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ABSTRACT

Plasma heating at electron cyclotron frequency by an ordi-
nary wave propagating at right angle to unidirectional mag-
netic field is treated. Injected microwave power is assumed lo
be so large that relativistic change of electron gyrofrequency
during one flight through the wave beam is much greater
than inverse time of flight. The electron motion in the wave
field is described using Hamiltonian formalism in adiabatic
approximation. It is shown that energy coupling irom the
wave to electrons is due to a bifurcation of electron trajectory
which results in a jump of the adiabatic invariant. The proba-
bility of bifurcational transition irom one trajectory to ano-
ther is calculated analytically and is used for the estimation
of the beam power absorbed in plasma.

AnuabartuyecKasi TeOpHsl HeJIMHEHHOIO
3/IEKTPOHHOTO LHKJIOTPOHHOIO HArpesa mnjaa3mbl

H.A. Koreasnukos, I'.B. Crynaxos

AHHOTALNHA

PaccMaTpHBAeTCs HATpPeB MJa3Mbl HA 3JEKTPOHHOH LUHKJIOTPOH-
HOli YACTOTE C MOMOLbI0O O0bIKHOBEHHOH BOJIHBI, PACHPOCTPaHs-
jolLeiics NoJ NMPAMEIM YrAOM K MarHuTHomy nomio. [lpeanonara-
eTcsl, 4TO BBOAMMASA B NJa3My MOLLHOCTh HACTOJbKO BEJHKAE,
YTO PENSITHBHCTCKOE H3MEHEHHe LHKJIOTPOHHOH 4acTOThl 3JEKT-
pOHa 3a OIHH MPOJET Yepe3 BOJHOBOH MYUOK 3HAUHTENBHO GOJMb-
we o6paTHOro BpemeHH nponera. [IBHKeHHe 3JeKTpoHa B nofe
BOJIHBl OMHCBIBAETCH ¢ MOMOILBI0 FAMHJAbTOHOBA (OpMalu3Ma H
NpH YKa3aHHOM YCJOBHH FABIAETCH agHabaTHIECKHM. [MokaszaHo,
yTo nepejaua SHEPrHH OT BOMHbI 3JEKTPOHY OO6YCIOB/AEHA
GudypKaunueii TPACKTOPHH [BHKEHHS 3/IEKTPOHA, COMPOBOKAAIO-
mefcsa CKaukooOpasnbiM H3MEHeHHeM ajHabaTH4eCKOro HHBapH-
aHT4. AHaIMTHYECKH BHIUKCJAEHA BEpPOATHOCTb GH(YPKaLHOHHOIO
nepexoia ¢ OIHOH TPAEKTOPHH Ha JAPYrylo. [ToayueHHBIH pesyJib-
TAT HCNOJB30BAH JLISl BLIYHCJEHHS MOLLHOCTH, [OFIOILEHHOH
9MeKTPOHAMH H3 MHKPOBOJHOBOTO My4Ka.

© Hucruryr adeproil ¢usuxu CO AH CCCP

1. INTRODUCTION

Plasma heating with microwave radiation is widely used in
many fusion experiments. For relatively small injected power the
relevant physical processes can often be described by a linear
theory. Wave propagation and absorption within the framework of
this theory are now well understood [l, 2]. However, using high-
power pulsed microwave sources such as free-electron lasers [3]
inevitably leads to nonlinear effects.

In this paper we continue studying nonlinear dynamics of elect-
rons interacting with an ordinary wave beam propagating at right
angle to unidirectional magnetic field [4]. We assume that 1) the
frequency of the wave o is close to the electron gyrofrequency wy,
|0 —oy| € ®; 2) the electron gyroradius py is small compared with
the wavelength, kpy < 1; 3) relativistic effects are small, v<¢; and,
at last, 4) the width of the beam [/ in the direction of the magnetic
field is relatively large so that the relativistic shift of the gyroirequ-
ency Awy~wy(ApnB/mc®) due to the increase of transverse energy
nB is much greater than the inverse time of flight v./l. The last
condition is characteristic of the adiabatic regime in which there
exists an adiabatic invariant J determining a single-valued depen-
dance of an electron energy on the wave amplitude [4].

Depending on the ratio AnB/T. one can distinguish between two
subregimes: a strongly nonlinear one, when ApB>T., and a weakly
nonlinear regime, when AuB<& T,.. The first regime has been studied
in Ref. [4]. Here we develop a general theory of adiabatic cyclotron
heating and apply it to the weakly nonlinear regime.
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2. NONLINEAR HAMILTONIAN

Interaction of an electron with an ordinary wave propagating at
right angle to the direction of magnetic field can be described by
the following Hamiltonian®

mf,q:}:m—%fuuw cos ¥ (1)

with the equations of motion

dl o
v oy
| (2)
dq?_i-ﬁ__“'
dv ol

Throughout this paper we use units such that |e|=m=c=1 and
the following variables: the action /=pB and the «slow» phase
Y= @—wi canonically conjugate to / (¢ is the gyrophase), relative
frequency mismatch Q= (wy — o) /wy, dimensionless wave amplitude
a= (kv./\2 ) E/B (where E is the amplitude of the electric field in
the wave), dimensionless time t=wyf, and the gyroirequency
wy =B (1 —v2/2) of particle with /=0. For the sake of simplicity a
is assumed to be positive. Negative values of a can be transformed
into the positive ones by changing the definition of the phase
yp+ |

For the constant wave amplitude, phase points move along lines
of the constant value of # in the phase plane /, ¢. Their trajectori-
es are shown in Fig. | for diiferent values of Q and a. Depending
on the magnitude of a, there may be one or three fixed points /=0,
y=0. The first one, a stable center 1, is placed at y=0. It exists
for all values of a. Another couple of fixed points, stable center 2
and unstable hyperbolic point 3, are placed at y=mn. They appear
only if Q is positive and a is not large, a<<4(2/3)%*

Choose the z coordinate in the direction of the magnetic field.
Taking into account finite width of the microwave beam in this
direction, one concludes that an electron passing through the beam
along a field line feels the amplitude a slowly changing in time.

*} Details o1 the Hamiltonian description of electron motion in ordinary wave field
can be found in Ref. [4], Appendix 1.
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The dependence of a on t for a given particle is obtained by substi-
tuting its coordinate z=uv,t/wy into the function a(z). In this case,
the Hamiltonian (1) is no more an integral of motion and, hence,
phase trajectories (now defined at a given z as lines of constant
) also change in time. Transition of the particle irom one trajec-
tory to another is governed by conservation of an adiabatic
invariant J,

I=§ Idy. (3)

The quantity (3) is conserved provided the period 2n/Aw of phase
motion is much smaller then characteristic time of the amplitude
changing

Aw>> . (4)

From the conservation of J it follows that after crossing the beam a
particle comes back to its initial trajectory and, hence, does not
change its energy. However, this is true only if Q<<0. For positive
2, where the hyperbolic point 3 exists, the requirement (4) breaks if
the trajectory passes through the separatrix (which is the trajectory
coming through the hyperbolic point). In this case, the adiabatic
invariant changes by finite value. The magnitudes of J just before
and after the crossing of the separatrix are equal to the correspon-
ding areas in /, ¢ plane. So we define areas S, and S, of the regi-
ons bounded by the separatrix and containing fixed points / and 2
respectively. We will also consider the region Ss;, lying over the
separatrix (see Fig. 1). The change AS; of the area of this region is
evidently equal to — (AS,+AS,).

Let’s calculate now the flux of particles from one region into
another. Note, first, that regions 2 and 8 have no common border
except for the only point 2. That is why the particle flux g.3 between
these regions is equal to zero. We will show now that the fluxes ¢,
and g3 from the region I into the regions 2 and 3, respectively, are

gl 5, =253, (5)

where #. is the value of the Hamiltonian at the separatrix, and
f(#) is the distribution function of particles in the phase plane; in
the adiabaic approximation the later is ergodic and depends on #
only.
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Fig. 1. Phase trajectories for different values of £, a:
a— Q<=0, a=|Q|*?, the trajectories are qualitavely the same for other values of a; the other
pictures correspond to positive Q; b — a=0.12%% ¢ — a=05Q%% d — a=06502%% ¢ — a=4
(2/3)%*=0.77Q%7, the fixed points 2, 3 merge; f — a=Q""

For what follows it is useful to redefine the Hamiltonian in such
a way that it be zero at the separatrix, positive in the region / and
negative in the regions 2 and 3:

F(1,p; a(t)) = (1, p; a(t)) — F {a(1)) . (6)

The direction in which a particle crosses the separatrix is deter-
mined by the sign of the derivative

‘%?_ﬁ‘:f-ii (ﬁy—.ﬁ?f) .

da

For > 0, particles in a thin layer near the separatrix enter the

region I from regions 2 and 3, for # <0 particles move in the
opposite direction. For a differentially small time interval dt the
separatrix is crossed by the particles which at a given instant ol
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time © have the value of # in the range —.ﬁ?d’{ﬂ:?}’{:{) (for

#>0) or 0<# < —Fdv (for #<0). But the line # = —Fdr
determines the position of the separatrix # (I, ¥; a(vr+dv))=0 at
the moment 1+dt. Hence the area of the strip between the lines
# = — Fdt and #=0 along the border of regions 1 and j (j=2,
3) is equal to the change of the area S; during the time interval dr.
From this it immediately follows that the Eq. (5) is valid if one
takes into account the above mentioned ergodicity of the distribution

29
function. Expressing the phase. area dldy as dfd.%/%———

= — E?—ﬁ’;’dt, we find
& =l @)‘f—;w (7)

where the integral is taken in the direction of particle motion along
that part of the separatrix which bounds the region j. To calculate
the integral (7) one should express the amplitude a in terms of the
action I, at the hyperbolic point using the following relation

a=2I. (@—1L) (8)

which follows directly from the equation p=0 at p=mn. Note that
the hyperbolic point exists only when /. lies in the range
Q/3<l.<Q. At [.=Q/3 it merges with the stable centre (see
Fig. 1e) and both disappear, whereas at [.=Q the amplitude a
vanishes. Using parametrization (8) it is easy to show that

Ho— %f‘ﬁ—ssz,

5%=a(\/.’_ cuswp—i—'\/}: )
and that

2 P %12—51{.&-1-!}

F .
I/ h =
X[ . 2/ (@—1.)

along the separatrix. Using

fza-\/Fsinw

8

after simple algebra one get

fi

WS
dlna ;S. h(1) dI , (9)
ds ‘rmax
3 —
TR 5 h(l) dI, (10)

where
2] _'Imin i Imax] Sign ” _'"f“}

-\jﬁmax -—fj{,f.—fmi”}
Imin‘__gg_"ﬂ_ \IHSIC[Q—.{:}_ .

Lo o 20 oot IBHQ .

a(ry =\

The function sign(/ —/.) appears in (9), (10) as the result of can-
cellation of |/—1I.| in the numerator and the denominator. Making
the integration one finds that the integrals (9), (10) are equal to
each other:

dS; _  dSs _ _4\{[9_ 1) (31.—RQ) -

dlna dlna

Hence

dS ds 4 {8l ="
1 S B 2:__[1'_ 52]1‘ (11)
d-l.rc djf .I'..;' {H—-—L}ug

Integrating (11) yields
Si(1) =4nQ —28s(1.)

Sile) =4Q arctg \/ N—2 _6le—1)61—9).

=i

(12)

Expressing /. through a from (8) one can find S; and S+ S as
functions of the amplitude a. These dependances are shown in
Fig. 2.

Consider now an electron passing through the beam. Suppose
that before entering the beam it had an energy /lo and correspon-
ding value of Jo=2n/,. At the beam front, the amplitude a slowly
grows from 0 up to a maximum value @ma.. The particle will cross
the separatrix at the moment when J,=38; (provided Jo<<2nQ) or
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when Jo=8,+38: (if 2nRQ <Jo<<4nQ). The amplitude a and the
parameter [, at this moment we denote by a. and /. respectively
(see Fig. 2). The value [/, is determined irom the following equation

| Jo—2nQ| =21Q — Sy(l.) . (13)

If amx-:::a:z\/f(sz—m or Jo= 4nQ, the particle does not cross
the serapatrix and the adiabatic invariant is conserved, AJ=0. For
b7 Amax=> 4. (and Jo<<4n(2) the particle
initially moving in the region 2 or 3
is trapped (with 100 per cent proba-
bility) into the region I which is ex-
panded as the amplitude a increases.
At the back front the amplitude a
decreases from am.. down to 0. The
particle under consideration crosses
the separatrix once again at a=a..
Now it passes from first region into
the second or third one. Since S;=S;
_» the probabilities to be trapped into
00 a. 05 any of these regions are equal to
, B each other and, hence, equal to 50
Fig. 2. Plots of areas &, and %) :
S:+4S:. The point of intersection of PET cen_t : !f the particle rqturns to
the curve with the line J=J,—const the region it started from, its value
corresponds to the crossing of the of J and energy is not changed. But
separatrix. if it is trapped into the other region
its adiabatic invariant changes by AJ=4a{2—2f, and hence its
energy at final state (outside the beam) is changed by AI=AJ/2na
as compared with the initial energy fo,. Averaging over the equal
probability of both final states one finds the change in particle
energy:

I

I:{ Q—1 IT fo<<2Q ‘and a,, > a., (14)
0 Wl T B

The equations (8), (11) — (14) give a complete solution to the prob-
lem of adiabatic crossing of the separatrix for the Hamiltonian (1).

") This conclusion does not contradict to the results of Refs [5,6] where trapping
into the region 2 was due to the changing of the magnetic field along the field line.
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3. PLASMA HEATING

Having calculated the mean energy change for a single electron
after passing through the beam we can now calcu!ate_ the amf:}unt_ of
absorption. Because of magnetic field inhomogeneity in ‘Fhe fil_l'ectlon
of beam propagation the width of the resonant zone is finite. To
obtain analytical results we constrain ourselves to thf: case when
the power absorbed in this zone is small compared with the_beam
power. In this case, the wave amplitude is almost constant in the
direction of beam propagation. Choose this direction as the x-axis.

The absorbed power is equal to the amount of energy brought
out of the beam in unit time by electrons streaming along the mag-

netic field. Every electron brings out the energy Al on the average
which depends on electron initial velocity because v an_cl Uz entgrs
I, and a. In a single-transit regime the electron distribution function

is Maxwellian

2 2
n 'UJ__I_UZ
0100 = g e (= 55)

with given.density n and temperature T.. The energy flux that the
electrons bring out of the beam is
Q=2{v.dv. | onvi fAk dul, _ (15)
0 0

where the factor 2 takes into account the contribution {Jf_the'partic-
les with negative v.. Though the upper limits of integration in (19)
are formally infinite, A/ vanishes outside the interval

Q1 —B)< —;_,—ﬂi <Q(1+8),

where E is a function of v.. For

3?2 Bae (16)
Uz{(ﬁ) kE

[Mex

this function is implicitly given by the formulae

@ Sqll.) o327 20 Bw
g—l—m, Ug—2 J{., {52 f:} kfmﬂ

L1



(this corresponds to the interval Q/3<</.<<Q), and
E=1

for v. greater than the right hand side of (16). The energy flux Q

as well as Al depends on the frequency mismatch £ and on the
maximum amplitude E,.x at a given field line but it does not
depend on the wave profile along the magnetic field. In the small
vicinity of the resonant point, |x| < B/| ¥V Bl = L, the magnetic field
B can be considered as a linear function of x:

B:B;{l-}—%),

so that Q=x/L—v?/2. Putting this into (15) and integrating along
x one finds the power absorbed in plasma per unit length in the y
direction. Using the variables

%

the result takes the form

H dx Q= \/i an’flzLﬁ'(gkimﬂ) : (17)
= :

max

where

oo [

Fv)=2{dpe ﬂ{vEB”S {1 —¢) (3c—1) exp[ —v*BL(l —T)*] X

0 1/3

X(acha—sha)+ e:-cp[— E—tvﬂﬁa](ﬂch p—sh ﬁ]} :

a=B| l—farctg\/af_f#%x/{l—;) @—1n].

In the limit 2BoT.< kEnx Eq. (17) reduces to the result of

Ref. [4]: |
TG 5 76 { BE Y32
e il ]—1 o P F.l' ( I:[ld.":) B
S s VH ki ( 4) i Bw

In the opposite limit, 2BoT,.>> kE,.x, we lind

15 /2 : a/e
[ dx Q= e r?(i) HLTE(M) :
Ia’l* 4 B
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For a given beam profile one can calculate all power absorbed by
plasma

Par=\dy\dx Q.

If, for example, En.x has a Gaussian profile,
HE
Epax=Eoexp ( £ ?) ;

then in the above mentioned limits we get

kEq\ 13
pubzn,mnr;bu( “’) :
Buw
RE /2
P,,h=1,5ﬁnw( “) :
B
respectively.
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