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5. Torons in SU(2) supersymmetric gluodynsamics.

We pass now to the analysis % the gauge theories and to
corresponding toron solutions. For purpose the self-dual equa-
tion -for the gluodynamics will be formulated on the language
gnalogous to Cauchy-Riemann condition for 0(3) & wmodel. The
corresponding criteria, which are discussed above for 0(3) &
model in terms with local gauge invariance, will help us to
choose the "correct" zero modes and to calculate the toron
mesure and chiral condensate ~ (see next section) in the su-
perasymmetric gluodynamics case.

We begin with the formulation of the self-dusl equation
in the Witten's Ansatz [31]:
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Here < ,/,% refer to the three apatial dimensions, and a°
is the isospin index. The precise definitions of P73 and

Ag¢ere chosen for future convenience. These functions depend
only on ¥ and f + Given (50), one readily calculates the
field tensor & ,.; -=§’., ,d' 5’..- - & qfcff;»‘ff- + The self-

= q
dual equations Cf,q.r = _,r‘“' or, aquivalen‘bly 63 S o= 45;,.,- &
now become
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Here .d, denotes ?/62: and ?.r denotes q/ét « We see
that ansatz (50) leads to a two-dimensional Abelian Higgs sy-
stem. The form of (51) suggests that I regard 2 as a
cherged scalar interacting with the two-dimensional Abeilian
gauge field /ﬁﬂ » With covariant derivative ..{;,P .

In this case it is more convenient t¢ study the solutions
of the eg.(51) by considering the complex plane end defining:

£= 2.*{:/ J—) E?A‘E =j£/¢;f -:'g#/; Izj = g}ﬁ;.% (52}
E==2'-.«’Z{J .§ = //*EE ﬂf/a/ﬁf.gy/‘) ;{.—: ,-?‘,—.r‘lfg

It can be easily verified that the moat general solution of
(51) is [31]:

L aet
/__ﬁfj s P=fe (53)
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whers o?('z"/ is an analytic function. For ¥ to be nonsigular,
we requires

ré;?f’*,{ Sar $ap Lo/<{ Sor >0 (54)

Thus the expressions (53) for 2 = D,-<Py and for A= d"r-‘f"-"a
with extra requirements (54) solve our problem. Namely, the
self-duel solution is formulated in terms of amelytical func-
tion f{:?/ analogous to the 0(3) ¢ model (3). The extra
re quirement (54) retlects the fact, that our theory is defi=- .
ned only on the half plane Z+Z 20 , while the 0(3) &
model is defined on the full complex plane, of course.

To determine the solution with topological charge Q= 1/2,
we have to express the four-dimensional tupologica; charge in
terms 24 fields [ 31] :

=
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It is easy to see from (55) that the topological charge
is determined by the change of phase function F(2/ around
the contour which encloses the region ReZ Z Q.

Now all is ready for the description of the gelf-dual so-
lutions in complete analogy with the discussed above conside-
ration in the 0(3) & model (sections2,3).

The solution é?{'f/= (@ Va.ug/ satisfy to the £:niteness
condition (54) for any complex number & with Rea ~> 0. In this
case an easy calculation shows that this solution is a gauge
transform of the wvacuum; tha solution

9(%/) = /? / Le g >0

fl-f
describes the instanton [2] {'but in different gauge) with Q=1.

The toron solution with @ = 1/2 (by anology with 0(3) 6 model
(11)) is described by the function

4 = >0
i/"/{q":ﬁa/m/% Feanis ot (56)
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The solution g (56) turns out in a sense bet-
ween the vacuum (Q=0) and instanton (Q=1) solutionsdescribed
above, Here A =f(0+&/20 is & requlator, analogous to the
dimensional parameter » (13) in 0(3) 6 model. This solu-
tion like to &  model, is defined on two Riemannsheets;
real physical space corresponds to but one of them and can be
understood as manifold with boundary. If one seta & =0
from the very beginning, then 0?:'@?) = 4 corresponding to
the empty vacuum solution.

However, the solution (56) is nontrivial. As will be shown
in the next section, the solution (56) ensures nonzero value of
the gluino condensate in SYlM. Analogous behaviour, as was dis-
cussed above, arises in SUSY 0(3) 6 model.

Obviously, the solution (56) satisfy to the finituess con-
dition (54) for A > 0., The imaginary part of the parameter
mg® ( Jme&=%s) determines the location of the toron along the
time axig, and without loss of generality we take in what fol-
lows a =1, <Zos 0. Moreover, upon completion of the lar-
ge circle in the physical space (Rez > 0) the function f£(2)
acquires a phase 7 , which according to (55) corresponds to
Q = 1/2. In the next section we calculate the wvalue Q by using
gauge-invariant approuch. lLike in 6 - model, the limit of the
solution (56) with & cut, tending to zero as & + (0 means ree-
stablishment of gingla—valued.neas on one physical sheet Icr the
gauge field 4« . The gauge - invariant values (like G‘ )
are single-valued at any finite 4 (not only in limit A 0)
So, the solution (56) can be understood as = point defect with
the & = reqularization which is preserved the duality equa-
tion at finite value a .,

Thus, the Eg.(53) with h analytic function g/fitf,e) provi-
des the solution of Efw = 5" with finite sction and with
fractional topologicel charge. However, the explicit expressi-
ong (53) for A, ¥# are not so usefull for the future calcu-
lations because the complexity their forms. S0, we would like
. %o find the eppropriate gauge transformations end to make
é¢hange the variable for the next enalysis,.

The rest of the Section 1a a series of technical comments,
concerning some implacations of eg.(53), (56), First, we con-
sider the explicit expression for ";/f" . Substituting (50-

53) in é;; we obtain:
§te6E ~5/0.9/ %55 2 (1 /P/{/iﬂ/ S,
o 2
/,fgq;a/ -2 /2% x@/""aé"rn/ﬁ/" - & 282/
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It is esaily to see that the 6}:3 depends n:ml:,ar on the ab=-

solute value of the field # ., So we make the following
change of variables:

E-_—n‘.b?&:} W = -‘.?i--*l/ ?- o ?‘ %) =-‘*£r_fﬂz“'}9ﬂ (58)

Here (= V) (0 €(-V) § &= ) plays role of the measure of
length and (U) ( -%74 <& <78 ) is the angle-variable, see
fig.5. In terms of the varisbles U, V, the absolute value of
f.’pf depends on " vV " only and does not depend on angle-varia-
ble "U" (just it is the reeson of the change of variables (58)):
Fy By i
/@ j.:;%"} /;a/ﬁ /- F au_{ /ﬁ‘J/ LR S0 ()
We are now ready to describe the dependence of G-;.:
on %,t. at % » 0 and /Z/2== . In this case the para-
meter 2  tends to zero:

L M % (60)

HhaT = A
Substituting (58-—60} to the expression for /ua? (57) we obtain:
S sty g gy e TS e

The solution (56) possess finite actinn, but in our gauge the
four-dimensional geuge field A" is actually singlural at

T = 0. It is necessary to parform a gauge transformation on
the solution to satisfy regularity coudition; such a transforma-
tion always exists because /@/%= 1 at & =0, see Eq.(59).

We shall diacuss the corresponding gauge below. Now we shall
cousider behaviour of i on the cut. It easily to see that
the gauge-invariant value G‘,uﬂ on the upper edge of the cut
coinsides with the value on the lower edge and has an integra-
ble sin ularity at # tends to 1 (U?~=° ):

ot e”- 4 (62)
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The origin of this physical singularity is comnected with
fractional topological number of our solution. This singula-
rity plays an important role because it will help us chooae
the "correct" zero modes in the toron background.

Using (57), (59) we can calculate the action and topolo-
gical aharge in a mnre direct, gauge-invariant way:

Sa* . f~ ﬂﬂf
@ = ﬁéﬁ "' 3.:?‘-’ faf"r /” 3.2?"' fﬁt:ﬂfza’f // (63)

+293/%/%+ Z(r-#/ //v /a@/z‘ F ‘ff""/ 299/@,7

The secoud term is a total divergence, and so can be written
as a boundary integral which vanishes because for solution (56)
“Ow /=0 &t the boundary of the space volume at Zr> 0

"{59}. Prom expression (59) for / £/ 1 find that the first
term (63) becomes: /P/

9-5 ﬁﬂfa/z/{ £agy & /”’”ﬁ/ MMI (64)
=3 fﬂffﬂjﬁff ;ﬁ‘j.&"/ 2

in agreement with result which was described above.
Now we would like to find the gauge transformation which

allows to write down the solution (56) in the superpothential
form:

#.
> &
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Here 2;_, are the t Hooft symbols [-32']’, and P is super-
potential, depending only on r and t. For this let us remined

that the duality equation (51) possesses a remaining gauge in-
variance with any analytic function h(z) [3 1]:

F(2)- A3)4(5) D= P A = Pexp(i)

a__ze e
2;’“,; p,; &Z‘D(t Zf/ Eoizn (65)

(66)
plp-FH A4 Py I RS
Using cumplez.varia.hlaﬂ the Eq.(65) can be rewritten
A 206 PR (67)
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The differencé with the standard definition 32_'[ is con-
nected with nonatandard expression for 5;:.? (50).

It can be easily verified that (65) and (66) are solved by

: -2 et #0008 o @B e/t (68)
= £ =
4= 1960 o e 7
In fact, substituting (68) to the (53), (66), we obtain the
following relations:

e A - .e,'?é%ﬂ-;;/ L B J

5 L M‘f} (69)
:_ﬂ f--?/ %f & f//‘?/ﬁ!

\
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It is easy to see that relation (69) is precisely superpoten-
tial solution (65), (67). Moreover, as will be shown below, the
golution in superpotential form (65) is regular at r = 0; be=
cause 2 (r = 0) -i, Emdham:e?’ (r = 0) =0, 2 (r=
= 0) = -1 and ;‘f}{ (50) is regular at r = 0. In the following
relations the suparpotentml solution (65) will be used only
and corresponding primes will be removed.

1t is instructive to check the result (65) with superpo-
tentiel P (68) in a more direct way. As well-kmown the self-
duality equation for the gauge (65) can be written as follows
[33] s

¥ 5 fg,‘o =7 ' (70)

Here & is the four-dimensional Laplacian. BY algebraic mani-
pulations this can be pmvad, using the relations (57) and (66):
PP = P(3? i 20,)P = 4P~ 23, + % P2 +2)P=

L4356 P+ PGP 54/ % P+ E PP -

i 5!-",-‘-,/ E:"-*t i F_:‘__ & (71)

L (11« yor i olge o e i
In conclusion of this section I would like to analyse the
superpotential P and field ® in the gauge (65). Let us con-
gider the P, @ functions in &’ -variable. From .(58), (66),

(68) we have:
' . - ' [ '-'I"'

ety 2en(D-B) | ginidsingd (12)
gin g (0-2) A D A D
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Let us summarize some important properties of these func-
tions. The discussion of these properties will facilitate us
in the next section the choice of the "correct" zero modes in
the toron background. First, we note that the P=functicn is
regular, single-valued function, tending to constent as /#/+oo .
Then, a2 is easily verified from the explicit expression (72),
the ¥ -function tends to (i) when 2 tends to zero. As
mentioned above the gauge potential tfq—q' is therefore requ-
lar at ¥ = 0. Besides that, the imaginary part of +@ ( I»%=
u -5?; ) is single-valued function end real part {fép‘@ ) has
a different sign on the different edges of the cut. Thus the
expresasion '

L e A

is regular and single-valued function.
L 2
The proporties of the discussed sbove funciions: "4:,,4'9, P
are very important for further analysis. : £

6. Zero modes, toron mesure and gluino condensate in SYHM.

As in known, gupersymmetric models differs conveniently
from ordinary ones in that only zero modes need be considered.
This because the nonzero modes cancel between bosous and fer-
mions, and the mesure is defined by the zero modes only.

Usuwally the explicit determination of zero modes in any
self-dual field is & simple exercise because thegﬂcan be exp-

ressed in L?ma of the field strength tensor g}wﬂ « Indeed,
in the 2 r?/..-

P .,F ! = gauge zero modes satisfy to the following
equation [32]:

FIE W5 L efe '4 c ac ¢
/(2% s 22 E €/, =0 2. -0 (74)

4 & £ ae e 'S
Do B 6 M, (YRl € G

4 :
Here 4.~ 1is the classicel field and '?:' is the small
quantum fluctuation, f’ ~ 18 the four - dimensional index.
It is easy to prove that 4 translation modes, 3 gauge modes

and 1 conformal mode can be expressed in terms & j’ and they
satisfy to Bq.(74): 3

G () ~ Epz

Zvgrek

e ———

a =o
a
G A8, > By Lva b, W 458
% < | (75)
?/(G‘_.. e 6:_#‘“":’

; a - ST
In particular, in instanton field 5}‘“? ﬂfﬂ K“T’f/f we obtain
well-known 8 zero modes | 32]
g a - A a PR
QG liert, UYL uiory®, G ~ s Bt (O
These modes are normalizable and reqular and thus they satis-
fy to mll requirements which was discussed above (see Sect.3).

In the toron case under consideration with topological
charge equal one-half, zero modes (75) still satisfy to the
Eq.(74). However, they do not satisfy to the regularity cund{:!.-
tion and so they are unadmissible modes. In fact, because 6};»
(62) has an sinqularity at # » 1, then the same singularity
have a zero modes (75). Thus, they are forbidden in the toron
case,

This situation was expected beforehand from the corres-
ponding anslysis of the 0(3) 6 model. Let us remind that the
zero modes (75) are derivatives of the classical solution up
to a gauge transformation. In instanion case it is a correct
way to obtain zero modes. But in toron case it is not so, that
can be seen from consideration of zero modes in 0(3) 6 model.
In this case the toron solution look as follows G, ~ YVZ-a
(13). The "natural" zero mode which is the derivative of %2
with respect to collective coordinate "a" is J¥ ~ %o Vet ~
o (?-a}'%. Such function satisfies to the corresponding equa-
tion for zero modes 2(8% ) = 0 (28). However this function
does not satisfies to the reqularity condition (29) and hence
it does not amcceptable. As known the correct zero mode 1is

se,~ 2" (34).

The lesson from this is follows. The "natural" zerc modes
satisfy to corresponding equations. But they are forbidden be-
cause of the regularity requirement. To find the correct zero
modes, the necessity to solve the corresponding equation (74)
by explicit way and to shoosé the correct zero modes, satis-
fying the regularity requirement.

But, as is well known [34], the vector field equa-
tions for the small fluctuations about a self-dual field are

9



equivalent to the Dirac equation for a spinor with unit iso-
spin and with definite chirality. The problem of counting the
number of the modes of massless excitations of the vector
field is thus reduced to that of counting the number of mass-
less modes of the Dirac field. But, the number of the fermion
zero modes is known beforehand, from consideration of the
axial snomaly. So, for each solution of the spinor field equa-
tion there ere precisély two linearly independent solutions of
the vector field equation [34].

For instence, for the instanton we expect four fermion
zero modes in accordance with the fact that the solution with
Q = 1 changes the chiral charge & Qg by four units and can en-
sure a nonvanishing value for the correlator <« ¥&¥(x) ,

E¥le)> [1, 8]: ;

#fﬁ ~g;f@{§£ z *ﬁf ~ g“@.fﬁf (77)
So, from [34] we expect 8 real vector zero modes in agreement
with explicit calculation (75).

For toron we expect two (reel) fermion zero modes with
unit isospin and so we expect four (real) vector zero modes in
agreemeut with four collective coordinates assoclated with
translations of toron solution. We remind that the parameter

& is the regulator, but it does not has a sense of colle-
ctive coordinate. Because the toron solution with Q = 1/2
changes the chiral charge by two units and has (as will be ex~-
plicitey shown bellow) two gluino zero modes, the correspon-
ding vacuum transition is necessarily accompanied by the pro-
" duction of a ¥ ¥ pair. So we expect that toron can ensure
a nonvanishing value for the condensate < w¥.> .

We return to the analysis of Eq.(74). As was discussed
above, these equations can be rewritten in terms spinor field

with isospin one. To make this construction explicit, we note -

that if &

Lol |

iz a solution of the spinor field equation:

q?,ﬁ},"j‘ﬁé? 5- = (£, r_r,'/ Qg"“”éf”ﬁ. - (78)

then two real vectur modes: *

#7572/ sw"f/" “’/ 2%l /

(79)
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satisfy t. starting equation (74), see Ref.[34).

Now we are ready to find the explicit solution of Dirac
equation (78). For this we consider the toron solution in the
gauge (65) ,9’ --; oy bn Pt/ , end look for the solution

of (78) in the carresponding form:

téﬁﬂ 5 19.}>_fﬁ/;/ £ (80)

Here E' is the constant Lorentz spinor, P is the superpoten-
tial (68) and lastly /#2/ is some function which will be famnd
now. _

Substituting the expression (80) to the Dirac Eq.(78) we
obtain the following equation:

(355 e b5l 0] &7 Fienl - £)£ =0 (D

—q
Using the proporties of 64  -matrix (78) and £ 4» =-symbols
[32] the Eq.(81) can be rewrit‘l:en in the following form:

(2 8).F + (PP// + 50

Because P-function satisfies to Eq.(70), the f-function 1=

equalas: -

£le)= P
Substituting this solution in (80) we obtain the following ex-
ression for two gluino zero modes: // 9/{
P o

,,.;” - [0 G LSPTE ~ G »j« e

7% (82)
-t
fi"'q/ = p‘*,ﬁ‘q,f, - sA2gN = 3P /t/

In obtaining (82) we took into account the expression for toron
solution (65) and the expression for potential in complex nota=
tion (52). Now we are ready to prove that the solution (82) is
regular, singlevalued and square-integrable zero mode. For this
purpose let us remind that P is the regular function tandrnﬂ to
constant for /2/+ o= . Then /F/* is the regular func-
tion at critical points # =0, Z = 1. Moreover, the
geuge-invarint value /¥ %/t isa singlevalued functlon be-
cause property (73), lastly, as cen be shown from Eq.(72), the
/# /% tends to zero like /Z/° -6 ot /2/% > and so /¥#/*is
square-integrable. Thus the both of two fermion zero modes sa-
tisfy to all requirements discussed above and must be taken
into account. In the following relations the normalization

11



ff"!f'fza/ﬁfa-{ {E})
is agsumed, although not explicitly indicated.

Now we would like to note, that the instanton solution
can be expressed in the form (65) as well(so-called singular
gauge). In this case superpotential "P" and gauge field A}aq"
are equal respectively:

é__{ 1‘32’,4 AW
fw Pl Y

The zero modes (82) now are:
- &
w & il o
and coinside with expression (77). In toron case the solution
(82) does not coinside with the expression (77) and only the
golution (82) satisfies all our requirements.

A8 was mentioned above, the number of the "correct" fer-
mion zero modee is known beforehand, from a consideration of
the axial anomaly. Rather, we wanted to demonstrete just the
realization of this general index theorem. The explicit calcu-
lation (82) confirms our general consideration. Substituting
expression (82) for two gluino zero modes into the Eq.(79) we
obtain four gluon zero modes satisfying all requirements. This
comes from the fact, that the gauge-invariant values for boso-

=

nic and fermionic zero modes coinside, as can be seen from (79):

WY~ glas i3
An explicit form of these gluon zero modes @.  1is unes-
sential for our purpose, however the number of the admigsible
vector zero modes is very important question., This number is
equal to four in agreement with general discussion and in acco-

rdance with the existance of four tranalation collective coor-
dinates.

With the above consideration taken into account the toron
measure in SYM aﬂquires ‘l:ha following form:

/H",
Z’azan 2 a? 0” 4o _F gf/D{ ﬁr/ CO? A""ﬁ’ﬂ;"ﬂ’! MJ(B‘”
ARy
iy P f_._, 7-foop 0?
Here the factor j' Mo e~ Sete M, a'fr./’ is due to the

four bosonic zero modes mentioned above: a ‘;f ia the corres-
ponding intsgral over the collective varisbles; the factor

A ig connected with two fermionic zero modes (82); last-

k]

12

1y exp(-*Ti¥p:) is the contribution of the classicel
toron action (64), and "C" is some calculable constant.

As in the case of the instanton calculation [7,8] the
expression (84) for the toron mesure has precisely the renorm-
invariant form, It is easy to trace this phenomenon, starting
from instenton demsity [7,8,28]:

£ ¥,
Znst = 2 dh Z5 A (7Y a ol & esp (- ;‘i/ (85)

Here the factor E4pP ( I// is connected with instan-
ton action, /%zj'z is the requlator contribution, cor-
responding to the eight bosonic zero modes (76); the factor
féi"z&/ﬁf,/(’“ﬂﬂ/%/ is connected with four fermionie zero modes
(77). While the action decresed by a factor two, the number of
admiseible zero modes decreased by the same factor, which en-
sures the correct renorminveriant behaviour. Let us remind
thet the analogous situation accurs in the € -model, see Sect.
4.

Now all is ready for the calculation of the gluino conden-
sate in SYM. Substituting in place of ¥  their zero modes

- (B2), we verify that

3 2

(j.z/?.z) =3C€.§ /!f- é’ﬂ (56}
In the last step we used the value of normalization integra.l
(83) and changed the notation of gluino field from }"'q'to e
because in next Section we shall cousider the model with fun-
demental representation of fields (quarks). Namely for quakk
fields we reserve the ¥ -notation.

The nonvanishing of the transition amplitude (86) means
the rionvanishing of the corresponding condensate analogously

@ihe 6 -model consideration (Sect.4). In the case under consi=-

deration like in &  -model, the nonzero value of the gluino
condensate indicates the spontaneous breaking of discrete chi-
ral symmetry, which does not take place in any order of pertu-
rbation theory. The toron solution with Q = 1/2 changes the
chiral -charge by two units and has two admissible zero modes
(82). Therefore the corresponding vacuum tranﬂitian is neces=-
sarily accompanied by the production of a At pair, as the ex-
plicit caleulation of (86) also demonsirated.. Like in 5 -mo-
del the correct physicael states are the linear superpositions

13



(45) of the states with the definite chiral charge,and we do
not dwell on this issue,
In conclusion of this section we would like to discuss

the possibility of the exctraction of the constant C in Eg.(84)
from the instanton formula (85). For this let us consider two
torons at position &y and £z . For small toron separation
we suppose that & (2 *2,/<Xo cen be interpreted as the po=-
gition of instanton, and (Z¢-%)=P+O as the size of this

instanton. : Y

Each of these syatems (2 torons or 1 instanton) have the
same values of the action topological charge and the numbers
of fermionic and bosonic zero modes. Moreover, this interpre-
tation is supported by consideration of the expressions for
toron (84) and instanton (85) denaities. In fact, one can in-
terpret k. &'p from (85) as the integral over two to-
ron collective coordinates (trenslations &, and Z¢ ) beca-

# # ¥, ¥
use [~ 4 .ﬁ/f=ff=5‘?’§z*. Now the instanton mesure (85) ecan
be understood as square of toron mesure (84) and so

Zinst. ""_g'ff Leon /’-?-’/'Z.{at. (%) {B.T)

where combinatorial factor (2! )" is necessary to aveid double
counting, From (84,85,87) we obtain:

C‘ =‘8 fy'& | ; (BB)

&

A8 will be shown below, this interpretation is still va-
1id in other theories, such as SQCD, QCD and so on. Moreover
our conjecture be confirmed by cownsideration of arbitrary gau-
ge group G. In this case, as well known, the number of bosonic
zéro modes in instenton field is defined by the qudratic Casi-
mir operator C(G) and equal to 4C(G). In particular for SU(N)
gauge %roup C(SU(N)) = N and 4N instenton zero modes can be in-
verpreted as translations of N torons. We think that in this
case the admissible value for toron topological charge Q = 1/N &
[29], like, in CPN-1 theories [30]. Besides thet, this conje-
cture is in agreement with the number of the vacuum states
(equal N), in SYM and with 2N gluino instentcon zero modes,which
are :;acessarily present in this model. So the instanton mesure i
cen be understood as Zy .. ~ {ztomn)m' This formula, as can

be shown, ensure the correct remorm-invarient dependence of
Ztoron 8nd nonzero value for < a*> in anelogy with the re-

sult (B4) described above for SU(2) gauge group. -
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Now we are ready to compare our direct calculation of (g"i")
(86) with strong coupling instanton computation [8, 28] and
with qn inderect method [10] which allows one to compute < cfzﬁz P4
exactly. ‘From the expression (88) for the constent "C" it can
be seen, that our result (86) is in agreement with [10] and
disagrees with (8, 28], by a factor J4/5. We don't yet un-
derstand the origin of this difference because our method, in
a sense, is the strong coupling cumputation analogous to the
method of Refs. [8, 28].

In addition, in our approach, we have considered the cont-
ribution to {3*2‘) just due to the classical toron solution;
the instanton sclution can ensure a nonvanishing value only
for the certain correlator < 4% 4°> ., Besides that, we have
found 2 vacua in SYM (45) with nonvanishing < 2*> in the
explicit way, in agreement with the Witten index and with the
discrete symmetry breaking in this model. The instanton calcu-
lation gives only an average over these vacua.

7. Toron mesure in supersymmetric QCD (SQCD).

This model, besides the SYM part we have discessed before,
contains the N, matter fields in the fundamental representati-
on. We shall follow the notation of [28] and consider the to-

ron mesure in S5QCL.
In this case, in comparison with the toron measure in SYM

(84) we have additionally the two factors ﬂfﬂ and 4‘5" con-
nected with bosonic and fermionic matter fields and with the
corresponding quadratic functional untegration around the to-

ron [32]: & < W
y -Zse;vc.a =Esrn (df-) f(“ﬁj ; s g T e (89)
4 e -b+m
dg - Det [ ds =Dt | S ]
Here the regulator contribution is teken into account impliei-
tly. Formal manipulations of &# allows us to write [35]:

5 £
ﬁ?ﬁ:? &ﬂ;‘ 27;/ :‘;M g ~ l._/: (90}

-8 e m? .§'+m
77 ey g el 7-! J”P%
fi"/*_.{}21&/;":?2 et i - B
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The symbol T» denotes a trace over space-time, Dirac and color
indices. In obtaining (90) we took into account the identity:

A2 /4 &
BUF (T
which is valid for any self-dual fields, It is well-known [34),
[36] that the last term in (90) is comnected with the index of
Dirac operator, actually independent of "m" and equalsto a

topological charge Q of background field. This is establighed
most easily from the formal expression of the last term in

(90). o 5
Rt A /77
—J?; (;S*ama‘ g7 /} -

Differentiating 7(?/ with respect ° we conclude that
Bfamt TImY 20 |, mma, T/My is a constant which can
be evaluated by the large - m> limit. In this limit - D° cen
be replaced by PE.~mhere the momentum fﬂu has the differen-
tial-operator realization -éaq « Thus, the calculation in
this case is a very simple one and yields 7 (#7/=@ [34, 36]

The firat term in (90) is connected with nonzero modes
and cencels with the contribution of ﬂﬁ corresponding to
bosonic nonzero modes. So, from Eq.(89) we have

o 7 | 9N
s O Boger = Orf | Figer=Zovm (4) D

In particular, in the instanton case with Q = 1, the expresasi--
on (92) corresponds 8imply to zero mode contribution, i. e.
Zsgep ~ M as it should be. So, the m°»0 limit of T(m2),
at integer ?alue Q, receives contributions only from zero mo-
des, and each normalized zerc mode gives an exactly unity co-
ntribution to T (91). _

In the toron case with fractional topological, charge,
formula (92) still correct, but the quark's sdmissible zero

modes are absent. The puzzle now is as follows: the RHS of (91)

need not be an integer (in our case T = 1/2}, and the LHS of

(91) is usuelly determined by zero modes with the integer con-

tribution to eq.(91). The paradox is solved =s follows.
Formula (91) is still correct because the existence of

contributions to the LHS which come from the continuum, Undeed,

let us eall {:[2 %) the’ spectral denaity of the corresponding

Dirac's operator fJT] The paremeter % # ©° i, the € flt}

& sense of infrared regularizetion and tends to jnfinity
16

hes

in the final snswer 37 . In this case the eq.(91) can be rew-

ritten as follows s

o SRR RM, = F (93)
and at m=>0. We have
Liom Clae) » @3/ (94)

2 » o

This is exactly the result of Ref.[37], where it was argued
that the continuum contribution is zero unless there are bound
states or unbound resonances at A =0 in the spectrum of
Dirac operator. So, we can conclude that in the presence of to-
pologically nontrivial gauge fields, (Q = 1/2 A 0 in eq.(93))
the spectrum of Dirac operators must include an unbound reso-
nance at 2 = 0. In either cese when the system is placed in
a box of radius R, the lowest eigenvalue will approach zero
faster than R;1. The argument given by 't Hooft ij] and for-
mule (92) allows us to conclude that the functional integral
tends to zero 88 Z ~m®.m'Z when m-»0. We will call these
modes by guasi-zero modes (QzH), because these modes belong
to the continuum. "

As will be shown below, the Dirac spectrum with the afore-
mentioned properties (the absence of the gap between zero ei-
genvalue and continuum) pley & very important role in the for-
ming of the chiral condensates. On the other hand, these pro-
porties are exactlH the features of the solutions with fractio-
nal topological number. Let us recall that in the instanton ca-
ge with integer Q = 1, the LHS of (91) is determined by zero
mode and the continuum is separated by the gap.

From & mathematical point of view, this phenomenon is con-
nected with the definition of our solution on the manifold with
boundary and the index theorem should be modified (for more de-
tail see Refs. [26, 27] . The equations (91), (93) can be un-
derstood from snother point of view, namely, from an extension
of Levinson's theorem of potential scattering, from the analy-

 gis of the Jost ratio an so on [38].

In any case, the result (92) does not depend on our inter=-
pretation and thus we can write the toron maasure in SQCD:

2% /"M - # (95)
A,

exp cf‘

b4
E.Srp{.n 2'? c?* M dé ~,
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In obtaining (95) we take into account the equations (289},
(92) and the expression for the toron measure for SYM (84)
with constant C (88).

The expression (95) implies that the each fermion contri-

- bution equals VYm' and so the formulation of the theory with

m = 0 from the begining is in correct. This fact was noticed
in Refs, [28, 39], from another consideration. Thus, for the
small (but non-zero) values of m, the theory is well defined
and the chiral limit will be understood just in the sense of
the limit, m-—=0,

B, Calculation of condensates in SQCD.

Because we have an explicit expression for the toron me-
sure (95), we can calculate the gluino condensate < A*> in
SQCD. As usual, substituting in place of A their zero mo-

des (B2), we verify, as in SYM, that <c2*> ig nonzero and
equal to:

= o o €2 £ s_f, & % z 2 - )

< > z@ Fcf‘ A!'(Wf 7 - Af-!ﬂdf =M, QXP[f (96)
As in the case of the calculation of ¢2°> in SYM (86), the
expression (96) for ¢A*> in SQCD has precisely the renormi- -
nvarient form. Moreover, the value (96) we obtain for ¢ 924>
satisfies the expected mess dependence (<27, /m, < A2, "™
[28]) and differs only by a numerical Sanbie: ¥4/5 fr;m the
value obtained in the Refs[28, 33] and coinsidea with the re-
sult of the Ref.[40].

Let us note, that the posaibility of instanton calculs-
tions [40] is limited to the cases with Ne< N = 2, Our re-
ﬂu;t {(96) ia still valid for all Ny, and in this sense is a new
one. It is more important, however, that in our approuch we
can find the < 4%> itself; in instanton celculations th

8 non-
zero eoniribution can be obtained only for the some Greem fu-
nctiop. The condensates in this approuch are obtained by ext-
racting of the root. Besides that, the masa-dependence of (96)
has a very umnatural form from the instanto: point of view be-
cause instanton calculation gives an integc: degree of (m)
(the correct answer as mentioned above is «®tained by exctra-
cting of the root). In toron calculation the dependence m!/2
iz natural one, because in the toron back-ground the QZIM
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ensure exactly this dependence (92) of the toron mesuare (95) .

In s more genesral case of the SU(N) gauge group one can
think that the admissible value for the toron topological cha-
rge equals 1/N (see page.fﬁ). In this case one can obtain that
the dependence of ZA%> on ™mv is equals to {m)Hfch in agre-
ement with the generasl results of the supersymmetry and Ward
identies [28]. :

The another important difference with the instanton cal-
culation is related with the fact that in our appro@ch, ana-
logously to the 6 -model results, we have degenerate vacua
(45) with spontaneously broken symmetry. The instanton calcu-
lation gives an average over these vacua [28] and we do not
dwell on this issue.

At this point one can make use of the Konishi anomaly E4ﬂ

AP s i s (97)

~and find the value of the scalar field condensates. However,

an independent determination of them is poasible and will pro-

vide a valuable consistency check of our approach.
The computation of < $¥> is more difficult problem, for

two reason. The first is that < f¥> is zero to lowest order
in g because ¥ = 0 at the turEn gaddle point. In order to
get a non-zero contribution to ¢ ¢¢> we have to bring down
from exp f 'Eyhkawa} the tjn vertices, gee fig.6. Secondly, no
closed form exists for the inverase of the operator (D"- m ) Tox
nonvenishing masses in toron (1ike in instanton) background.
This difficulty will be circumvented by going to a large m-
limit, es it was discused in Refs (28, 39]. Using the method
of theseworks, we obtain the following expression for the

~r

: VY y '
cPPE)> =275 Ai,,;,, !ﬂ‘faf}/-z‘fiw/faff;ﬂfj//f (98)

3 Z/Z' /-&z-#?"' 54 4 {}"}/.5‘5 maéf" Ae é’/ 2%- M‘J‘:r
In obtaining of thﬂ'aﬁ.(gﬂ) we take into account the expression
(95) for the toron measure. Here 1, is the gluino zero modes
(82), and {DE- mE)"1 is the correspomding Green Iunntiop:in
the toron field , which 10colized at the point x,. More gene=
ral case of the different velues of the mass can be reached by

condensate:
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the trivial replacement in.the measure:

w5 [THET

Py

Like in ipstanton calculations [28, 39] we can to rep-
lace the Green function {Dzw ma}'1 by the free propagator in
the limit »#7 + o2 ., The evaluation of eq.(98) is now straight-
forward and gives:

= L
(’3“’} j A zmg ;5'5 5231 (99)

£

in accordance with Konishi anomaly (97) and w.th the value of
gluino condensate (96). The possibility of two independent ca-
lculations, Hence, is the nontrivial check of our approach.,
It is not difficult to understand this result at least from &
technical point of view. In fact the contribution surviving in
the large m limit is identical to what one finds for the con-
tribution of the regulators when the Pauli-Villars method is
used in the deriviation of the ancomaly e?uaticn.

0f course, thanks to supersymmetry, the <*F%>conﬂensate
at the smell m 1limit is the same, and equals to (99). However,
an explicit check of the mass dependence of eq.(98) at m » 0
is still lacking.

We end the discussion of the calculations in massive SQCD
with a few remarks.

First, we expect that the integral (98) at small m-limit
equals to the same wvalue (99) and thus has a gingularity (mfzj
at m —+» 0. This means that QZM, playing an important role in

the toron measure (see discussion of eq.(93)) should auto-
maticelly give a correct expression for the integral (98) and
correspondengly for the condensate (99).

Ag a second remark, we note that our results exhibit =&
discontimious behaviour when going from the small mass limit
of the massive theory to the strictly massless one from the

begining. Indeed, at HI = 2 we have the finite value for i

<Py ~ At (99). Howevere, starting from the measure for the

massless theory (in this case Zgq oplm = 0) = 0) we obtain the

wrong result (we recall that the zero modes of quarks are ab- rl
gent in toron background). We think that the such behaviour

is related with the fact that the massless theory is not well-
=def inE'd ™
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9, The chiral condensate in QCD.

In the previous Section we saw that the spectrum of the
Dirac operator for the fundsmentel representation of field is
very unusual. Nemely, the gap in the spectrum is absent end
QZM to appear. Exactly these proporties ensure the correci re-
sults in the well-lmown supersymmetric theories. In particular,
we saw the correctness mass dependence of condensates, the cor-
rectness renorm-invariant relation for the messure and soc on.
All these results is in agreement with the general relations
of the supersymmetry Werd identies and Konighi anomaly.

In this Section we shall discuss the toron calculation
in the physically interesting theory of QCD with SU(2) gauge
group. In this case, in compare with the toron measure in SQCD
(95), we have the following distinctions:

a) the factor cfﬁfaﬁg which is related with gluino zero mo-
~ des is absent now; “
b) the factor (#Sf*“é relating with the scalar matter fields
is also absent;
¢) the non-zero modes are not cancel between bosons and fer-
mions and should be taken into account.

Let us begin with the case of nonzero gauge modes. As ias
well known [42], up to logarithmic accuracy, the total contri-
bution of the nonzero modes can be easily calculated with the
help of the usual Feynman digrams, a3 was done for geuge theo-
ries in Ref.42 and for 6 -model in Ref. [15] The effective ad-
dition to the action is determined by fig. 7 and eguals [42]:

S:S',-j +4,S{3'+a$’_f_ . S(E-f = {#/:?{M) : :
: 100
élsg = § 4 g fﬁiﬁﬁhfkfﬁa/ 3J£( "'"{?;“Ht/é?

e—dfg _E,‘,P( ,a/‘"f/

By analogous way, we can find the effective addition to the
action related with fermions. The result is determined by
fig. 8 and eguals [42]:

asp " gﬂgﬁ o bt [t _5//2",;'/ 6}_@, &Mé’ﬁfg/ﬁ,;/{mﬂ

We have on purpose separated the fermion contribution (101)

into two parts. One of them QN,(1)'1n M, is related with the
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regulator contribution of zerc modes at integer Q and with
regulator contribution of QZM at fractional {opological num-
ber in accordance with eq.(92). The second term in eq.(101)

(- < LnM,) QN, is related with regulator contribution of
nnnzgro modes and analogous to the contribution of the spin-
less field. This correspondence is in asgreement with the ex-
pression (90), where the first term coincides with the spin-
less field contribution and the last term ensure the QZM con-
tribution.

Collecting all factors together we obtain the following

expression for the toron density in QCD: ‘

ey 77 [/ 2
B < K 0 () W eip ( J e o lamgfloee
Here the standard factor M?"fa/'ﬁ’a is due to the.
four translation zero modes; the factor- (m&/ﬂ{r/‘.’g is con=-
nected with QZM;lastly, the factor exp(~ 'i;,—-wfﬂﬁﬁd/

is the contribution of gauge (100) and fermion (101) nonzero
modes and "K" is the constant. In obtaining (102) we took into
account the fact that the contribution of nu_nzai'u modes which
related with the first term of eq.(90) is & small in the limit
m - ﬂ(mmelnm, see Appendix B). Let us recall that in SQCD
this contribution cancels with the corresponding boson deter-
minat a4 . ;'

As it should be, the expression (102) for the toron mea-
sure has precisely the renorm-invariant form. It is easy to
trace this phenomenon: while the action decreased by a factor
twe, the number of admissible zero modes decremsed by the same
factor and the contribution of nonzerc modes (100, 101} is
smaller by a factor of two also (because a factor Q).

The parameter A which is present in the expression
(102) is the regulator of our toron solution. As discussed
above it may be understood mas the point defect with size a0, o
The important difference with the supersymmetric case is that
in SUSY theories the regulator 4 in the expression for the
toron measure is absent because of cancelation of nonzero mode -
contributions. In QCD case the dependence of toron density '
(102) on & appears. : ' :

: v -

In particular, for N, = 1 we have Z,?u (ﬁf.;:i)«-dx & .
It is mean that the toron density increas when regulator para-

meter 4 tends to zero. But semiclassical approximation
which was used in obtaining of the expression (102) is correct
only for the small densities (Z ~d% 4',"'. << { )., It is mesns
that the semiclassical aproximation.(or another words, dilute-
gas approximation} is broke down in this case and the toron
interactions should be taken into account.

This interpretation can be confirmed by the considera-
tion of the two-foron system with the small separation. As was
explained in the Section 6 this system can be understocd as
the instanton with the size JF=Z-7, and with pesition
KXo = (& ¢+ %/ |, Now we shall find the toron interaction
end verify that this interaction is very essential and it can-
cels the 4 -dependence of the density. The small toron sepa-
retion arises in the place of A . Indeed, we define the to-
ron interaction energy analogously to the instanton case f43]
by the following way:

& ¥ v Fd - Wint.
Z_‘:?fpwas ~ d'Z, a7 Eﬂf : a.i{i-_ﬂ € (103)

Here £, and Z; are the toron poasitions while the exp (-Hfi.nt}
took into account the toron interactiom. The dilute - gas appro-
ximation for the two-toron contribution is simply the product
of the two single toron demsities (102), and it is independent
of the toron gseparation.

We cen find the exp( -Wint.) now by subtracting the
nnninteractling two-toron contribution from the instenton one.
Like in supersymmetris theories one ocan interpret d’x. d i:P
from the instanton measure as the integral over two torom cole
lective coordinates (the translations #; and #2, ), The inte-
raction is defined only by the nonzero modes: :

g =€IP§-[CZ§";‘/&HH? - ('%:-Mjfn Mo - ("Q—M‘yﬂmnﬂ:{m‘n

s _12-AG l'_l_'_):z!l
Here the I?;cptgr fE T‘f/i ?:{ i { :

: xpf- (35} n Mog | 1s related with the instan-
ton nonzero modes [32] end the two factors exp[—(zs—'a-’";'}fu Mo ﬂ?]
are related with the nonzero modes (102) of the two torons.

Substituting the eq.(104) in eq.(103) we verify that 4 -
dependence disappear from the expression for density; in place

of A arises the toron separation |#;-23| accounting the
interaction.
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In particular at N,= 1 we have
Wat (202 24) =t fulz -2l > - o°
It is means that there is a logarithmic attraction which gives
an increase of the toron density. It is in agreement with the
qualitative eforementioned notes. For Hfi; 3, eq;{1D4} gives
a logarithmic repulsion in the interaction energy . This effect
can be qualitativaly'understnu& as due to Permi statistics.

The case of QCD with N,= E*(ln a more general case N =N)
calls for particular attention . In this case the toron den-
gity (102) has finite limit at A -»> 0. From the technical point
of view this singling out is related with the cancels of non-
zero modes like in the supersymmetric models.

Summarising, we saw that to find the foron contribution to
the different phyaical values in the general case does not pos-
gible in semiclassical approximation. This because dilute gas
approximation is broke down and toron interaction should be ta-
ken into' account. The toron individuality is lost in this case
and they apperently "melt" like it was happened with the ins-
tantons in the 0(3) & model [44].

In the case with Ny= 2 (in general N,= N,) the toron pre-
gerves own individuality and can gives a finite contribution
to the physicel values. It so happens that this class of theo-
ries is very interesting from the physical point of view becau-
se in Nature we have N = 3 and Ng (the number of light flavors

with m =m; =m, = 0) = 3 « Here and in what follows we con-
sider the case Ny = N, = 2 only.

The toron measure (104) in this case takes the form:

Zocp (M=8) = Kg.fdxamexpf f k’mndx
P2 M0 erpS —;.5‘ | (105)

We can find the constant " K" by the way which was described
for the obtaining the constant "C" (88) in the supersymmetric

* The instanton interaction has the same qualitative propor-
ties, in particular ’ Wiwt.ik. ~ (2-a%)€n|2,~%] [43].
** This point of view was intensively discussed early in Ref.

(29].
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theories, From (87), (105), [32] we obtain:

e /Y
AT E .
a{‘-”ff/{z/ i (106)

We are now ready to calculate the'. chiral condensate in QCD. Li=
ke in SQCD the QZM play an important role in this calculation.
Exactly these modes can to cancel the smallmass factor ~ m
(105) out and to ensure the finite result in the limit m - 0.

By defenition, with take into account egs.{(105,106) we
have:

< V“’)ﬂfﬂgaw‘;? ot “{"'*P}Etff/ﬁb’/ =
: (107)

:-;'r'z.?{:?#dm-/f%/ﬁ/j‘i Z(? ::ﬂ

[~3%m?/ -
Here ¥ is the field of any light flaevor ( &, ﬂ/}. In obfain-
ing (107) we substitute ¥ ¥” by the Green function in the to-
ron background. Let us note that the integral which was obtain-
ed in (107) was considered easrly when we calculated the fermi-
on determinant in 3SQCD, see eq.(90). We don't know the massive
Green function, but integrals liie (107) we know exactly in the
limit m — Ol Indeed,

/;»,zg/“—”*fy /z./_

- - p-

rm 2 (108)

Jd7, z/ .

Here, like in the eq.(90) we took into account the identity
Biferds) s D°(1*d/)  which is c rrect one for eny self-dusl
fields. Besides that we take into account that the first term
of eq.(108) is a small in the limit m =» O(»°G7), see Appendix
B, and the last term in (108) is related with the index of Di-
rac operator, actually independent of "m" and equals to topolo-
gical charge @ = 1/2 of background field [36]. The .antitoron
gives the same contribution and so:

< FPPH"I‘I#'GW;;‘J =2 q?.tr? fE’F{ff/ﬁj { }
109
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It is the main result of this work.

Like in supersymmetric theories the result (109) is defi-
ned by QZM and the chiral limit is understood only in the sen=-
sem —+ 0 of the massive theory.

A8 a second remark, we note that mechanism of spontaneous
chiral symmetry breaking ‘under consideration recalls the one
of Ref.[#ﬁ] « In both cases < ¥¥> #0 because of QZM at 2 0.
The difference is that now the QZM are inherent property of con-
figuretions with fractional Q. In Ref. [45] this effect is due
to the instanton interaction.

10. Scalar and pseudoscalar two-point correlation
functions and the (Goldstone theorem

In this Section we would like to check the Goldstone theo-
rem aéying that there should be light (~m) pseudoscalar boson
if the chiral symmetry is spontaneously broken and condensate
<{¥#¥> is nonzerc. Of course, we are not doubting a general the-
orem but rather we are eager to learn how it does work: What
is the mechanism which ensures the singuler behaviour of the
pseudoscalar correlator (because of the light Goldstone boson) -
and does not exhibit the singular behaviour of the scalar one.

Besides that in the singlet pseudoscalar channel there.
should not be a Goldstone particle owing to the solution of the
Y (1) problem (for a review see Ref. [12]). On the other hand,
the U (1) problem arises with condensate (109). So, in any con-
sistent mechanism for chiral breaking the U (1) problem must
be solved in automatic way and pole in the corresponding sing-
let correlator must be absent.

With this discussion taken into account, we would like to
conaider the following three correlation functions:

2z, fﬂ{f E‘}rfa/'?'/ﬁ-'.f}a’ﬁ,i ﬁz"?-;'”(ﬂ/ff/ﬂ/} (110)
J; + o ;
ik r*:é" ﬁ P co/T fedty, dule)ff0> (111)
o' oy 4 éﬂ':‘g’:fﬂ; Gidsie s A fﬂﬁ_ CHigs
S‘W“ 2/ fake’ (ﬂ// % -———'—'_'_E., o>

. pe
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{(we work temporary in the Minkowsky space). As is well known
(see e.g. Ref. [12]) for the pseudoscalar correlator _&- there °
is a famous Ward identity:

- g ol (
g = | 113)
which means that in this channel there should be light (~ m)
Goldstone boson (# -meson) and this correlator should be tends
to infinity when m » 0. The two another correlators (111), (112
should be regular ones, Now we would like to verify all these
properties and the calculation of the corresponding correlators
will provide a valuable consistency check of our approach.

Returning back to the Fuclidean space and using the expres-
sion (105) for the toron measure we have (see Fig. 9)

i

2 ¥
2
o s

3
ﬁa = K& A /h,f-d%/i fiias

N7 s 2
0327 D 5 0 bs _ﬁtms‘ﬂé

Here we employ an usual operator notation and the 7"2 arises
because of factor #“¥o in the expresﬂinn (105). Besidea that
we preserve the eigenfunctions with negative chirality /&% s-%
only because for the functions with positive chirality we have
Dt/ = -ﬂ:’*‘f/ and corresponding terms like in eqs.(90), (108)
are the small ones in the limit m - 0. This fact is taken in-
to account implicitly in relatioms (114). So, the corresponding
terms here and in what follows will be omit Ibeeause they can't
to ensure the singular behaviour -~ m"i of the correlators.
The Ay -term in eq.(114) consists of the quark Green
function propertional to m. This part of the correlator has the
same sign for the scalar and pseudoscalar correlastors because

L R / L
J;'._Sl-'-mz dﬁ_ ‘b‘i‘_-mi‘. 3 f—ﬂ'i"ﬁ:-mz

The &3 contribution consists of the quark Green function
proportional to "D;cd;-f and so this part of the correlater has an
oppodite sign for the scalar and pseudoscalar correlators.
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Now we will show that Ay and @A contributions have
the same values and tends to infinity like nT% for' m - 0.
In this case & ~»7” gna 2.,/ ~ 1 as it should be.

We don't know the closed form for the massive Green func-—
tion. Fortunately, the evaluations of the integrsl (114) redu-
ces to the well=known expression {(108) (up to 22’3 0 accura-
cy), which is actually independent of m and equals 1/2 in the
limit m - 0.

To show this let us consider the relation (108) from the
spectral representaetion point of view.

2
- 7 7l =
bomw B o, = lom BEZ T . %lb)% b/ g
Y- =L+ L Y- K (115)
AL
Here «2 is the eigenvalue of the operator .0

(3hamtft = [0 i€y Flam¥f g =limPt (116)

Besides that it is easy to see that if ¥ is a scalar mode
function, (2% »Y¥ a(kiem¥¥ | then Y”"'/m%%f satisfies
to the spinor mode equation (116) and its normelization differs
from that of the scalar mode function ¥ by a factor of the

eigenvalue (£ +*#% , So, we have:
>

g ~
w” N G/ %) A
‘7; / Z =—,371"71{22 2 . .af:).rf
:jng .un* b Eo I (117)
F
-+ Vi rd chy
: v A . & D
= -9 /& D Emr D’

In obtaining factor two in eq.(117) we took into account that
for each solution of the scalar field equation there are preci-
sely two linearly independent sclutions of the spinor field
equation because we have two orthogonal spinors £« « AS we
know the LHS of eq.(117) equals to Qfme in them <= 0 limift,
see eq.(108). But the RHS of (117) is just what is needed for
the calculation of the &4 -contribution. Thus, from (114),
(117) we have: |
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#

A = M‘: ? : M*E
s £ (118)

For the calculation of 4, - contribution a little more
work is needed. Let us rewritten the eq.(114) in the following

form;
FFL ;j;; 'a

-—‘1;- % ()% () =

d:_fmt/}f/’/}f;}/ A

n'.'
L
hZ

e L
= Lﬁ:m, ,?!??MJ —#‘:F k".t

J"i"' / Mfa Mi {119}
T/m~m D %m m2he’t *ﬁim}/

Here the factor 1/2 related with the fact that only functions
with negative chirality give a main contribution (~ n:'z) to
the &4 . Besides that the expression (119) is understood in
the 1imit sense (m -» m'). This formsl menipulation of Ay
allows us to write the Ay in terms of the index operator
(108)+ From (108), (119) we obtain:

= lim

m;m" -3"‘"

-
£ ME 2 _£ 7 a /

.l i
i zmm E: ine’ L mom ¥
LY

. (120)

As it should be A,2 84 and correlator .t‘?,r {114) equals (we
took into account that the antitoron gives the same contribu-
tion to 1?-;- )t
: {.r 2
v 3 < A

f?{ﬂf{?r - ﬂ/}f?/

which reproduces the result of the Ward identity (113) with
the expression (109) for the chiral condensate.

We pass now to the analysis of the singlet channel. In
this case besides of the diagram (fig.9) we should take into
account the diagrem fig.10. So, from (112) we have following
expression for f-o, d?‘@f in the teron background:
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3 .?mf L ds
ﬁ:iyfef '-f_.?- JA/M/‘? 7 7 Jf.«/ : {122)

' Here the first term related with the standard contribution, of
fige 9. The last term (fig.10) corresponds to the factorizati-
on into & product of two averages. The sign minus due to Fermi
gstatistics.

The toron contribution to 13- was calculated before the
last term of (122) is éxactlr the square of the index operator
(108) . As usualy, preserving only a singular terms in the
f;,;y;:.f , and using the eq.(114, 118,120) we have:

-&?ﬁf :f"ﬂi(,gfn/- jd/é//fi?/é//;;/: p.; (el

As it should be, the mass-singularity in the singlet chanmnel
is absent.

Formulae (121), (123) demonstrate the complete consisten-
¢y of our understanding of the chiral symmetry bresking in the
toron vacuum.

11. U(1) problem and @-periodicity puzzle in QCD

In the previous Section we saw that in the singlet chan-
nel the mass - singulerity is absent and so the U(1) "Goldsto-
ne boson" must have a finite mass in the chiral limit, m -» O.
But it is not a final of the story, because the solution of the
U(1) problem means that the relevant anomalous Ward identities
(WI) should be fulfiled [11,12]. In this Section we prove
that the corresponding WI are satisfied in automatic way as it
should be because the U(1) problem arises together with spon-

taneous breaking of chiral symmetry, i.e. with the condendate 'ﬁi
<¥¥>(109). :
Let us consider the following WI [11]:
‘6¢
(e < TS, ;._g/) £t ///)=* m <PE2 (124) )
266 o tsd
;'fﬂ’x{?”/? 7 ﬁf’:;; ff/f)- C¥P¥> (125)
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Like in previous section,

we write WI in the Minkowsky space, in a standard notations.
We took into account that the ﬁ,@fez‘ (123)=contribution is
regular one and so the corresponding term was omited in WI.

As is well-known it is very difficult to satisfy the WI
in the standard instanton picture (see Ref.{12] and references
there in). Por instance, the instanton dilute gas approxima-
tion shows [11,12] thet the LHS of eq.(124) is of order m> and

not of order m as RHS. Furthmore, the RHS depends on & as

E‘,gag'"g/.@f and it is hard to see JTow integer topological
charge can give such dependence on 8.

The standard approach to this problem is related with as-
sumption [46] that the LHS of eq.(124) is non-zero in pure
¥YM theory. In this case, as was shown by Veneziano [47] in- QCD
with light flavour fields, the 1HS should be order m' in agree-—
ment with WI., This approach is phenomenological one and can not
to explain the dinamicgl questions such as: what kind of vacu=
um fluctuations are responsible for the solution of U(1) prob=-
lem and corresponding WI.

Because for Nj- w2 N ”'x"é)we have some consistent mecha-
nism for chiral bresking and can find the condensate < ¥¥> (109),
the WI should be fulfiled by the same vacuum fluciuvations. In-
deed, returning back to the Buclidean space and using the ex-
pression (105) for the toron measure we have following expres=
sion for the LHS of eq.(124):

13 £y
o i [ 5, [l S # antToron =l T2

in sgreement with WI (124) and with value of condensate (109).
Here the sign minus due to Fuclidean space (remind 5'-'3;,, ﬂ'G‘EE )e
It is absolutely crucial that correlator {(124) is negative (in
our notations); otherwise phenomenological formula [47] would
result in the wrong sign massg.

In analogous way we have following expreéﬂion for the LHS
of eq.(125):

‘é’mﬁ /ﬂ/fj ::: /ﬂ/;; Z{? “T:;f!* d?nlza"f;ﬁﬂrr =
~D 27 ,._(//fj | (127)
F,é_’ .
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in agreement with WI (125). Like in the previous case the cal-
culation corresponds to the factorization into a product of two
averages. In obtaining of eq.(127) we took into account the
expresaion (108) for the index operator.

We pass now to the analysis of 6-dependences of condensa-
tes. We start from the following WI [11,12,47]:

v ¥ 8leg 5
(Ve =exp(-T/)<¥%tkX., _ (128)
wé differentiate the LHS of eq.(128) with respect tc @ at

B = 0 and obtain:

(129)

In the last step we returning back to the Euclidean space and
carry out the standard toron cslculation as was discussed be-
fore. Here the factor (1/2) has a clear meaning. .Indeed becau-
. 8e the calculation corresponds to the factorization into a pro-
duct of two averages, the termsdﬂﬂ?éjéé} gives an exactly the
topological charge (1/2) of the toron. It is a general result:
when we differentiate the LHS of eq.(128) n-times with reapect
to © at @ = 0 we obtain factor

g J 5o
& ¢
S P / _=/~—/ (130)
( / J277 ~£
in agreement with WI (128). In analogous way we can show that
o-dependence of the (GE?E is equal to:

2
(cf&i > =-gmZcPyy -m (131)

in agreement with Veneziano approach [#ZI. We should emphasize
that (non-trivial) ©-dependence is through (6/2). An analogous.
gituation has been discuased in @ -mode in (49) and in SYNM in
'Rer.[1q]. This general consequence of WI can be essily under-
stood from dinamicel point of view. Indeed, each differentia-

tion with respect to '@ gives the factor (130), which in the
toron background with fraationalltopnlugical number iz just
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what is needed.

We end the discussion of the calculations in QCD with a
some remark. We saw that the very unusual but well-known pro-
porties of QCD (like ©-dependence, U(1)-problem , the Goldstone
theorem, the counting of the discrete number of vacuum states
at a fixed velue of ©6* and so on)are fulfiled in a very simple
manner. On the other hand it is very difficult to satisfy all
these properties in another approaches. From my point of view
the any consistent mechanism for chiral symmetry breaking
should be ensure all these properties in authomatic way, becau-
se they are strong inferconnected to each others. So, our va-
luable check of these properties confirms the conslstency of
the approach described above. '

12, Conclusion

The main point of this work is en analysis of the physic-
al consenquences of the existence of fractional charge in the

G -model¥and, espesially, in the physically interesting theo-
Ty, QCD. It is shown that the corresponding fluctuations ensu-
re spontaneous breeking of the chiral symmetry and give a non-
zero contribution to the chiral condensate.

1 It is very important, that the toron solution is determi-
ned on the menifold with boundary. In this case many questions
arise such as: global boundary conditions, the stability of
the solution, self-adjointness of Dirac operator, single-va~
iuedness of the physical values and so on. These questions are
interconnected and turn out to be self consistent only for the
special choice of the fopological number (Q=1/2 for su(2)).
Only for this value Q-the correct renorminveriant dependence
is res{ored.

Besides that, it is shown that in the Dirac's spectrum of
the quarks, the gap between zero and the continuum iz absent,
This property plays a very important role in the forming of

* e

Remind, that this number, in a general equals ,M¢ « In our
case Np=2 and thesestates analogous two vacue which was dig-
cussed in © model (45) and in SYM and related with the
discrete chirel symmetry bresking of the U(1)4 = symmetry:
¥ ffF{"'ft?;‘)f « We do not dwell on this issue,
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the chiral condensates in SQCD and QCD. Exactly this property ,
ensures the correct dependence of condensates on "m", "g", '
ng" in the well-understood model SQCD and gives exactly two’
vacua (for SU(2)) in egreement with general results. The instan-
ton calculation gives only an average over these vacua.

In QCD this property ensures the nonzero value of <#¥)
and the singular behaviour of the pseudoscalar correlator (be-
casue of the light 7 -meson). Moreover, because the U(1)
problem arises together with spontaneous breaking of chiral
symmetry, the corresponding WI should be zatisfied in an auto-
matic way. We have demonstrated this. Bisedes that, we have
checked that the @-dependence of condensates sgrees with WI
(so-called ©-puzzle).

All these results confirm the consistency of our approach.
From my point of view this description does not contradict the
0ld idea of Ref.[48], according to which the instenton is the
superposition of two objects with half -integer topological
charge. In Ref.[48] such an object with Q = 1/2 was the meron
[49], possessing infinite action. In a certain sense our solu-
tion is similar to the meron: both have zero size. There is
also a difference: the toron has finite action, the meron in-
finite. This interpretation can be confirmed by congideration

_of arbitrary gauge group G in other theories, such as SYM,

SQCD. In this case this conjecture is in sgreement with num- ; "
pers of the vacuum states and zero modes. Besides that, this
conjecture ensures the correct renorminvariant dependence of
the toron measure and the correct form of the axiel anomaly. _
: In conclusion the author expresses gratitude to V.L.Cher- .
nyak, D.I.Dyakonov, A.Yu.Morozov, V.Yu.Petrov, A.Rosly, M.A.
Shifman and A.I.Vainshtein for useful discussions and eritical i

remarks.
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Appendix B
The goal of this Appendix is to find the Green function
in the toron background asnd to calculate the value

2
m”‘/ﬂ’; Z/“?/-.aamﬂ ' -"5%::»*'/ (B1)

at m - 0. As discussed sbove, see eq.(108), this value rela-

ted with calculetion of the toron measure (102) and chiral

condensate in QCD. We shall show that the value (B1) tends to
zero in the chiral limit and so the corresponding coniribution
in eq.(108) can be omited.

We start from the following representation of the toron
solution {(65) in the superpotential form:

;}fq¢=-¥y9y£ﬂ P ep (€ +&/
: -z %
s g () et @2)

Here G(Z) is the analytic function and Jﬂ is the superpoten-
tial satisfying to the equation 0O P = 0(70). The form (B2)
is just which was used in the instanton case [50]. So we can
to use all the methods of this paper. We will look for, with
Ref.[ﬁ@], the solution of equation

<

ig T
-uﬁ: A{J{{J/_ﬂg-?/y_g)) \9‘:%{#-% g (B3)
in the form:

A4 Fliy oH
At ot 97 ey g 4

(B4)

where the function jg/&Eﬁ} must obey the condition

#lrx) = Plx)



This because the propagation function must have the same short-
~distance singularity as the free propagation function,

Ay "ﬂ;f

Inserting the decomposition (B4) into the Green's function
equation (B3) and using the facts that

yal %J’/xytjﬁﬁ/}r/;fﬁy/ c 6};, = (2 6‘/

o 9 /‘V /J‘c;f/:r 5 2 Y
/u 2;/};#]4 ‘. gﬁJ/ / /“ a(@p 9 Q‘

we can to write the eq.(B3) in the following form
26 “lrgpe /5
¥ N i WO ST e Py ) = O (B5)

To find the solution of this equation let us introduce the com-
plex notations: '

P s

¥ 7, A%) Z,-8.'7 Z,-%-/74 &=6(2)
‘ (36)

GZU =/zf:/ ‘%tt/; Zy < Geita, E.L**.':“'é': 2 ‘E{?"‘/

It is easy to assert that eq.(B5) is satisfied if 4 /¥, o/
is given by:

4 G, J{ 1+ &Ry Ba1r84) . =
ﬁ/&dy/-—&(/(f :’:/;f : //r &/ - (f* / [6-8,)-

_ (1#GhJ(1-E )
E.t i Er

/ 6,-6) » CERLTE) /g, 4 6 %
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The proof rests on the use of proporties of proectional opera-
tors ( /#8% ) and enalytical properties of function G(Z).

In particular, for instanton G(Z) equals £ + 27" and for-
mula (B7) pass to the well-known instanton sclution. Now we
are ready to calculate the integral (B1). The leading term of
this trace for small m can be calculated from eqs.(d4, AT).
Prom these equstions one finds that 7% ( g ‘_;.Ji ¢ /’6-‘- is loga-
rithmically divergent at large A . A natural cutoff at the
corresponding trace is provided by the mass m. So, we can find
the integral (B1) with logarithmic accuracy by cutting the in-
tegral off from sbove by the velue m i and using the mesless

Green function. Take into account the asymptotic beha.viuur of
Green funetion from (B2), (BT):

2

= il
klny) > 5 P (GG R P
¢

we have at m —-» O:

i
A I SNy g a
S B - E0m m
)

The result (B8) means that the corresponding contributions in

toron measure and in the expression for chiral condensate can
be omited in the limit m - 0.
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