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Abatract

We present a simple and effective method of Monte-Carlo
simulation of fermions in gquentum mechanice, tesed on Parisi-
Klauder algorithm for complex action. As an illustration of
the method properties we consider a gas of fermions in the om-
cillator potential and simple model of glﬁha clustering of nu-
cleons in nuclei. '
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INTRODUCTION, Path integral Monte-Carlo (MC) simulation is =
good way to study any quantum system sterting directly with
first principles. In lattice field theories it results in =
great activity (for & recent review, see, e.g. [1 ]). However,
. 1te applicailons to quantum mechenical prablems'[é] are not so
extensive, although the method looke fruitful if aspplied to ma-
nybody systems like nuclei, neutron and querk matter, etc. The
problem is that well elaborsted ways of seimulation based on
the original F!jnman path integrel [3] ignore quantum statis-
~tice of particles, while interesting physical systems consist
of identical bosons or fermione.

Recently [4] & aystem of identieal bosons has been simulat-
ed using explicit symmetrigation of the integrand in the corres-
.popﬁing path integral with respect to permutations of particles,
Positivity of the symmetrized integrand sllows to simulate a
uyatem of bossoms ueing standerd MC algorithme (like Metropolis
or ﬁaut bath mathud)..Hﬂﬂever, for a system of identical fer-
minnﬂ the integrand should be antisymme trized [? 4] and is not
positively defined. Tts "probabilistic" interpretation is inve-
1id, and standard MC algorithms fail in fermion case.

In this letter a first successful attempt to simulate fer-
miﬁn seystems starting directly with first princi~"es is present-
ed. It based on the Parisi-Klauder aigorithm for path integre-
tion with complex action {5] . Although the reliability of the
mlgorithm is not well understoud_[ﬁ] y in our case it workse

well,

TWO IDENTICAL PARTICLES, The Feymman path integral for one-par-
ticle amplitude of trensition from point X, to x, during
time interval t is [3] :

Uexi, xg:t) = <xpl exp {=i Ht} (x> = (1)
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where m is the mase of particle and V(x) is the potential. 'ﬂu'-
merical simulation requires Wick rotation from "Minkowsky" to
- "Eucleadian” time t —iT, Slicing the time interval into. N

steps: A't_': T /N we turn the path integral into finite order
one .
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ahere U(Ik 5 Kk+1. AT) is a transition amplitude for small
time interval SX =
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(C is here normalization fector). For two distinguishable vnr=-
ticlea the transition amplitude is
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is the usual action for two particles. If they are identical

the amplitude should be (anti) symmetrized:
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with a factor "E = +/= 1 for bosons and fermione, respectives
ly. Exponentlation of eq.{&) gives
(id) Cid)
U = exp |- Sgg;
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#here Si%g] is the "effective mction" for a pair of identicaml

particles. Permutations of particles in initial or finel state
leave the boson action unchasnged, but in the fermion case the
ection is shifted by LR S:} it ?;: + i,

Following Pariei and Klauder [5] y in our simulstione of
path integral we use langevin equation:

i (id}
d = e ?—-—E&S + gx K (}l) (9}
da X, '
fld}
dg. + £,
d '?H‘ /
K= 1,...,N

where A is a fictitious "langevin time™, coordinete va-

riables x,, ¥y Aare now complex-valued, while §! k (A) 1is =
real gaussian random noise, normalized by conﬂltion.

CEio ) £ 0 () D= 2.56-006, .5, "

If one sterts with & real wvalued path, one never leaves the re-~
al axis (for resl xk; ¥y the right hand sides of eqs.(9) are
real). Moreover, one never passes through the pole at resl
axis, arising when indentical fermions are met., To svoid this
problem we shift polees into the cumplex plane replacing T 2=
in eq.(8) by N =-1 +iE » where & ~0,01-0.1 is » emsll
number (in fact, the path encemble is practicelly independent
of &)

Integrﬂtinn of Langevin equations gives for any Lengevin
time the pathsé x, (1), y, ( A ), k=1,,..,N, To find mean vslue
of physical ubaervahlas one should make an analytic continues-

tion of the corresponding operator and average it over the path
engemble:

A

0> = f Xdz 0(x(V), n&lfh)
0

(11)

Although the coordinates are complex » the sverage of any ob-
servable should be real (in our calculations its imaginary
part does not exceed several per cent of the real one),

The algorithm we use for-integration of langevin equation
is specific, because of the pole in r.h.s, Updating one of the
coordinates, say X, we find some "intermediate" point e ¢

{d}
rfg = H(dd} - ﬂl' E)S(K r E)&;{ (12)

Hﬂj n " J ..
where X, 18 an "old" point, and § is the action for two

distinguishable particles defined by eq.(5), and é . 18 Qlire
rent value of rendom gemuss noise. Then we calculate the "new"

point, using the same value of E and final difference esti-
mation of the derivative

g et eld) {Ld)
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Thus the derivative ??Sﬁa in r.h.s. of eq.(9) taken at

some point 1s replaced by its value averaged over the interval
{xk{“d}, X, ), which makes the integration procedure more accu-
rate and atable. To stabilize it more for larger steps in A
we cut also the derlvative near the pole, replacing
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Let ue present resulte of our simuletions for two particles
of mass m=1 moving in oscillstor potential V(x,y) = (X2 _+ ¥2 )

With periodical boundary conditions

: : l}; = Hl . (Y57
our quantum system propagating during the interval of eucledian
time T is equivalent to a statistical syetem with a tempe-
reture T = 1/T [2] . Our numerical resulte for averdge energy
of particlee E(T) plotted in fig.1 are in a gcod egreement with
analytical solution '

X, = X;

E(T) P +_-——2—-—- ™ T T (16)
eif’l"__i E’J"T_’_l

Tj'pir.:ul Ertép in Langevin time in theee runs is order of AA =
= 0,01-0.05, the number of steps in eucleadian time W=10.

me. In this case the transition amplitude

U x‘»:"wxh} x::a-'l:-"! xl::l ;AT ) has too meny (<o 0
terms corresponding to all permutetions of final or initial par-
ticle coordinates, and direct account for all of them is hope-
less. Fortunately, for small AT some sdditional emall pa-
remeter arises, and the number of relevent terms reduces sub-
stantially. Indeed, let us rewrite two perticle amplitude (6)
in the form

Vo e SR LY 5 ) -

= UL . exp{- §Sept}
(17)

§See = — bn (1 +pexp{- Cx¥elesien) , 1)

It is close to the amplitude i

for two distinpguishable par-
ticles, unless initial and/or final separstions of particles

are small

P
| ¥k ~Yu | ~ | Xeeq = Yueedd ~ 4 (18)

In other words, the momentum of particle locelized in time' in-
terval &% ie p oo 1;’(417)”2 » &and Pauli "forces" act
while the separation of particlee Ax £1/p o (a'tf"”'. Obvie
cusly, the probebility “,]' to have j perticles being
close enough to feel their identity has a smallness

Ve . j—-2 {(19)
(AT) J
“’:[' e ( _.._L‘__._._._.) Wa

where 1T ie the typical scale parsmeter of the problem, Tsk-
ing AT omall enough we can make the contribution of three
and higher order particle correlation be negligible., In this
approximation corresponding Lengevin equetions take & form

¢ (d) &e')
dis it S Z 28S
3 e —E{-?xi + gt,E(:’t)

dA ? x§ : (20)
e+
£ = 1 . n
oWy ey

and the number of arithmetical operations is proportional to
n only, ag if we conslder just two perticle interaction.

To understand the accurscy of this epproximation we simi-
late a few fermions of mees m= 1 moving in common oscillator
potential V(x) = IE;’E, Fesulta sre shown in fig.2, where ener-
gy of fermion system is plotted ms a function of particle num-
ber n, The interval of mu;leadinn time is here T =4, and

periodical boundary conditions Ifr = x,f : A S are

7




iwsed. It is seen, thui the larger is the number of particles

1n , theamaller AT is needed in order to reproduce the true
result. The reason is obvious: for n-th level of the oscilla-
tor a size parmameter of the problem (the period of wave func-
tion oscillation) decrease as n~ 72  and (see eq.(19)) the
role of omitted multiparticle Pauli interactions becomes more
important. Weverthelese the algorithm is fast enougﬁ: to cal-
cuiate a system of 10 fermions takes only 10 CPU minutes of
processor with speed 2 MP lops per second!

A SIMPLE MODEL OF ALPHA CLUSTERING IN NUCTET, ‘nother intere=
8iing application ia the alpha clusterinz of nucleons in nuclei
[7] . We study here some oversimplified model of the phenomenon.
Let us consider two pairs of identical fermions, = pair of

"protons" and a pair of "neutrons", mutually interacting with
a potential

2

Vixi,xp) = XX (21)
2

independent of kinds of particles. However, idﬁntical particl-
es in contrast to nonidentical ones suffer mdditional repul-
sion because of Pauli principle. As & result, they are gather-
ed into two pairs, an anmlog of alpha clusters. Our results
are shown in fig.3, where we present correlation of interpar-
ticle distances, defined in the following way. Taking one of

the particles, we find the distance to the nesreast partner of
the opposite kind:

Ry = min | Re X, - Re le (22)

Then we measure the distence HE between two remaining particl-
ee and the distance R3 between first particle and another par-
ticle of the same kind. It is clearly seen, that we indeed ob-

serve two clusters of the size order of R1 s = 0.7 separated
by the distance order ijx 1.5 T

CONCIUSIONS. e have found the method to be very convenient
and not time consuming., Simplest applications presented here
aggumes only an illustrative goal. Extention to the three di-
mensionad case and spin degrees of freedom is straigforward
and we hope to give it in further publicetion,

"e are very grateful to E.V,Shurysk, V.V .Masepue and
V.G.Zelevineky for useful discussions.
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PIGURE 3

Fig.1.

Pig.2.

Flg.3.

T™wo fermion energy versus temperature T, Foints are
the result of cur si-mletione, the curve showe the
exact analytical result, given by eq.(16).

n-fermion energy versus n. Pointe are obtained by nu-
merical simuletion and curve shows the exact analyti-
eal solution.

Probability distribution of interperticle distances
(see text): a) correlation of intracluster distances,
b) correlation of intrae- and intercluster distances.
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