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1« Projects for linear electron and positron colliders are
QUANTUM RADIATION THEORY IN INHOMOGENEOUS EXTERNAL FIELDS being actively developed /1-4/. What is of importance here is the
radiation from beam-beam collision (the so-called "beam-strahlung').
V.N.Baier, V.M.Katkov and V.M.Strakhovenko If at a particle energy of about 100 GeV, classical electrodyna-
mics is still applicable, then for the so-called supercolliders
Institute of Nuclear Physics, Novosibirsk, 630090, USSR ) (€ 2, 1 TeV), quantum effects during the radiation are very sig-
nificant. For relativistic particles in an external field {(includ-

Abstract 4 ing the inhomogeneous one, which is required to treat the problem),
Some geneéral expressions for radiation intensity (probabili- the quantum radiation theory has been developed by two authors of
ty) in an inhomogeneous field, including the expansion in field Refs./5/ to /7/. In recent years, relevant theoretical analyses
gradients and end effects, have been derived on the basis of the have been made of the radiation from beam-beam collisions /8=18/
quasi-classical operator aspproach. The results obtained are ap- and of the radiation or pair-creation of high-energy particles
plied to the discussion on radiation from beam-beam collision in or photons in aligned single crystals /19-21/. The present paper
linear colliders. deals with a geﬁer&l theoretical analysis of radiation in an in-

homqgeneous field, and the results are applied to the radiation
problem in linear colliders.

The picture of particle radiation in an externmal field de=-
pends on the parameter (?"f'-'-'ﬂ =4) .
7 wﬂ"‘ B/ 2
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pv
where ,Dg (.EJ P= Eff-) is the four-momentum of a particle, F is
the external electromagnetic field, ‘ﬂ/ - S/Ph , and W’ is the

acceleration. Introducing E; :_E -f{fg} , We have X:XIFI/HG

s =
, where [ = EJ_~+ (u’}(H) , E and H are elec=
tric and magnetic f':':;].ds in the lab. syatem, and Hd = 4.41110130e .
1 For X 2 1, the radiation is essentially quantum. The fast

growth of _f in supercolliders is due both to the growth of the

energy itself and, to a greater extent, to the increase in field
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intensity of the colliding beam. The latter is associated with =
considerable decrease in the beam dimensions and with an increa~
se in its density, which are necessary in order to reach an ac-
ceptable luminosity.

The quasi-classical radiastion theory, developed in Refs./5/
to /7/, describes the radiation of particles with any spin and is
suitable for an arbitrary external field. In this theory, the ra-
diation probabi.ity is of the rorm

. ol %K 2
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(2)
M = (ot R(¥)exp (-cxx(t)),

where K = ez = 1/137, K’:(E/c:f’)f{ ’ K(&JFE] A
the four-momentum of a photon, £'=& - ) , x (¥/= (f‘;,r‘(-t‘)) =
is the time, and l:(f} is the coordinate on the classi;;l par-
ticle trajectory. For a spinor particle we have, with relativis-

tic accuracy,

R =7 ( Sai6B)%

4 £ (3)
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where the velocity 1}’::Lf(¥) is taken on the particle trajectory,
FP;;(&) are two-component spinors describing the electron pola-
rization, € is the photon polarization vector, and M =E /u;” .

In Refy5/, the theory has been used to describe the radia-

tion in & constant field,whil-st in Ref./6&/ it has been applied

to the radiation problem in a Coulomb (i.e. considerably inhomoge-
neous) field. Then, in terms of this theory, the radiation has been
considered during the quasi-periodic motion. In Ref./22/ the prob-
lem has been solved in dipole- spproximation, whilst in Ref./23/
the general problem, which includes in particular the radiation in
the field of a plane wave /24/, has been solved. The type of field
inhomogeneity has considerable influence on the characteristics »f
the radiation, including spectral, angular, and polarization pro-
perties. Recently, the quasi-classical theory of radiation and
pair creation has served as the foundation for the creation of a
specific crystal electrodynamics /19-21/. It has turned out that
the action mechanism of these processes depends on the external
parameter, the angle of incidence HSE with respect to the axes
or the planes of a crystal. At very small angles of Incidence, the
conatant-field approximation mey be applied, whilst at relatively
large angles the derived generel expressions reduce to formulae
of the theory of coherent radiation and pair-crestion.

T™he quesi-classical nature of particle motion in colliders

is very reliably provided. For exemple, for round beams the es-

timation of the transverse-motion phase yields.

@R o

' 1+ D (4)
where /¥  is the number of particles in. the beam, ) By
disruption parameter characterizing a change in the beam shape,

and ?E {TE%} ig the transverse (longitudinal)} beam size
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with the required number of the expansion terms. The besic terms .

of this expansion, which incorporates the particle accaleration
where o = "{/m is the classical electron radius. i ; 5 % ;

give the constant-field limit, and the remaining terms are the

ti to thi imation. Wh al ti th -
2. Expressions (2) and (3) may be represented in & form that corrections to this approx on en calculating the correc

2 tiona, we also have to expand the exponential factor that con-
is convenient for the calculations, where all cancellations of . - -

; tains terms with the derivatives of acceleration. The above pro-
the dominant terms have already been made. For unpolarized initi-

‘ edure has been used in Ref./19 gsee formula (6 to obtain the
al particles, the spectral density of the radiation probability, 5 : / ";L— ?]

expression for the speciral intensity of radiation, which incorpo-
summed over the polarization of the final particles and integrated s . g ; "

teg the field inhomogeneity alo the particle formation
over the angles of photon emission, is of the form | see formulae & e " " g ¥ ng P

(2.3), (2.4), and (4.2) in Ref./23/ *-)]
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where fa e =5 = C/» . 1t is evident that expression (6) does

not change after the substitution!({);fﬁ)“_‘-f;,Where J;; is #%K%’/_a (/l) 34 /5 (4'}{-‘2@ [/x) . (A . {73

the time-independent vector. Putting inte formmla (6) the wveloci-
ty of a2 particle moving, generally speaking, in an arbitrary ex- 4 7_/%) )Kzé (A))_/

ternal field, and calculating the corresponding gquadratures, we

find the desired probability of the process. where '\;‘ is a 4ifference between the velocities of the partic~

—

If the field varies slightly along the length of the photon le and the opposite bean,
formation, the vector A {I‘y can be expanded in powers of ‘fﬁf .

*) In these formulae an expresaion is aslso given for the probabili- ™ It is worth mentioning that as far back as 1981 (see Ref./23/),
ty with the polarization characteristics of radiation taken intc similer corrections were calculated for the case of harmonic

il
account. trangverse motion. <




A= 2mw/(5ee'lbl) , b =eF /

and ¢ y &re the MacDonald functions., The first two terms
in formula (7) present the magnetic bremsstrahlung limit dfaﬁm.
Teaking advantage of the asymptotica of Kv functions, we obtain
the following estimate of the relative contribution from the cor-

>

rection terms to formula (7):

2 2
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(8)
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where ‘fa = b’x-_-, H )\'C_z %n is the Compton wavelength of the
electron. Here f::: is the length ﬁf the formation of a photon in
a constant external field (see, for example, Ref./25/) and épﬂ

is the characteristic length of the bremsstrahlung. The estima-
tion (8) has a simple physical meaning if it is borme in mind

that formula (7) was derived assuming that the field veries slight-
1y along the photon formation time. Estimation of the relative con-
tribution of the terms with transverse inhomogeneity in formulae
(7) gives '

6y 526_‘;_4 A o 2] .

n

where we have made use of formulae (4) and (5). If the disruption
parameter 9 is small (a@ <« i) » the transverse inhomoge-
neity of the field can be neglected. If the inhomogeneity should

be taken into account, we have also to average over all the direc-

8

tions of W{: » With a proper particle distribution function
with regpect to Y -

Corrections t-a the constant-field limit that contain field
gradients have been studied with respect to the problem of radis-
tion of ultrarelativistic particles in crystals /19,20/., The si-
tuation considered there corresponds, in the terms used here, to
the case @ 55‘1’. In crystals, these corrections determine a
behaviour of the orientation dependence curve, but their region
of applicability appears to be narrow enough, owing to a rapid in-
crease of the radiation formation length in a region of decreas-
ing field. Results obtained in Refs./19/ and /20/ are very in-
structive for the beamstrahlung problem.

For a total radiation intensity integrated over all the fre-
quencies, at x f{i there appears an extra factor. f in
the right-hand side of formula (8). This is connected with the
fact that in the classical region ('fﬂ"( | ) the radiation inten-
sity in an arbitrary external field has a local form [I =
=(gg)deXi?,mich is the seme as that of L, (intensity in
nagnetic bremsstirahlung limit) in formula (7). For this reason,
the correction terms meke en insignificant contribution to the to-
tal radiation intensity at X@f’i » and this may be ignored.
Bearing in nind that T_ o< X3  tor R VL 5 see
from formula (8) that the absolute value of the corrections in
formula (7) is largest at local Xff) -vl » Note that for for-
mula (7) to be aplicable, ‘the condition ﬁ, < 5'1, should be
satisfied. Zn the opposite case, 6';: _f' ti , the constent—fi=

eld approxization may be used only under the condition

} j({)»(ﬂé!)ég_,j, and to calculate the corrections we ought to

return to formula (6).




3« The boundary (end) effects of photon emission
(assuming that the length of field inhomogeneity S at this boun—
dary is considerably smaller than the characteristic bremsstrsah-
lung length Z,, ) are calculated in Appendix A. In this case
(<< x )\'-c_) X

of the form [ see formulae (A.17) and (A.1E)J

the spectral distribution of the energy losses is

L d & { d & L A
g dax &g Ce dn 3 = v
where
1 Al _ m'[ ‘{l;ié 10)
= de fr:e;mﬂ )

— D
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(11)
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6, =264/, =24 e-x)g,

t
) = §wct)dt!

") = £ e F)

C= 0,577 216 ..

The intensity o Lo is determined by the first two terms in

‘ formula (7), describing the constant field limit,

R(¢x) = [ :P({- + ) 'f(é- %_)_]i’h {éfffflt/é)_

; : .
-5H#-T4) - 'a:é} i{?{{ﬂf%}]_?@_%zjjj

K. (€,2)= Wﬁ*z“//)sjrb[a(ﬁty)_ g_}'ﬂﬁy

Ro(¢,7) = &*;Zc’é)rzsrh[@g/x‘)?%gfmja

If we maeke allowance for the fact that the main contribution to
the integral (11) comes from the region %’(6/'::1{ s and that

hers

i ¢ +t,
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where o and 4 are defined Irem the relations

yuéén) if“f ) tﬁ?(%d-+1ig) {l"f 2 (14)

we obtain, with logarithmic accuracy, the following expression
for the probability of end-photon emission:

oL A @) Cis
aw, = = Zl{+ = - (15)

g W fé 3
The'prﬂbahilitf (15) can be readily derived if we take into ac-
count that the angular distribution of collinear phntons*} at

large zf?’)b i}/Bf is as follows (see, for example, Ref./T7/):

2
ol 12 o ol AP
PGSR o

s A
It is worth noting that the upper boundary of .H&l to which for-

mala (6) can be applied is established from a relation between

the time of collinear photon formation inside the region occupied

by the field, and its emission angle (see, for example, Ref./T/):

.é-b = : @(X%ﬁf/z é? (17)

(g2 P0 :

Using formulae (14) and (15), the contribution of collinear pho-
tons to the energy losses can be estimated for any particular po-

tential of the field. S0, for example, for the case of a step-like

conatant field, we have fé = é - éJ (U/x)ys, and in the

The direction of the photon emission coincides, on the average,
with that of the initial or final velocity. In quentum electro-
dynamica, the emission from the ends of the lines of fast char-
ged particles is well known. It is described, with logarithmic
&cg%g?cy, in a quasi-real electron approximation (see Ref./26/,
pl‘ [ ]

I2

case of an exponential field reduction such as €XpP ("f'él}/ﬁ') ’
we obtain fb " - T |

Despite the seeming awkwardness of formulae (11) and (12),
which describe the radiation of collinear photons with power ac=-
curacy, the calculations using these formulae are fairly simple.
This is because the characteristic scale of the inhomogeneity re-
ally enters only into rﬂ (fgl, whilst the remaining.terma are Scg=-
le-invariant and depend only on the asymptotic form of the poten-
tial at its boundary. Appendix B illustrates the calculation ac-
cording to formulae (11) ard (12) with the field intensity of the
o P = Fo (%),020.

Por this case, the contribution of the initial collinear

photon is as follows:

A& . ol ( _ R e
dw *f{[é’@h”ﬁi”w)ﬂ* a s

Zne3

£ 2e’
+h&g~_ - (hi-!)(‘gm f-C)—éa (2n+3) -

~2(nt2) €& (n+1) — 3]]6_/_;_ ;;;7 i Es‘ (18)

where

L] = G z 2
9:5@ .(z . Fi)__ R E" (19)
“ 5 7| z2n+3,_ ,g: R i) 2 s

and
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E=£+2} ﬂhz(?H*SL%;+;f and

If the potential is symmetric, the same contribution will come
from the final collinear photon, and the result obtalned should
be multiplied by a factor of 2, There is no difficulty in cslcu-
lating the contribution to the total energy losses; to do this,
it suffices to take the integrals :

e

! 2, 4 & B
£ ( alia BV C e ==¢€
] &

For N =0 | we get for the contribution of the initial photon

(SD¢~::C?) 3

2/
1/ RN (aix s, fa.e-2c -

s P oL o £
"563“5"2*36";; Z&}. (20)

For total energy losses, in the symmetric case we have the fol-

lowing contribution of collinear photons (P==7C))

f'b: 95* (g" J( 2{04) (21)

£

The rzdiation speztrum (20) and energy losses (21) are just the
same a3 those in Ref./9/, the authors of which kave used formulae
(6) for this case ( losses in a step=-like field). This result

was first obtained in Ref./16/, with logarithmic accuracy.

14
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Por a field decreasing at infinity as Fe
we have correspondingly (see Appendix C)*)

s f{ EEIZ f ; _£ (L
—-jr.{EEFPEE1L/) ég'CFL b éﬁﬂﬁh 12) ﬂigﬂﬁ._ESZEIA fzﬂég o

-gﬂxﬁ-@-u(& 2¢! c) (n-2)E, (26-3) + la(i- #J/”j

(22)

where

& - Sd? i ‘—z) B e v
2n-2 (fn- ,_:') 7+ C’,/e Vi .

and
22149 Cp =(@n-3Yfr-0)> s ) = Zé’/(zh—s) .

For an exponentially decreasing field of the form

F:ex -}f{;ﬂj the contribution of collinear photons to the ra-
p(; P
diation spectrum is as follows:

- d & +2
de,  dei do | gdec Xl 2t e
Aw dw dw dw =Y *p

- 69) Qs (23)

- In this Appendix the limiting transition nh - 2 1is considered
as well.

I5
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Note that the result (23) can be obtained by means of the limit-

ing transition

V. = 00O

the subatitution

same may be applied to formula (18),

when [ = E;EXP(-EZ,'G. )

Zz

=-1.137..

from the preceding formula (22) after

Beds we

‘f?m (ﬁ) s é?nz)

- - =
Lastly, let us consider an important case for colliders,

céﬁp(réaa/zz) Teking into account

that S(¢)=~1

and that for such f&
"2

mined by the expression F =~ F €xpo ( 2(€nuo) ‘6/6') within

the terms -~ {/@%qu:‘t

we put 6 = 5}/(2(6‘“‘] ).

(11), through integration by

result:

{( ‘7 @, 2¢ fﬁ@uj)

A& o

—

dw T
where
& =

X6
32

&

=

at f}ET

the asyﬂptotlc form of the field is deter-

+ Then,

Lim

"—3 oo
but in this case <exe =

V&aa/gg_

K= &

» ey + The

, Where Qu™ ( E/)

igs possible to use formula (23) if

T"he direct calculation by formule

the Laplace method, yields the same

I

£z
4

16

X,

z'zm) J?

gitﬁh

£

fo

Ae

¥

3

(24)

. (25)

Having integrated over &« , in (24) we obtain for the contri-
bhution of collinear photons to the energy losses in beam-beam
collisions,

c G £ oF |G a Z
Ch e By o T
= ok T “'2.039‘#'0(,3&) (26

This equation may be obtained also from energy logses in the ex-
ponentially decreasing field

Oy < Gebstfo s

& 3% ;

it 033]
’ (27)
the

ugsing subatitution mentioned ‘above. If for our estimation we take
the perameters of a supercollider ( O:z = 4x10° - cm, & = 5 TeV,
and Xu: ‘_{M: 5:{103}, we get Eﬁisuper% e 6x1{}_3.
Thia result is about half of that obtained in Ref./16/ on the ba-
gis of a logarithmic approximation in the step-like field model.
It is necegsary also to mention that in Ref./15/ when calculating
the corrections to the constant-field limit, formula (7) has been
used for the above parameters of the supercollider when 5},<E {2- .
As is shown in the foregoing text, formula (7) becomes inapplicab-
1e under the condition indicated: its use in Ref./15/ has given
rige to a considerable overestimation of the contribution from
the correction terms (by a factor of & for these parameters).

7a have considered radiation of the particle in the field
of sn incident bunch. Besides this process, the particle radiates
when scettering on some particles from the opposite bunch. Its
contribution %o energy loases iz essentially smaller. This brem-
satrahlung precess is suppressed especially in the strong field

af the bunch ,lfg?,‘fi
17




Let us apply the results to the known collider projects.
Maximum values of the J( parameter a.rex 2 0.5=1.2 in the

is f;é}z

. Then the energy losses are completely described by

energy range & = 0.5-1 TeV, and the ratio é’/ﬂ-z
- 10"110"2
Eg. (7), and the estimation (8) shows that the relative contri-
bution of the correction terms, including also end effects (com-
pared with the constant field approximation contribution), is of
the order of < 10'4. Let us stress that even for f o Bal,
one has to use quantum formulae for [, (the difference bet-
ween quantum and classical energy loss calculations is of the
order of 50% (at f = 0.1). For a supercollider with parame-
ters & = 5 TeV, J(h“= 5 103, and 'é/&z = 10, the gra-
dient correction terms in Zq. (7) are invalid in the region of

their main contribution. In this situation, the main corrections

to the energy losses calculated in the constant field approximation

are due to collinear photon radiation. Their relative contribu-
tion is 2 5% of the constant-field losses, the latter be-

ing = 13% of the initial epmergy in this case,

B

APPENDIX A

DIRIVATION OF EQUATION (18)

In this Appendix we present the general analysis of end-
effects in radiation for the case when the region O , where
the fleld is inhomogeneoua, is much shorter than the bremsstrah-
lung formation length {; (or, more exactly, 6 < é’w )}« The
radiation of the initial electron is taken as an example, i.e.
the radigtion upon incidence of the particle into the region

with the field, Tet us choose the times 7__1' and er guch that

VL)<l Mr)nd | 73 e

Aet)
whare + p o
il / 2

vl)= (eE (f-‘)"’*) wiel-we], TG, |Vt

The first equation in (A.1) means that at 'Lé < 7} g momentum
transfer from the field is much smaller than the particle's mass,
and for such a time it may be neglected [ ‘-{"(7‘_‘" fq';) ’_‘-_"97_

The second equation may be fulfilled owing to the existence of
a constant-field limit inside fhe region with the field, which

ig connecied with g large wvalue of the phase E_;‘(f} «» In the re-

zion where }I_('t‘} > I

formilae, so what is of great intereat for us is the region

£ < ', . The third equation in (4.1) is velid when &~< fi} ¥

» one can use magnetic bremsstrahlung

“e will divide the range of integration in Z2q.(6) into three
rarts, in accordance with Zq.{A.1), after the substitution

F

f_}{._t‘/e ({-z:fjfj=‘é—f ) « In the first range

I9




‘é_{} t‘g S"T:{'; in the second cne, _é_i

£!
and in the third, T.{_ ‘*5,: '&1*{'3 & rl-la « In the firs

TENgE,
the influence of the field on the particle motion may be neglect-

oy Ty & €S &1

ed., Then the intﬂgratﬂ‘on over - a,nd 'C‘ becomes elementary,

e - At —¢ = d'
fgu.'l -r-*«\‘.- -

gd‘é ..---.___{_08 = dx 3‘ CLf 69 (A.3)

— D _é__

and the radiation spectrum in this range has the form \4

/
o £
df“-} i - ——— d/aj' &
G & . (A.4)

The main contribution to the second range comes from f , for

which H"L/fj >> ,f , S0 the terms in Eq.(6) that contain no \V

can be neglected. According to (i.1), ome can put W(_/f < r!';)_ O.

After neglecting these terms, we obtain for the energy lossesa in

the second domain

2)‘ o(u)ofu.} s
de"Z dé _sm -—+¢—r¥/ ‘?/’/ wz(ﬂ
4 E f-
>l a5
1
where £
i
S w(t'dt’
'L'E now nresent the integral over €  in 2g.(A.5) in the form d
" fJ:-
svﬁ*[ e §w£ )= 5&[ %
L

The f;.rs:t of these mtegrals cen be expressed by the liacDonald

function

20

S ET:S"” (-((—E > 9,-_.52/{/ 27()__23}1 %‘N_K- (2‘,’5//

(4.T)

The main contribution to the integral over 'é is given by a
region 2;"((!‘{)""' .’f (under the assumptions used), so the argu-

ment of the KG(?} function in Eq.{ﬁ.?}‘ is small, and
3 Pr e : (4.8)
f{.(z;‘ = G = e c,= «4 y

where C =0,5772164.« i3 the Zuler constant. In the second in-
tegral in (A.6), one can neglect terms that are linear over T
in the argument of 'sin' owing to the ineguelities T ﬂ:’f*ﬂ <
(7;-—1;«& As a result, we obtain for the energy losses

), .. (2) (2]
A& = A&+ rol €55

b
where
g (2) qwdw /g 2
£ 1= ( dw{ﬁgﬁ;}-ﬁ% -26
,rT-E (4.9)
e X
@ffi“f ; ) dt\ S t)sin[5) -
df_a— -ﬁxg et Tl ks Viw fgu_; Prags. 10)
:—g o

21




Integration over ; o in the integral (A.2) can be extended to
infinity, —O9Q ("é'f ©O |, owing to the inequalities W {‘7}_){&'_‘[
and &'(‘1{ >’?é) »i « Using t?‘(t‘) as a new variable in

" 2q.(A.9), and teking into account that

=i (A.11)

O
S
&y
]
b +
Ly
$O
.fY
1)

Bd¢‘5‘“ \‘f‘(g*'-[_’(é'—) C) (4.12)

£ jtpz({/s:/{’
)= &8
%(a)) (g we)dt')” (1.1)

We will add G\’EE 2) Chq.{a.m)] to the energy losses in the third

range (‘7" { .é b 'T ) , where the region {{/,}‘} 1 is
dominant also, and where, because 7;-—7; < éid , the

term T/gu} may also be neglected. As a result, we obtain

niier
i “.,.d (3)_ :f:‘d(% +E—)SJ&J %T{(f[f) -
-“l"({ L})smlﬁf} H(t- tj'_é (@[H _Eﬁﬁ zyj

(A.14)

22

=

= V) sin [ 5] - _’*‘-— X

"E‘

The integrand in (A.74) vanishes at T >‘é —— 71 owing to th;:
compensation of the terms in the curly brackets (({/ @-
%‘({*L}ﬂaat c }'é 77 ) ,» 30 the integral over "C— in
(A.14) can be extended %o 1nfin1ty. After this, the lower limit
of integration over f can be extended:"r}_ - —— OO .

We now calculate the difference between the energy losses
(3)

(A.14) end the asymptotic expression AE calculated in the

congtant-field 1imit:

(3) afuﬂcfuj G{g- .
Bl 97> &“ )5”{% T o Wzﬁ'%)r

(4.15)

X sih[\.&'/g(f—%)"c?’/({z Cﬂqa)]

Por this difference, the integral over f— converges at the upper
1imit T& , and does not depend on this limit. The sum of (,{Ef:i)
and the integral for 1{'} 772 presents the total integral over
'L{‘ in the magnetic bremsstrahlung limit (because of the appli-
cability of the constant-field limit in this range). Surming all

the regults, we obtein

iﬂ(é&. g c#tf;:

where a(ch

3 C*Q55 (4.16)

are the tofzl energy losgses, 5{4:"!_—_ is the constant-
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-field contribution, and G"(‘Eb presents the end effecta:

o Fﬂ.f‘ o (0, &

gf(_i: % _“L {'jrj /dé (417)

f?% 5{‘35 il Ef/[gofﬂm %(Lﬁw"f' -
| - :

-9 4] ol trres)’
£+G Hﬁf‘aﬁ €4

xSm[_—. S 2({5}5((1;? ,.._ﬁ_u (jlf/({ja/f{)/
¢ 5T

t*‘/z

2 G /)5**’[ 59/({/{./&’” (Swﬁ-/c{f)/

sl 2 5 i 1 jwm ) /

- Vs, ( [r"%/"f‘g/( 4 ))}//1 B e

where

W(#} J‘if_(élzf . (Hﬂjepfé){ o e F(t/

m m—— g
g =i

b=yl - ARG
= é, S%({:)c(*’ (5 w;/o/f)
(5 wf(f’)ﬁ/‘f/

24

APPENDIX B

RADIATION ZND=-EFFECTS FOR THE FINITE RANGE
OF THE FIELD .
Let us consider the radiation of thé initial particle for
the cage F‘(—LZ'(ZQ):O. For definiteness, we assume that the

particle passes Z = Z, at ¢= O . In this case, the se-
cond integral in 2q.(A.18) takes the form

é}f}%ﬁi H. ] sz‘f AT ¥ 2(/&;, SZ;/%??)

o pé
Tt o

(3.1)

In the first integrel in the right-hand =ide of (B.1) it iz con-
venient to make the substitution ‘é—b 'é -+ T/g y 80 that

£+ %w&f_f‘i‘:‘ ’ f-r-/z - 'L‘},. (0 . The expression obtained

appears to be more suitable for the cese under consideration. We

will conaider the case of the power increase of the field:

FU=F8", §=% | wu= e &

P‘h(Hf*f.) 2
?F’ 5_3€QH+3 qugzhrs

&(¢) = =

£ m2(n+1)52nt3)  Zlnet)3(2n+3)

(B.2)
o & PG‘B E:F' 2§\h+2
Liq Y= ko
= )G‘ 15 I({’) @() (hfi)(ya-re)
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Using Formulae (B.2), we obtain

--"ieﬁ'f'_?)
M) Coi_ zzhfgff[ o /
@2 U@n+3)S 26?‘/.&:1“;*/2(2%:“3) (B.3)

Teking into account Eq.(A.11)

, we have

’ ?ag,-h¢(ﬁn )-¢) = 28(nv2) 2 [{Z Lo

+M€mv--r'{h+£ (‘fﬁg‘—(ﬁ (hij@-.(’th-S)_

- G (n+t) |

(B.4)
Then the last int egraW in (Z.1) i3 easily done:
F f 3 g
£ 2T
*4j26(%35a’ {#/2{!",/75 (ZLP (§C°Y /
C SR .
(B.5)

s g}ﬁﬁz/ig B e S
2h+5 o C 2nt3

In the first integral in (2.1) we will make the substitution

T= 2{' after the above transformations. Then integration over

“é ig simple, and the lasi integral over rz haa the form
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At

Z

E

The second integral in (2.6) is defined as a principal value:

_(pgj‘f?

SACHE.

oo

(h+1)?

Pn+3 Z

(h+2)° D

—

(ﬁ+2)2

(F’Hf) h - (?h+3)/ SO{?

r—

Lint
(h-rf)z

Ayl S
—-(th'f')) J{J ? ﬁ-f"?

h+£ ) 2
Z 2h+31 2h+3 (Ehf-gz: 2 i
o' ® Y
£2

(&*E)g g Bl

(B.6)

o]

;

(n+£J2
Z""? G\+L)2f‘2ﬁ*5

(B.7)

Taking iInto account all the results obtained, we then have
EQ-(TB}-
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APPENDIX ¢
RADIATICN DND-ZEFFECTS POR THE PIZLD DECREASING
AT INFINITY
When p(Z)—} O ftor Z-» 4 60 , 1t is convenient
to make the substitution -6—‘5{ —-T‘/‘-;_ in Zq.(A.18) for the
contribution to radiation of the incident particle, and -é—}
> t+ L/é for the outgoing particle. For definiteness, we will
consider the radiation of s final partiele fgc/, when there is

2 power decrease of the field over e specific length & .

__F’{"'H:_PG g\ : §: % g %({)ggefé‘w{f 5

= efls &h-t efo. ¢
e' 3 § 9‘5(%} SLP/({/Q/{K ( 'i)(ﬂ*Z)j

>
=475 ftc.n)
fgj .
Jutting thaza wctlana into (A.13) we obtain

(5)= 2 oo (fh—s)/ =

2h-3
42 JW/”"” 2 oy

=

=

H(Zm S 5'

Sdawc?(&rfs\) C)= 26 (n- 2)+ 2 [ nét

i éﬁm(n-z)(%f_cj~(h*’f)£@“‘3)+ ﬁa(h—fzz

(C.2)
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In the second integral in (i1.18) we make the above mentioned
subsatitution ‘é e T/é y and then ?zgf y 90 that
—%—91‘: :‘f'r"%a—{(f-f-g) « Carrying out the integ=

s we obtain the following integral over g

(z:-f“'ije
of < fﬁh?} Zn -

raticn over

@j“ﬂ

(2 f"‘a)

(H 2)2
5 i Ce f

Here the second integral is defined asg a pPrincipal value, The ex-

- pression for (_f. [ formula (C. 3}] can be transformed into the

form 61%2 (}E' _+£L) ZH .
Cc S [zzn-—z (H 2)2'2 (E }

L 42

poen > n- ] =L+
ot PR St

The sum of {C.2) and (Cad) gives in 29.(22) the term with the fac-

tor (/_.,;. 5;2/‘52) » depending on the field type. For N = -
integrals (C.2) and (C.4) are both logarithmically divergent, but

(C.4)

there exists a finite limit for their sum. Tor its calculation,

let us take into account that

= . CCimt Zn-3
Sde (ﬁ‘f‘? é__:uz_b_-:__'s’e :‘g’(j,.“__?_aj
(n-2) /
h-2 2
Him (2 =1 o 2wl 6,2z (c.5)
h=a2 (h-2)4% el




In this cage, both integrals over C‘?\" and ‘é In Sg.(1.18)

are taken as elementary and we obtain 2q.(23). gg/

*

For an external field of the Gaussian type P=F1,:. —

Thew £t oS 2 we bear in mind that Q‘({;‘) fi for large §-1-* ‘1;‘{7‘_1 (cm}

Then, doing integrals by the Laplace method, we obtain with an

(C.2) + (C. 4)-&[2& ek _.1,5_](‘1#{?45-(:]* $ accuracy of up to ~~ "Z/‘f?h{:i 2

5 - ‘4/( = Yo e 2./ e
,,,g dy oy ) | Yigym o :, P)-9

9 | -9 %tr0) 2ep) b | - ¢3

-$7

52,

For the case where N> €00 , we will make the substitu- oa

%
ti ; then y S L an 2 {
iy E”ai?/” B 2 S e e Sdﬁ'ﬂfm%fg‘ gl bl @u)+ O ‘ﬁ—I'Q )

o A 3
L L Y g JeE i W
gﬂfﬂ, Z_Z Z"“? 2 s Taking the gecond integral in Zg.(1.18) we make the substitution
o f
T—=>T/+ , and omit the terms —~ z:‘/g‘z (accuracy of

] ol +4 97 - 5 i o * 2 ¥
In thE" cade WhEI‘E th.Ea.E 13 E}[‘QGHEHJ.LE'.J. dﬂc;eaalﬂg E:'f the e Z/& a :I.. Aftear thesa OpET&ElGI‘.‘.Sg the lntegrals GDlI’!GldE

* £ % ¥ g | a— T T < -~ - - Ad gt yan i s
field, for the final electron contribution to the radiastion we with the case of exponential field decrease,

have

Fit)= e ™ = Re™ v = 2B 78

ot - - ™ J

Vi Dk s i -

g({)_ P s ek e g’ (c.8 |

C.8)
o) SR |
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