered in
the section 3. Therefore, according to the equation (3.31)
the resonance harmonic amplitude VE is

g }1 G‘E 2T

e ” a8 -0 -do_x
tan (2n) SmB

A
F e e 8 i cosﬁ,ﬂcosﬂ]x
ylA X s s y '

cos ¥ -cos n® -sin ¥ -sin mo . (7.9)
4 | }:" }T

Here m # Q.

Nonlinearity « has the same expression as in (3.10) with

the substitution A instead of 4 .
s x

It is natural to use f}, in (7.9) in the flat beam
presentation of (3.25). It allows to factorize the
evaluation of the integrals in (7.9), that results in an
expression analogous to (3.32) for the width of any

particular resonance with the numbers £, m, n:
30

ﬂ.-’-ly = z/cm [Ax, AIF. A} (7.10)

Here the functions,Fm, have exactly the same form as in
(3.34), but the functions GP are different than in (3.33).
They can be found for every £ after expansion of f in a
Taylor series of a small term .rlx/h Several results Df the

evaluation of leading terms in Gén are presented below.
For =

AE
T —
o N 4J
G{m uis, rAZ\ i {7.11]
s
Ir:} 4

where Im’z is the modified Bessel function of the order n/2.

For £ = 1 the leading term of GFJ" already contains a small
factor A /2x;
X
A% } A?
I i = f -
f—lx-ﬂs (n-1)rs2 4 3 (rn+1),2 4
2 I3 . (7.12)

For =2
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s s
P L ke nest U a P area b g
(7.13)
.
o
and for higher orders of £ we have
¢
o 7.14)
an (H-lxx’ZI—’l] ‘ (

Thus, we come to the following conclusion. The width of the
pure vertical resonances does not depend on the parameter A.
The width of all other resonances is reduced with the
increasing parameter A. The expected effect is estimated as

follows:

A~ (22)? (7.15)
Y

To clarify the importance of this effect for beam-beam
interactions in the situation when the total number of the
resonances  is increased by the new set of the
synchrobetatron  satellites, we have accomplished the
following program of the analytical and numerical study of
the beam-beam effects. In the beginning we found the
dependence of the blow-up effect of the ‘weak’ beam on the
working point on the tune plane. Then, in two good working
points we calculated the dependence of this effect on the
intensity of the ‘strong’ beam.

For a fast analysis of a large number of betatron tunes

a simple one dimensional analytical model (Ex = 0) has been
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proposed for determination of blown up o, The model sjs
based on the crude approximation for the rgiaxed distributi-
on function of the particle density, where the particle
density within the nonlinear resonance is supposed to be
constant.

The validity of the model was checked by the .
conventional tracking technique. In Fig. 18 the results of
the model prediction are presented with the solid lines and
the tracking results are presented with crosses. Here, the
ratio ¢ /‘Tym’ where o is the vertical size of the "strong"

y y0Q
beam, is shown in the dependence on v at a fixed horizontal

betatron tune vK= 0.08. Other paramet;rr‘s were chosen as us=
= 0.025, £y= 0.05, Ex= 0.01 and A = §.

We found the analytical result in a satisfactory
agreement w.ith simulations. Then, the model calculations of
the vertical beam size were extended on the whole tune
plane. For given values §y= 0.05 and p 0.025 and for four
values of A (A=2.5, A=5, A=10 and A=25) we determined c:-*y/a*yﬂ
in every point of the betatron tune on the mesh with the
step .&ux= ﬂvyr 0.005. As a result we get the areas of tunes
where the blow-up of G“YD did not exceed 15%. In Fig.19 these
areas are contoured and marked with shading for each value
of A. In every plot all resonances up to six order are also’
shown.

Our conclusion based on the analysis of these four cases
is as follows. Most destructive resonances are pure vertical

betatron and synchrobetatron resonances with the numbers

a3




Im[=0, 2, 4, 6 and |n|=0,2. The effect of these resonances
is observed independent of the parameter A in all four
plots. At the same time all pure horizontal and coupling
resonances are sensitive to the parameter A. Their relative
importance depends on the number £. For example at A = 5 the
resonances * 3ux+ 2vyi L’5=l with £ = 3 are looked as the
resonances limiting the good areas. At the same time they
are less important at A = 10, where the limiting resonances
are the resonances iZu;Zv =] and i2ux+2uyi2v5:1 with {=2.
Correspondingly, the good aieas are increased here compared
to the previous case. The largest areas are on the plot with
A=25. Here only the resonances iZux+4vy=l and iux+2uyiuszl
are considered as the destructive resonances.

The dependence of the ‘weak’ beam vertical size on the
linear tune shifts £ , Ex has been studied numerically at a
constant sym:111*4:::1:1‘u:)n}r tune v = 0.025 for two working points

=

with the betatron tunes [vx= 13.08, vy=?.(}'?5] and (v =13.08,
=

v = 7.10). According to the plots in Fig. 19 we considered
tﬂrese working points very promising for the case of the big
parameter A.

Numerical simulations were done in the model including
longitudinal motion, quantum fluctuation noise and radiation
damping with the damping time expressed in the numbers of
beam-beam collisions N=9090 for longitudinal and vertical
oscillations and N=4545 for horizontal oscillations. There

were four sets of calculations in each working point. One

for zero dispersion (A=0), one for small dispersion (A=0.7)
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and two for the big dispersion (A=5 and A=25). The results
are presented in Fig. 20. They give a clear evidence of the
effectiveness of a big dispersion in the suppression of the
resonance 2v - 2v = k and its synchrobetatron satellites.

X ¥y

In our simulation we had the longitudinal beam size ¢ = 0.75
Z

cm, while the vertical beta function at the IP was 1 cm.

8. COLLISION WITH CROSSING ANGLE

An idea to use the crossed beams in e'e” storage rings
has a long history. The main motivation here is the
achievement of the fast separation of the colliding beam
orbits. It allows an increase in collision frequency (number
of bunches] and avoids beam-beam interactions in the
parasitic crossings.

Unfortunately, this method is not free from the problem
shown in Fig. 21. (See also Ref. 22). The particle with a
distance s from the center of its own bunch passes the
center of the opposing bunch at a transverse position x +
sp, where x is the transverse displacement of a particle
inside the bunch and ¢ is a half of the crossing angle.

' Thus, due to the crossing angle we get the modulation of
the transverse  particle coordinate with  synchrotron
oscillations like in the case of non-zero dispersion at the
IP  considered in previous section. The value of the

effective dispersion, ¥ P is
e




v ff
— < 8.4
e 16 (8.4)
ar
L
o oo M 8.5
¢ US aR ( )

In terms of the parameter A the equality ‘{'erf and ¥ gives an
addition improving factor of Vv 2
e+ 9 o

1 - 2 sya 3 (8.6)
xf3

o

where }.D is the value of the parameter A without crossing
angle. Thus, the crossing angle in the second case does not
lead to new phenomena and moreover leads to better
conditions in the beam-beam interaction. As a result, we can
suspect that the summary effect of a big dispersion and the
collision at a crossing angle will open a new way towards

the high luminosity.

To be accurate, we should say that the synchrotron
oscillation is also influenced by the betatron one. The

energy shift 8E/E after the interaction is

. S (8.7)

5
Howener, due to the big difference in the longitudinal
and transverse emittances it does not results in any

destructive effects.

36

9. INTERFERENCE OF THE BEAM-BEAM EFFECTS
AND MACHINE IMPERFECTIONS

We shall consider below several types of machine
imperfections that can cause a reduction of the maximal £.

The first 1is nonlinear components of the guiding
magnetic field. We imply here the sextuple and octupole
lenses and additional uncontroiled cubic and high order
machine nonlinearities. We know that, even in the single
beam case, they may reduce the aperture from the free
mechanical aperture to the so-called dynamic aperture. In
the two beam case with beam-beam effects a small size of the
dynamic aperture might be a cause of & limitation. This was
observed on VEPP-2M storage ring [23], where the dependence
of the ultimate E}' value on the position of the aperture
scraper was studied. The result is shown in the Fig. 22. It
is seen that the Ey is independent of the scraper position
above the aperture of 35::‘}?. Below this aperture £ is
decreasing. The existence of the threshold is a glear
evidence for dynamic aperture limit at SScry.

Recently, it was noticed on the example on cubic
nonlinearity ([24], that even in the case when the betatron
tunes are chosen far from the destructive machine
resonances, the zero harmonic of the nonlinearity can lead
to significant effects. A dangerous situation arises at the

oscillation amplitudes where beam-beam detuning is partly or

totally compensated by a cubic machine nonlinearity. This
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means that the resonance self stabilization is absent here
and the resonance width can extend to the large amplitudes.
The same follows from the formula (3.24) for resonance
width. At constant harmonic amplitude, the resonance width
can be sufficiently increased by diminishing of the
nonlinearity «.

According to the conventional notation we shall define

the average cubic machine nonlinearity as

dv 1 dvy

B ol < R=?—§, (9.1)
T ¥ B aa
x ¥

where £ , £ are horizontal and vertical beam emittances and
% ¥

A, A are normalized betatron amplitudes. These nonlineari-

A

ties contribute to the Hamiltonian (3.10) with the term [24]

W w R "R - BB TY (9.2)
00 X X VoV X ¥ Xy

Now, all formulae of the section 3 are valid after
substitution

- s« S ¥ (9.3)
00 00 00

Therefore, it is not surprisingly that the positions of
the resonance lines in the amplitude plane are changed and,
at certain conditions, the new nonlinearity o« can be very
small.

The effect of the cubic machine nonlinearity on .the
example of resonance .10uy=96 was studied numerically in
Ref.11.. Three cases with zero, positive and negative

nonlinearity are shown in the Fig. 23. All three were
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calculated at vy=9.599, vx=8.555, gy:0.0E, £x=0.{]1. The
magnitude of the machine induced tune shifts were
Av =#2.5-10" at A =0, A =1 and Av =#2.5-10"" at A4 =1, 4 =0.
X y X ¥ y X
In all three cases the direction of resonant oscillati-
ons is vertical. In the case (a) the resonance spans the
amplitudes Ay=20—40 at Ax=0. However, the aperture is at
about 80, and without additional resonances, it is very
difficult for a particle to over come the very strong
damping between 40 and 80. The situation changes
dramatically when positive nonlinearity is added (case b).
In a certain region in amplitude space the beam-beam induced
nonlinearity is canceled by the machine nonlinearity and a
region of very wide oscillations appears. At f-lx = 1.5 the
resonance spans the entire distance from Ay =15t 4 = 70.
In this case a lower edge of the resonance can be gonside—
red as nonlinear dynamic aperture.

In the third case, when machine nonlinearity is

negative, such region is absent and the machine nonlinearity

is simply bending the resonance upwards as f—lx increases.

An experimental observation of the machine nonlinearity
influence on the resonances, induced by beam-beam effects,
was done on VEPP-4 storage ring [25]. The methods applied
was the observation of the particle loss rate during the
betatron tune scan. An example of such observation is shown
in the Fig. 24. All regions with the high particle loss rate
are easy identified with the certain resonances.

There were several scans across the resonance ?Vx=60
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with different values of the cubijc nonlinearity, The results

of two of them with R =~ + 6.9 ecm™ are shown in the Fig. 25.
' X

It is interesting to mention that the specific luminosity,

L= LAT,

Sp

changed significantly.

does not change, while the loss rate is

A second example of a machine imperfection is a small
(< O.lc ) separation of the colliding beam orbits. This
effect ist especially important for two ring colliding beam
facilities. The orbit separation breaks the symmetry of the
beam-beam interaction potential, that results in the
appearance of the odd resonances in addition to the even
resonances. The set of even and odd resonances can overlap
much easier than the set of only even resonances.

The appearance of the odd resonances at a small orbit
separation was observed on VEPP-4 storage ring [25]). Fig.26a
presents the diagrams of the loss rate and specific
luminosity during the scans across the resonance TLJX = 60 at
a different orbit separations. At a =zero separation (Fig.
26b) the resonance '?v:{: 60 disappears, while the resonance
MwM = 120 is not observed.

It is interesting to note that the loss rate observation
on the ‘anomalous’ high order beam-beam resonances looks
much more effective for an accurate tuning of beam
collisions than the observation of the specific luminosity.

In practice, a ‘static orbit separation can be

accomplished by the orbit separation ripple, which is only

worsening a common situation.
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A third source of the machine effect on the beam-beam
interaction is the asymmetry in the betatron phase advance,
,u.x'y, between interaction points, that also leads to the
appearance of the additional ‘anomalous’ resonances. Two
effects were observed on the VEPP-2M storage ring [26] with
the variation of phase advance of the vertical betatron
oscillations, ﬁuy. They are the blow up of the vertical beam
size (see Fig. 27a) and the degradation of the maximal Ey
(see Fig. 27b).

10. STRONG-STRONG INTERACTION AND
FLIP-FLOP EFFECT

A consideration of the beam-beam effects in the
‘weak-sti'ong’ approximation is capable to give us the
understanding of the phenomena leading to the beam intensity
limitation. At the same time, such a consideration can
hardly pretend to make an exact prediction of the limit
value in the real life, where we already deal with two beams

with almost equal intensity. This is clearly demonstrated by

the observation, performed on VEPP-2M storage ring [26]. In

the Fig. 28 one can find a big difference between
‘weak-strong’ and ‘strong-strong’ cases in the vertical beam
size behavior versus the strong beam intensity.

It means that an ideal solution of the beam-beam problem
must be self-consistent. Such an attempt has been made in

Ref.27 for a phenological explanation of the flip-flop
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effect. Similar studies were carried out in Ref.28 and
Ref.29.

A flip-flop effect occurs between the sizes of the two
beams. It was observed that with the increased intensity of
both beams one beam gains dominance over the other, blowing
it up while reducing its own size. The collapsed beam
effectively becomes stronger, while the blown-up beam
effectively becomes weaker. Reversing the roles of the beams
Is possible by exerting some asymmetric external influence.

The following system of algebraic equations for a
description of the internal links between the beam

dimensions and currents was proposed in Ref. 27:

r2 2r-"-.F'
o =0 +|—
+ 4]

4 ; (10.1)

& 8
o =0 +
0

. \ F

Here o iIs the natural size, supposed to be the same for
both beams; ¢, ¢_ are blown-up beam dimensions; i*, i are
beam currents and a, p are some unchanged parameters. The
latter parameters are supposed to be determined by all know
constants affecting beam size, but the nature of the effects
is not figured out.

At constant currents each equation in (10.1) describes
the dependence of one beam size on the opposite beam size.
It is shown in the Fig. 29 for three values of i .

Evidently, the self-consistent solution lies on the
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diagonal, where both beams have equal dimensions. There are
two cases of interest, depending from the slope of the curve

on the diagonal.

 § §
do

+

do

Rt P (10.2)

than the diagonal point is a stable focus. (See Fig. 30a).
But if

< =L (10.3)

the diagonal point becomes an unstable saddle (see Fig. 30b)

and two new stable points appear (see Fig. 31). At

- ] (10.4)

a solution of (10.1) is changing from equal dimension beams
to the flip-flop beams. This condition correspondents to a
certain beam current, that we define as the critical one. At

the natural assumption it =i = i, that we use for a

*
simplification, the critical current, i , is [27]

3 i /20, \Up
P =2 [ P ] [ J : (10.5)
a p -2 p -2
. ‘ "
and a critical size, ¢ , is
. 1/2
c =¢ [ P ] : (10.6)
0 Ip-= 2
* &
It is interesting to mention here that i and ¢ are
3 L
increased as p approaches 2. At p = 2, i and ¢ are
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infinitely big, that means the absence of the flip-flop
effect.

The above consideration of the flip-flop effect gave us
an example where ‘strong-strong’ behavior of the beams can
be derived from 2 ‘weak~str0ng’ behavior. It is very
advantageous because it allows to reduce the complexities of
a ‘stmng—stmng’ model of beam-beam interactions to much

more easy ‘weak-strong’ model.

11. ADDING RADIATION DAMPING AND
QUANTUM FLUCTUATION NOISE

It is a well known fact that the electrons and positrons
in the storage ring undergo radiation damping accompanied by
@ - quantum  fluctuation noise, Therefore, a  correct
description of the beam-beam effects should use these in the
model. Below we show that damping and noise in the particle
motion lead to a new phenomena, which js absent in the
conservative case.

We begin with the eXperimental observations, Collected
data from various machines, concerning £ dependence over the
damping decrements, is shown in Fig. 32,

In both plots the spread at any particular decrement
value is quite large and any correlations, where the maximal
€ are figured out from the decrements, ook quite

speculative.

The observations of the maximal &€ values, performed in
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almost identical experimental conditions during the energy
scan on VEPP-4, show a weak dependence of € from the damping
decrements (see, Fig. 33).

In the last decade several theories of beam-beam
effects, including noise and damping had appeared [30-32].
All of them had a goal to calculate the particle
distribution in the presence of the nonlinear resonances
that allows finding beam blow up and particle losses at a
certain aperture. A common method is the solution of the
Fokker-Planck equation for the evolution of the particle
distribution. Recently, these studies were renovated and
several new results were obtained [33-35]. Here, we shall
review briefly main ideas of the References 33 and 34 in the
application to the beam-beam effects.

The influence of the radiation damping and quantum
fluctuation noise can be considered by adding to the

Hamiltonian equations the dissipative and random terms:

e
|

(11.1)
EJ:?—‘;”-— P+ ¥y € (1),

where H is the Hamiltonian (3.1) ¥ in this section is the
damping decrement and 7 is the diffusion coefficient. The

random process  (t) is a ‘white noise’ process:
<L (t) C(t + T)> = a,jﬁfr) (11.2)
| i i
Iand the symbol < > denotes the averaging in time.
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The  Fokker-Plank equation  (FPE), describing the

evolution of the particle distribution function, has the
form [36]

5 5% BERE

+P = - wX - = ap
t 3% 5% 5P = 3P (apr+ n al-"]' (11.3)

i

Qo

where V is a pertubation potential from the Hamiltonian
(3:1]

In the absence of the perturbation Eq. (11.3) yields
the stationary Hibbs distribution,

i J— _'E{ }‘ 2 Ho B
p =N exp - [?_ (P” + MEXE{J}} ; (11.4)

with the temperature kT = n/y and Wy being the betatron
frequencies. (Summation over repeated indices is implied).

For a solution of (11.3) in the case of time dependent
perturbation the following assumptions are useful: the
smallness of damping and noise relatjve to unperturbed
dynamics; the averaging of p in oscillation phases on the
large interval of betatron oscillations; the slow variation
of p will depend only on the action variables, p (J, t). The

resulting, so-called, ther‘mal~averaged FPE 1=

3p &8 - ap
where the itie "
e quantities FF:’ GF:E
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(11.6)

aJ, (X, P) 6J (X, P)
Opp = < 8P aP > :

are the averages along the trajectories of the unperturbed

i

Hamiltonian and time.

The relaxed distribution function RDF is the solution of
the stationary form of Eq. (11.5)
e F,(1) + nG, (J) i = Q. (11.7)
i ke

SJP: SJE

The divergence form of Eq. (11.7) means the existence

fluxes in phase space, which are circulated in closed loops.

This process was called as phase convection.

Most interesting for us are the probabilities of large
fluctuations, defined by the ‘tails’ of the RDF at |J|>n/%.
Therefore, we can apply the weak-noise asymptotic (WNA) -0,

corresponding to the low-temperature limit k7T-> 0, for a des-

cription of RDF

&(J)
= - — iy, (11.8)
p (J,T)=Z(J) exp { 5 O(k ]}
and reduce the complexity of second order FPE for p to the

first order equation for function & [37].

The influence of isclated nonlinear resonances on the

RDF and the associated speed-up of the escape rate can be
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best described in WNA through the concept of the extreme
trajectory. This is the most probable trajectory of the
particle to reach the point of the space J starting from the
center J = Q.

For the initial conditions outside the separatrix (the
‘tube’) of Fig. 34, the trajectories of damping particles

differ only little ~ 7

from the unperturbed ones. For
initial conditions inside the separatrix (inside the ‘tube’)
the trajectories go by the contracting spiral along the
central line of the ‘tube’, if the damping is small enough
¥ << V. This phenomenon was identified first in Ref. 38 and
named ‘resonance streaming’. The speed :lrof the motion along
the resonance line can be found by decomposing the vector of
the damping force Fu in two components - FE’ parallel to the
vector of the resonance oscillations 7 = (¢, m), and F,
tangent to the. resonance line, so that :Ir = arFr. Thus,
neglecting the motion on the small scale of the order of the
resonance width ~ p'/? one can say that the resonance
cancels the component of the damping force FE along the
direction of resonance oscillations and the particle moves
along the resonance line under the influence of the
component Fr.

The particle motions driven by noise and damping along
narrow ~ V% resonance °‘tube’ can be effectively considered
one-dimensional. With ' this additional simplification the
variation of ¢ along .the resonance line is described by

one-dimensional equation
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2
dd dF
ol St = 1} (11.9)
Fr dJ o Gr [dJr]

r
where J is the distance |J| along the resonance line, while
F and E]:f are the components of damping force and diffusion
t;ken aif::;g the resonance.

Two possible solutions of Eq. (11.9), dtb/dJr = 0 and
d®/dJ = - F /G, correspond to two possible directions of
the erxtreme rtrarjectories in the resonance - along and
against the component Fr. It is clear that the function ¢
measuring the difficulty of attaining given points of the
phase space stays constant on a certain section of the
extreme trajectory if this section coincides with the motion
under the influence of damping. An example of this case is
shown in Fig.35a. The motion against damping is ‘difficult’,
so that the function ® grows along the extreme trajectory
(d¢|/dJr=t 0). Nevertheless, the easiest path to some point Ju
from the center J = O may pass a large distances inside the
resonance ‘tube’. An example of this case is shown in
Fig.35b.

Owing to the existence of the extreme paths, new
attractive phase space regions other than the center J = 0
are possible and the circulated particle fluxes are formed
as is shown in Fig. 36.

Similar effects were observed on VEP-I storage ring

after excitation of a single beam by an external

periodically driven force [39]. See Fig. 37, where TV
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representation of the beam transverse cross-section is
shown. Here, new attracted regions other than the beam
center are clearly observed.

Being inside the resonance ‘tube’ the particle may
deviate from the central line and reach ‘the separatrix
surface with an exponential small probability

AW ~ exp [- lﬁ—], (11.10)

where the quantity B is proportional to the resonance width.
The weaker the resonance, the higher probability to escape.
With the technique discussed above, one can -calculate
the RDF for the case, when particle motion is perturbed by
several isolated (non-overlapping) nonlinear resonances. The
example of two dimensional calculations, performed for the
regime with the betatron tunes ux = 0.025, uy = 0.15 and for
radiation damping in numbers of beam-beam interactions N =
=3-103, is shown in Fig.38a. Here, the level lines of a
function p[f-lx, Ay]/(ﬂxﬂy} are presented. Each new line
corresponds to the exponential reduction of the particle
density with the factor e. Similar distribution of the
particle density was constructed by a special tracking
technique in the ‘weak-strong’ simulation of beam-beam
interactions for the case of a big dispersion at the IP. The
result of the study in the model not included the effect of

tune modulation is shéown in Fig. 38b. The coincidence of

analytical and numerical results are quite satisfactory

20

here. But the coincidence was dropped in the fully three
dimension case when the tune modulation was added to
simulation (see Fig.39).

A similar tracking technique with the step-by-step
determination of the Jevel iinesl of particle density was
developed for lifetime calculations in beam-beam
interactions. Then, it was applied to an analysis of the
regime with a big dispersion at the IP [21]. The cases of
zero dispersion (A = 0), moderate dispersion (A = 0.7) and
two cases of a big dispersion (A = 5, A = 25) were studied
in two working points of the betatron tunes near the main
coupling resonance. The result of this study is presented in
Fig. 40.

Here, one can see that the best lifetimes are related to
the big dispersion cases. This give us additional evidence
for the effectiveness of a big dispersion in the suppression

of all coupling resonances.
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with charge distribution p (r), where r denotes (x, ¥ zh

APPENDIX:

Potential of a 3-Dimensional Gaussian Charge
Distribution [1]

Consider the Poisson equation

VU (r) = - 4np (1), (A.1)

—

The Green’s function corresponding to (A.1) has been

well known in the form

1

Glr, £] = ; (A.2)
dn|r - £|
which satisfies the equation
vG(r, ) = - &(r - £), (A.3)

where £ denotes (gl, 52, 53}. Now we rewrite the Green’s

function (A.2) by an integral representation

L= 0]
1 1
g j exp [~|r - z—;[z qzi dg, (A.4)
4n|r - £ | 21

0

which is well known as the integration formula. Note that

couplings among three coordinates (x, j} z) appearing on the

left-hand side of (A.4) are separated in the integral. For

later application, we make a change of the integration

variable

then

—
]

Wl

03 |
>

L

22

Gir, &) = a2

Iexp—|r-€|/t] (A.6)
0

Using (A.6), we obtain a formal solution of the Poisson

equation

i) =

j m o0 0w |- 2285 o

le

Now, we consider a three-dimensional Gaussian charge
¥

distribution

- i =
Ne X 3 = (A.8)

p {r] = exp = = 2 = 2 :

2
(2r) > “abc 280 2b° 2c

where a, b, ¢ are the standard deviations.

Substitution of (A.8) into (A.7) yields

o
Ulr) : f =
'r‘ =
(2 132 0 o' 4372
2 2 2
® 2 € £ €
J‘.[ dé’exp-lr_gl’l-z_az i
t et T

and one can get after integration

0

Ne j- expl-x”/(2a’+t)-y*/(2b"+t) -z°/(2¢"+t)] dt (A.10)
v
C

1/{2a2+t)(2b2+t}(262+t]
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Fig. 3. The dynamic beta effect: . is the unperturbed phase advance
between collision points.
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Fig. 7. A) The tune spread of the beam, or the beam footprint. The spacings
between each grid line in the footprint is a step of 1g in either the
vertical or horizontal direction. The lower left corner of the footprint
is at the machine tune. 3) The foolprint placed in the tune plane

amongst the resonances.
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Fig. 9. Resonance lines in tune space. The figures include 17| +1m| < 3,
Jand 6. Theoutlined area in the sixth order case is blown up to show
detail.
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A s B X
Fig. 10. Phase space plot of a particle motion. Figure A is the example of the
regular (stable) motion. Parameter £ is chosen below the treshold,
determined by overlap condition of the isolated resonances. Figure
B is the example of the irregular (unstable) motion. Here parameter
¢ is chosen over the threshold.
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Fig. 11. The stochasticity threshold gcrversus the fraction part of the betatron

phase advance between interactions. Line | is a round beam case, line
Il is a flat beam case.
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a)

Fig. 12. Three regimes of the motion inside the synchrobetatron resonance
multiplet. @) Large modulation: the resonances do not overlap, there
is a weak diffusion along the separate stochastic layer; b)
intermediate modulation: there is a strong diffusion along the wide
stochasticity region; ¢) small modulation: all resonances merge in
one, there is weak diffusion along one stochastic layer.,
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Fig. 13. The critical VEIIL]EIECI' dependence on the normalized amplitude of
synchrotron oscillations, A4;.
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Fig. I14. The trajectory of loy particle as it passes through the uppuﬂ:ing beam.
Two cases are shown: the pancake-like case and smooth integrated
kick case. The deflection of the trajectory produced by the integrated
kick is less than that of the impulse-like case. The longitudinal
distribution (Gaussian) of the opposing bunch is shown for refer-
ence.
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Fig. 15.The critical value &+ dependence on the amplitude of the tune
modulation. Line | represents a flat beam; line 2 does so for a round
beam.
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Fig. 16. The dependence of the beam size on the parameter £. The simulation
was carried out at o2/ By =0.83, vx=vy=0.08 and vs=0.02.
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Fig. 17. The dependence of the maximal value of £ on the amplitude of the
longitudinal oscillation. The simulation was carried out at g2/ fy =

= 0.83, vx= vy =0.08 and vs=0.02.
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Fig. 18. The comparison of the model calculations of the 'weak’ beam vertical
size with tracking. The solid line presents the model prediction, the

dotted line presents the simulation results.
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Fig. 19, The contour plot of the areas of tunes, where the blow-up of the 'weak’
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shading. Four cases with A =2.5, y = 3,A=10and x =25 are shown

On the every plot all reonances up to six order with | / | < 3 are
presented, -
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Fig. 20. The dependence of the 'weak’ beam vertical size on the vertical linear

tune shift £,. The horizontal tune shifi & is satisfied the condition
Ex=§&y/5. Line 1— \=0, line 2— A =0.7, line 3— \=5, line 4— \=25.
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Fig. 21. Beam-beam interaction at a crossing angle.
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Fig. 22. The maximum &y versus the aperture (VEPP-2M, 0.5 GeV, 'weak-
strong’ beams, oy << ox, Bx =40 cm, By =3 cm).
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Fig. 23. The resonance 10vy=96 in amplitude plane for the cases: @) with zero

machine nonlinearity, ») with positive nonlinearity, ¢) with negative
nonlinearity.
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working point of VEPP-4 storage ring. The following resonances are
identified: 1) Tux =00, 2) ux +4vy=47, 3) Sux+2vy =602, 4) 4vx —va
=15, 5) vx— vy + vs =—1. There was the orbit separation ~ 0.lox in
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Fig. 25. The dependence of the positron loss rate and specific luminosity, Lgp,
on the horizontal betatron tune during the scan across the resonance
Tvx = 60 on VEPP-4 with the opposite values of the cubic machine

nonlinearity: a) Rx =6.9cm™ ", 5) Rx= — 6.9cm !,
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Fig. 26. The dependence of the positron loss rate and specific luminosity, Lsp,
on the horizontal betatron tune during the scan across the resonance
Tvx = 60 on VEPP-4: ¢ ) orbit separation is — 0.lox, 4) zero orbit
separation, ¢ ) orbit separation is 0.1y,
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Fig. 27. Vertical emittance and maximal &y versus the asymmetry of the
vertical betatron phase advance between the interaction points
(VEPP-2M, 510 MeV, vx=3.059, vy =3.097).
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Fig. 28. Vertical beam size blow up versus the attained value of &y, Case 1—
iT<<i",case 2— it =i". (VEPP-2M, E= 510 MeV, By/oz = 2.5,
vx=3.054, vy =3.087).




Fig. 29. Behaviour of one beam s‘lzc as a function of the opposite beam size.
Line 1 — i =g, line2— i* = 2ip and line 3 - i* = 3ip.
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Fig. 30. A) The path to equal beam sizes, B) the path to flip-flop.
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Fig. 32. The maximal ¢y versus damping decrements observed on the various
machines. (Reproduced from Ref. 0).
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Damping decrement 4 Fig. 35. Case Aisthe extreme path along the resonance *along da mping’. Case

Bis the extreme path along the resonance line ‘against damping’. The
from the damping decrement. dashed lines show the unperturbed motion with damping; the fat
EPP-4 during the €ncrgy scan dashed line denotes the extreme path: the fat solid line is the
resonance line; the small arrows are the oscillations at the resonance.

Fig. 33. The dependence of maximal value Ey
The experimenial data obtained on V
in the physic runs.

Fig. 36. Distributions of fluxes Fig. 37. TV representation of the beam
in the plane J1, J». transverse cross-section and the
oscillogram of the particle density
distribution. The vertical betatron
tune is chosen near the fourth

order résonance 4yy=3.

Fig. 34. Phase trajectories in the Space of unperturbed actions J1, J2 and

resonant phase § =(Px+ mdy — kg in the vicinity of isolated nonlinear
resonance. 3
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Fig. 38. The contour plot of the particle density distribution function p (Ax, '

Ay) [/ Ax- Ay. The level lines show the exponential reduction of the
particle density with the factor e. Case a ) is the model calculations.
Case b ) is the result of the simulation. The effect of the tune
modulation is not included into the simulation.
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Fig. 40. The dependence of the inverse lifetime of the 'weak’ beam on the
vertical tune shift £y. The horizontal tune shift is satisfied the
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