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ABSTRACT
The formulations of Regge-discretized general relati-

vity are studied which are analogous to the tetrad and
seli-dual representations ol the continuum theory.

© Hucruryr adepnod ¢pusuxuy CO AH CCCP

Due to the general covariant nature of Einstein gravity a coordi-
nateless formulation of this theory is of interest. Such the formula-
tion is proposed by Regge calculus [1]. Regge calculus deals with
the piecewise-flat Riemann manifolds which can be chosen to fit any
smooth Riemann manifold with an arbitrarily high accuracy. A piece-
wise-flat manifold (or Regge lattice) can be considered as that
composed ol llat four-dimensional tetrahedra (or four-simplexes).
The curvature takes the delta-function form with the support on
two-simplexes or bones. It develops through the appearance of defi-
cit angles: the sum of hyperdihedral angles meeting at the given
two-simplex differs from 2n. Regge calculus possesses many analo-
gies with the continuum theory. For example, the analog of the
Bianci identities takes place [1]. At the same time the basic variab-
les are link lengths which form a countable set. This fact is of
importance in both computer and quantum applications.

This paper will consider Regge-analog of the description of
general relativity with the help of four (p=1, 2, 3, 4) four-vectors
e, (the tetrad) and four anti-symmetric 4 X 4-matrices wup= — Wyba
(the tetrad connection) [2]. The continuum action takes the form

Sle, w) 25 e ght Rapuv (w) (dete) dx,
Rabpv{m] = ap Wyap — Oy W yas + Wyac Wyuch — Wypge Wyep . { 1 ]

Here e“e=06" (to simplify the notations we work with the Euclide-
an signature). Expressing o in terms of e with the help of equa-
tions of motion 68/6w=0 we reduce (1) to the usual Riemann ten-
SOr Rabuy =e€4€3 Ry, and Einstein — Hilbert action.
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Regge lattice can be considered as an abstract simplicial com-
plex equipped with a tunctmn which assignes to each 1-simplex o'
or link it’s length /(o') [3]. The n-dimensional Einstein action on
Regge lattice is proportional to

Sek= Y n(e" ) ec" ). (2)

Lk
o

The summation in (2) extends over (n—2)- almplexes a" % of mea-
sure ((n—2)-dimensional volume) w(c" ); glc" ) are the deficit
angles. Let us try to write down for (2) an analug ol representati-
on (1).

Such a representation would be of interest both by itself and
also from the viewpoint of the problem of regularization of quantum
general relativity in the so-called seli-dual representation [4] by
means of it’s formulation on the lattice [5]. To introduce a lattice
regularization parameter in a covariant way the metric is required.
Meanwhile the metric in the self-dual representation is a complica-
ted operator which involves second order functional derivatives and
itself requires a regularization [6]. A possible way out of this diffi-
culty is to proceed directly from discrete Regge formalism from the
very beginning: the functional derivatives are substituted by the
ordinary ones and do not require regularization. The first step in
this way is to introduce for (2) representation of the type of (1)
since it is (1) which can be considered as a starting point to pass
to the seli-dual representation [7].

Thus, we need the discrete analogs of the tetrad and connection,
These were considered in Ref. [8]. Namely, to each simplex o" we
dssign an Euclidean coordinate system and to each one-subsimplex
o' co" we assign a vector in this system, {“(a'la"). To each 2-sub-
simplex o’coa" we can assign the blveclor [ (o}l6™) I’ (02l0") ]
where o}, o) are any two of it's three subsimplices o/ = o®. Analogo-
usly to each k-subsimplex o the k-vector corresponds:

Ve 4o a®) =[ £(o]l 6™ I"(oi]6")...1 okl a™)] (3)

with the &-dimensional volume
e = (V" -V rRty. (4)

The square brackets in (3) mean antisymmetrization over indexes
a, b ., d (the factor 1/k! being included). Each (n—1)-simplex

r! -

o is the common face of two n-simplexes of, of and one can
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ln‘trodm:e an orthogonal rotation matrix as a function of (oriented)
face Q(c" '), which connects the systems of of and o#:

I*(a'lof) =Q* (¢" ") I*(c”| af) (5)
for common links ¢'c e’ =0a{Noh
The curvature is expressible in terms of matrices Q@ [8]. A
parallel transport c:rf [ a vector around a (n—2)-vector through the
sequence of faces o; = results in the rotation

N
1 = Bl T it E, o o= ]'.
et i R (6)

=

nm—2

R

where the index E(n‘"_z,m _l}z + 1 takes into account orientation of
faces. The Regge lattice corresponds to the particular case of our
construction if the link vectors for the 1-subsimplexes of each 2-sim-
plex sum to zero. On Regge lattice the curvature matrix is a rota-
tion around (n—2)-vector V(g" 2) by the angle
g @ dig  yrab.. r!{ n—2

{p{:ﬂn_g}—ﬂrl:‘-‘.iﬂ :
UL mle

RJL (?)

Combining n_(?-}“{-“’ (6), (7) we gel a representation
Sall(c']6") Q")) which we are going to study. Namely, we are
interested in the conditions (if any) that should be imposed for the
theory with action Sg({,2) to be equivalent to that with the
Einsteinu—Hi;berl action Sg(/) (see (2)) and with the deficite
angles ¢(c’ )

First, the set of xariablea [, Q should be further specified.
Namely, for each link ¢' the n-simplex ¢">¢' should be chosen in
which the link vector f“(cr'lrr ) is considered as independent variable
(in other simplexes o’">¢' the vectors (¢'|0’") are expresmbie in
terms of [*(¢'lc") and Q). We shall say that the link o' is referred
to the n-simplex o”. Besides that, an ambiguity arises also when
constructing k- vectors. Suppose the independent variables !”(m‘]m :
re=1. 2 cr”#_-ﬂg are assigned to the two [-subsimplexes o/ of a
2-simplex o®. To construct the bivector V*(¢?|6") one should tran-
sform the cnmponents I°(allof) to the simplex o” This can be
achieved by the action of matrices Q in man}.r ways dccordmg to the
set of different paths connecting o and ¢". Besides that, we are
also free to choose any two of three 1- submmplexes of o whose link
vectors can be used to construct V**(¢?).
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Consider equations of motion for Q. The formulas will be expli-
citly written out for the cases n=3 and n=4. The (n—2)-vectors
V depend on Q but it will be seen that correct equations of motion
fnllnw Dnly if (n—2)-vectors do not vary with Q in some simplexes

" adVio ’lo" ) /@Q =0. This means that either the links whose vec-
tnrs are used to construct V are referred to the same n-simplex or,
otherwise, those Q that are used to transform link vectors to the
same n-simplex should be substituted by their concrete expression
Q(!/) corresponding to Regge lattice. When varying the action with
_E_E__I_e_’_t_ us take into account the orthogonality conditions
Q" ) Q" ')=1 by introducing the Lagrange multtﬁllers. The
latter can be excluded by the action of operator & QG /aQM".
The given matrix Q=Q(o _l) appears in those Rio 2) which cor-
respond to the (n—2)-subsimplices of o"'. Such R can be shortly
written as (['Ql'2)°. Here e= +1 and T, [2 are some products of
connection matrices different from the given one, Q. As a result, the
equations of motion read

Z EI[Gl, UE) 112{{'!],0'2] tr Rlo ]'_RLGL _:'rl Bt I‘[GL}___O (8}
cos@(o)

for each o? at n=3;
Y e(a% 0%) Ty(0? 0°) X

aca

2 B — 2 p By — st oY LS T s T
% V(o®) tr R(c*) — V(c*) R(a®) . R(o”) o) 02, 0% =0 (9)
Cos @¢(o°)

for each o® at n=4. Here g(o" 2) is given by (7).

Let us check that there is the solution to the above equations
corresponding to some Regge lattice. Namely, let us specify Regge
lattice by assigning the length ({*(c') I“(c'))'/* to each I-simplex

. Further, to each n-simplex we assign an Euclidean system such
that the link vectors of thus specified Regge lattice would coincide
with f*(¢'|c”) for those links which are referred to cr2 Then Q are
chosen to connect these coordinate systems R(c" ") is rotation
arﬂund V{U 2) by the deficit angle @(c- °). In three dimensions,

, (R(c') —1)T (6')=0, tr R=142cos ¢, and (8) reduces to
) Iyd', 6% I(c")=0. (8a)

GI :I_I';'

This expresses the fact of closure of the link vectors of 2-simplex
into the triangle. This property is fulfilled by construction. The mat-
rices I'y are needed to transform vectors to the same coordinate
system. Analogously, in four dimensions we get the property of
vanishing the sum of bivectors over the boundary of tetrahedron.

Thus, Sg({) realizes an extremum of Sg(/, Q). In four dimen-
sions we can use the group property O(4) =SU(2) XSU(2) to get
once more representation analogous to the self-dual one in the con-
tinuum theory. In the latter the connection ® (i. e. infinitezimal
rotation) can be decomposed into the (mutually commutative) (an-
ti-) seli-dual parts w:

o= e+, FTo=+(te),

[m~r}ab: :%Euhr.! me-.-j : {;0]

The finite rotation Q=exp (w) (and R as well) decomposes multi-
plicatively:

Q=0,Q_, Q. =exp(To). (11)

Let us call the set of Q, for all possible Q the set of (anti-) seli-
dual rotations. Rotation around 2-simplex in some basis takes the
block-diagonal form R=diag (L(¢), 1) where L(q), 1 are
2% 2-matrices, L(¢) is the rotation by an angle ¢. Then R.=di-

: |
ag (L(9/2), L(£@/2)) and it is seen that Sg(/, Eli):?SR{E) for

the Regge lattice solution Q(/). Conversely, consider the action
Se(l, Q) with € running over the set of sell-dual rotations U (i. e
U,=U). Each U is parameterized by three variables u' as
U=exp (iu'Y") where ¥' (i=1, 2, 3) is the basis of self-dual matri-
ces chosen to satisiy the algebra of Pauli matrices. Write down the
equations of motion for U. The seli-duality conditions on In U can
be cast into the form UU=1 and (U—U)"— (U—U)=0 and
taken into account by Lagrange multipliers. The latter can be
excluded by the action ol operator

gabed [ ﬁ;{ﬂUm_F [/h ﬂfﬂUﬁ'— ue ﬁfﬁUf“

The resulting equations are simply seli-dual part of eqs (9) with €
substituted by U. It is easy to see that only seli-dual parts of bivec-
tors 'V enter these equations. According to TV=iv'E' these parts

7



can be represented by the vectors ¥ in the abstract 3-dimensional
space on which the matrices U act as rotations:

_ - !
exp (i T) o* S*exp (— iu' T =[ L(?u, —“-J ﬁ] st (12)
i

where L(¢, M) is a rotation by an angle ¢ around i axis. For the
solution relevant to Regge lattice all the curvature matrices
Ri(cy=M U’ act as rotations around o (o). In this case the equa-
tions of motions simply establish the closure of vectors ¥ represen-
ting the laces of 3-simplex into a quadrangle.

Consider now the problem of uniqueness of solution of the equa-
tions of motion for €. The uniqueness is understood as that applied
to the physical observables —the deficits ¢(¢" ) which should coin-
cide with the Regge lattice ones. Besides that there are the evident
necessary conditions for the solution to be Regge lattice one:

(R(o')— 1) 1{a') =0 (n=3);

R(o*) V(c*) R(c®) =V(a¥) (n=4), (13)

the (n—2)-vectors are not rotated by their curvature matrices. In
three dimensions these conditions can be seen to be sufficient as
well. Indeed, if (R(c')—1)7(c')=0 for all the I-simplexes then
for each 3-simplex it's link vectors are unambiguously defined and
by equations of motion they close into tetrahedron. These tetrahedra
form the Regge lattice of interest.

Let us examine whether the conditions (13) are provided by
equations of motion. Write down Q=1-4w and consider linear
approximation in w (thus the uniqueness in some neighbourhood of
Q=1 will be analyzed; besides, it is linear approximation which
proves to be essential while approaching the continuum limit). Con-
sider n-simplex and write down n+ 1 equations of motion for n-4- 1
it's faces. Il (n-—2)-vectors are not rotated by their curvature mat-
rices we get simply vanishing the sum of (n—2)-vectors of sub-
simplexes of each (n—1)-face. Of these only n equations are inde-
pendent ones. Conversely, requiring consistency of our n41 equa-
tions we get condition on change of (n—2)-vectors under the action
of curvature matrices. If turns that this condition involves only
(n—2)-vectors which are referred to the considered n-simplex g":

Y (R'l0®)—1) T(o'|0*) =0(w?) (n=3),

a i ..:i|'-:|:I'I||,'F‘I' __{]}
ik

Z(R(a'ﬂq")vm%*j Rc®|a*) —V(d?|la*)) =0(w®) (n=4). (14)

{ ﬁg| d Faf oty —_I:}].
4L

In particular, it may be the case that only one [n—_?)-vector Is
referred to the given n-simplex. Then the condition (13) follows for
the (n—2)-vector (up to O(w*) terms). However, there are always
the simplexes o" with m=m(o")>1 (n—2)-vectors refgrred {o
them. In this case the additional conditions (13) are required, but
due to (14) these should be imposed on only m—1 {rz—?]-vgctnrs.
[f. on the other hand, less than m—1 polyvectors are subject to
these conditions, all the remaining (n—2)-vectors are, generglly
speaking, changed by their curvature matrices irﬂ1 genf_?ra! solution,
as it is demonstrated for three dimensions in the following examph’:.

Namely, consider the periodic Regge lattice ir_att_'nduc_ed b}: Rocék
and Williams [9]. The periodic cell is a cube divided into 6 tetra-
hedra whose edges are cube edges, lace diagn_nala anq common
body diagonal. To each vertex 7 links can be assx_gned which can bL
labeled by unordered combinations of numbers i (three edges), iR
(three face diagonals), 123 (body diagonal), Further, there are 12
2-simplexes (triangles) labeled by ordered pairs of numbers and ol
symbol d: {ik|, |id}, |di}. These pairs label 2-simplexes Whoae_verh—
ces are the original centre and it’s successive translaui:_uns in the
two directions: along the edges i, k, or along the e‘gde i gnd face
diagonal d in the plane of two another edges, or in _the 1m-'err5t:d
consequence. Correspondingly, there are 12 cnnnectmj matrices
Q,=Q(c% and 7 curvature matrices Ry =R(c') per point expres-
sible through the former, e. g., in the form

Ri=0Q12(T3Qa1) (Toa Qur) (T2 Qa1) Q13 Q14

Ro=Q3(T1 Qi2) (T31 Qo) (T3 Qa2) Qa1 Qag,

Rs= Qa1 (T2 Ra3) (T12 Q) (T1 Q1) Q32 Qe

Ros = Q32 (T1 @14) Qa3 Qi | (15)
R31=Q13(T2 Qog) Q31 Lz,

Riz= Qs (Ts Qsa) Q12 Qa3

Ri2a= Q43 Qog Qa1 34 Lag R4,



where T, is the translation along the link ¢' to the neighbouring
vertex. The entry (15) implies a definite orientation of 2-simplexes
and, besides, a definite choice of tetrahedra to which link vectors
are referred. In particular, vectors [, and 193 are referred to the
same tetrahedron while others are to different ones. The equations
of motion for, e. g., the triangle {23} take the form

UR—Rop 1o WR—Rs 7 o URn—Rny . (16)

COS (2 COS 3 COS P23

In the linear in w=Q—1 approximation and for uniform system
(which admits the solution w=0) we get in terms of deficits the
nonzero one-pasametric general solution. Let [, Li=28u, lpa=10+1
lisa=0L+1,+0;. Then all the deficits vanish except for

q;-g,-;:—qu\/S 2 =A%, A is an arbitrary parameter, the curvatures
being R =Rl = Riys =08 +1e**nss. All ¢’s vanish if condition
(Rizz— 1) li93=0 is imposed. Besides that, since [, {23 are referred
to the same coordinale system, these are consistent with Regge lat-
tice only if the following condition is [ullilled:

(liaa—11)2=T13. (17)

Consider briefly the four-dimensional case. The 4-cube is devided
into 24 4-tetrahedra [9]. To each vertex we can assign the 15 links,
namely: 4 edges i, 6 face diagonals ik, 4 body diagonals ikl, hyper-
body diagonal 1234 labeled by unordered combinations. These links
form 50 2-simplexes and also 60 3-simplexes [ikl}, {dkl}, {idl}, |ikd)
per point (notations are analogous to those for three dimensions).
Evidently, 15 links can be distributed among the 24 4-simplexes in
such a way that no more than one link vector is referred to each
4-simplex. Then the conditions like (17) are not required and the
vector variables {“(c'|o*) take on their values loosely.

Then, on the other hand, each bivector V**(¢®) contains the mat-
rices € needed to transiorm the pair ol generating vectors to the
same 4-simplex. The paths connecting any two 4-simplexes in the
given 4-cube can be chosen within the hypercube intersecting only
internal 36 3-simplexes {...d...}. Correspondingly, it is sufficient to
know only Q , (I) to define V. These matrices absorb an informati-
on on the curvatures R, in the 14 internal 2-simplexes formed by
link A and by hyperbody diagonal 1234, and are the solution to
equations
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Ry _4.) hass=l123 } (18a)

(MR 4 )ibap— (MR 4 )2 ly)* =Ty lj. (18b)

The equations (18a) are simply the conditions for the link vectors
to be unambiguously defined within the 4-simplexes. One can say
that (18a) express the possibility of «glueing» together the 4-sim-
plexes into the 4-cube with internal curvatures. Then eqs (18b)
express the possibility of «glueing» together (with the help of «in-
ternal» connections ;) the different 4-cubes: the original one and-
that obtained by translation T,.

Thus, an information on internal curvatures is already partially
absorbed into the definition of bivectors.

The Regge lattice solution of equations of motion should lead to
vanishing of the 50 matrices RVR— V. Taking into account 24 con-
ditions of the type (14) following from the equations of motion it is
sufficient to equate to zero only 26 of these matrices. The hypothesis
is that these 26 conditions are both necessary and sufficient to get
Regge lattice deficits in our theory, as it takes place in three dimen-
sions. This assertion is presently under investigation. The immediate
following step is to pass to the continuum time and construct the
Hamiltonian formalism.
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