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ABSTRACT

A new method for the calculation of the nonrelativistic
amplitudes in a Coulomb field is proposed. The
method is based on an operator representation ofi the
Green function for a charged particle with a subsequent
disentanglement of operator expressions. The dynami-
cal algebra O(4,2) of the hydrogen atom is used. The
calculation of the bremsstrahlung cross-section is
performed.

© Hucruryr sdeproii usuxu CO AH CCCP

It is known that, in certain cases, the use of the operator tech-
nique essentially simplifies the problem of the calculation of various
amplitudes in an external field. The characteristic feature of these
cases is the existence of the closed algebra of operators connected
with the problem under consideration. An intensive application of
the operator methods has been initiated by Schwinger’s paper [1].
The important development of these methods has been made in
Refs [2—4] for the case of a homogeneous external electromagnetic
field, and in Refs [5, 6] for the case of a plane wave. In Ref. [2]
Schwinger has formulated a method of calculating the mass opera-
tor in a homogeneous field using the example of particles oi spin
zero. In Refs [3—6] the operator diagram technique has been deve-
loped, and within the framework of this technique the electron mass
operator and the photon polarization operator have been obtained.
The method has been generalized to the case of a plane wave
moving along a magnetic field in Ref. [7].

The case of a Coulomb field requires a special consideration. As
it has been shown in Rels [8—11], the Schrodinger equation in a
Coulomb field possesses a dynamical group O(4,2). A dynamical
group of the radial Schrédinger equation in a Coulomb field is a
group O(2,1) A review of numerous papers devoted to the discus-
sion of the dynamical groups can be found in Refs [12, 13].

Using different realizations of the generators of groups, one can
obtain the Green functions of wave equations. In Ref. [14] the
algebra O(2,1) has been used to find the Green function of the
Dirac equation in operator form. In Ref. [15], with the help of this
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algebra, a new integral representation for the Green function of a
charged particle moving in a Coulomb field has been obtained. This
integral representation is valid in the intire complex plane of the
energy.

The method of Green functions is a very convenient to obtain
various amplitudes in an external field. When the expression for the
amplitude contains several Green functions, the use of the operator
technique allows one to avoid the integration with respect to the
great number of the variables. Instead of this integration the prob-
lem arises of the transformation of operator expressions.

In the present paper, we propose the method for the calculation
of the nonrelativistic amplitudes in a Coulomb field with the help of
the dynamical algebra O(4,2) of the hydrogen atom. To demonst-
rate our method, we apply it to the calculation of the photon radia-
tion (bremsstrahlung) cross-section os.

We shall carry out the calculation in the dipole approximation
which is valid if Za < 1 (the nuclear charge is Z|e| where e= —|e|
is the electron charge, a =e?*=1/137 is the fine structure constant,
we set A=c¢=1). Let us start with the well-known formula for do
(see e. g. Ref. [16]):
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here v is the incoming electron velocity, v’ is the outgoing electron
velocity, p’=mu’, m is the electron mass, o is the photon frequency,
X is a matrix element of the operator X between the initial () and
the final () states of a continuous spectrum. After the integration
of do, with respect to the velocity directions of the outgoing elect-
ron, the cross-section does not depend on the velocity direction of
the incoming electron (k=3/|v|). Therefore, one can multiply both
sides of eq. (1) by dk/4xn and take the integral over the angles of
unit vector &. Let us now consider the Green function G (¥, ¥'|E) of
the electron in a Coulomb field. As is known, the function G has, in
the complex plane E, a cut along the real axis from 0 to oo, which
corresponds to the continuous spectrum. It also has poles, corres-
ponding to a discrete spectrum, at E<0. Using these analytic pro-
perties and standard definition of the Green function (see e. g.
Rei. [16]), one obtains for the functions yr of the continuous
spectrum with the energy E:

d}_u- & —ep -ﬂ'[, e
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Here 8G (¥, ¥'|E)=G (X, ¥'|E+i0) — G (X, X¥'| E—i0) is the disconti-
nuity of the Green function on the cut. Relation (2) allows one to
represent do, as follows:

o S aw® b iy g Bar SR
9 SS dx dx(xX') 6G(X’", X | &) 8G(X, X |E) , (3)

where E=muv?/2, e=m(v')?/2, o=E—e. We obtain the input
expression for application of the operator method. Let us represent
the Green function G (X, x"|E) in the form -

G, ¥ | E) = (¥ (E+%°i—;—; e (Er—#zr—f:Jr z;) T ey )
Making the exponential parametrization, we get:
G, 7| E) = —iﬂfds e'%* (%] Exp[is(Er— ”’2)] rlEy. (5)
0 2m

[t has been shown in Ref. [15] that formula (5) gives the analytic
continuation of the Green function in the upper half-plane of the
variable E. To obtain the analytic continuation to the lower hali-
plane, we have to take the integral with respect to the parameter s
from 0 to —oo. So, one has for the discontinuity of the Green
function:

8G(F, ¥ | E) = —i af ds e”™ (X exp[z’s(ﬁr— ;L;)] o (6)

Using formula (6) and the completeness relation, we get from
eq. (3):
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X exp [isl(ar—;im)]rfexp [ESQ(Er—;—i—)] 3. (7)

For the purpose of further transformations it is convenient to
use the relation
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and to write eq. (7) as follows:

i ma; § dsidsee®et( axe, (8)

where the function © is
8= {X| rxexp [551 (sr— %:;)] rpexp [z‘sg (Er— ﬁ)] | X5 (9)

Now we pass to the transformation of the operator expression in
(9). Let us consider the following fifteen operators:

day i oL

ijizE;jf;fk, Lmz(fﬁ’ui}p;—x;p%‘?—x;ﬂ,
Ly=Xp—i) pi—xp*/2+ /2, Ls=—rpi, (10)
Los=%F—i, Lso=(rp*+r)/2, Lsa=(rp’—r)/2,
where T is the orbital angular momentum operator, and i,

i=—1,92, 3. These operators satisfy the commutation relations
(b= —L4)

[ Lys, Loo] =i(@ve Luo—+ &uo Lvp— &up Lvo—&vo Lup) - (11)

Here g, =0 if pv, goo=gss=—1, gu=gi=1. Eq. (11) shows
that L., generate the algebra O(4,2) (see Rel. [12]). The operators
Los, Lso, Lss generate the algebra O(2,1). Using the commutation
relations of the algebra O(2,1), one can obtain (see eq. (15) in

Ref. [15]):

2
exp [isl (Er— EL) ]zexp [ikrth ()] X
2m

Xexp| —2iLosIn(ch(t))] exp [—L—rgi th (51}],

2

exp [isg(Er—— %)]iexp [—— -I—T—E th(fg}]x
X exp | 2iLos In (ch(ts))] exp|ixr th(f)] , (12)

where h=\/23m81, fo =Y /2%52, k:“\fi’ms, »="12mE. Substituting

(12) in (7) and taking into account the obvious relation
exp (—iaLos) @(r) =e "@(re™"), we get for the function ©:
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where

—

B:exp[—— i— th(t1) rpE] rpexp [——i th (f2) rpg]. (14)
H

Now we have to use the commutation relations of the algebra
O(4,2). With the use of (11), it is easy to find the following repre-
sentation for the operator B (14):

e

s 2 T SR S e
B={rp—— th(t) [(FF—1) F—%?/2} X

Xexp[_img(m{m it m{sg}ﬂ' (15)
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Taking eq. (15) into ziccuun't, we obtain the expression for the
matrix element (R|XB|R;):

d 2 a ad o
7 - ) (Rag R Hg5) X

X.(Rle PR, (16)

(RI%-B\R)) =[—.¢~Rﬂ

th(f,)

where V=—r" = th(t,)

S So the problem is reduced to the calcula-

tion of the matrix element (R|exp (—iyrp?)|R,). This matrix ele-
ment can be calculated with the help of the algebra O(2,1). Acting
in the same way as in Ref. [15], one has:

exp i (R4 Ri) /7] Jﬂ(ﬁ{RRI+EE1) /¥) . (17)

2 A0 propiey 1
Rle ™" |R\)=— -
{ } 4nR\y”

where Jo(x) is the Bessel function. Substituting (17) in (16), diffe-
rentiating and using the result obtained, we get from eq. (13):

rhexp { ir [2+(% +2) th(t) th {:2)]?—‘}

s sh(t)  sh{f)
o 4ny'(ch (1) ch (f))® [( keh(iz)  wch q:l)) %
xig) i () — 28 1) ] (18)

Here y=2r[ych ({,) ch (t5)] ~'. Thus, we have calculated all matrix
element under consideration. Then we substitute the expression for
® (18) in (8). Our remaining problem is to take the integrals with
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respect to the variables s, s; and r. The integration with respect to
angles of vector ¥ is trivial. Performing the integration by parts
with respect to the variables si, s2 and r, it is not difficult to repre-
‘f.-:-ent the expression for the cross-section dos/dw in the following
orm:

doy _ _ 4 aelZom) ({47 4vcos(aT) (ch(T) —ch (1)) X
]
X\ rdrii(r)sin(rp+b7), (19)
0

where a=Zam(x+k)/xk, b=Zam(x—Fk)/ =k, p=Ach (T) —
— Beh (1), B= (x—k)?/4xk, A=B+ 1= (x+k)*/4xk. In eq. (19)
we have changed over to the variables T=t+f, 1=hL—1 and
have used the follows properties of the Bessel functions:
Jo(—x)=Jo(x) and J (x) =—J1(—x).

Let us now proceed to the calculation of the integrals. The
integral with respect to the variable T is expressed via Hankel func-
tions. Taking the integral, one has

doy taw(Zam)® ad
dw i 3k ' ﬁBX
x | dr I\(r) H (f(B+1)) § drexpli(br—Breh(v))] (20)
0 0

where H\(x) is the Hankel function of the first kind, standard difi-
nition of the Hankel functions has used. Then we use the relation
(Ref. [17], Vol.2, eq. (32), section 7.3)

i
sh (nb)

[ expli(bv—xch(®)] = [5 dt ch (bv) .e""‘“]“'f-’—ne“””L_u,{x)] @1)
1] 0

Let us substitute this representation for the integral in eq. (20). In
the expression obtained one can deform the contour of the integra-
tion over r so that the integral will be extended from 0 to i oo
(r—ir). After that the contribution to the integral in (20) of the
first term in (21) is pure real. As a result, this contribution to the
cross-section vanishes. Making the stated transformations, - one
obtains '

L daw(Zam)® ab @ T _ .
- 0 [S} dr 1\(r) Kiar(B+1)) Ka(rB) , (22)

where I,(x) and K,(x) are the modified Bessel functions of the first
and third kinds respectively. We have used the relations
Ko(x) =K_v(2), Iu(x) — 1 _ip(x) = —2i sh (bz) Kip(x) /. Then we
take the integral (22) with respect to the variable r with the help of
eq. (1), p.399 in Rel. [18] and relations for the hypergeometric
functions of two variables. Taking the integral and differentiating
with respect to B, we get finaily the following result:

do, _ den’Eexp[a(f—8] 4 | g2
dw sz{,} ch (-T['E]I sh {EEF} f de | II\TI} | ' ( 3}

where E=mZa/x, &' =mZa/k, n= —4xk(x—*k) ™", the Iunction
F(n) is the hypergeometric function: F(n) =F(E, i&; 1; n). Our
result (23) coincides with the well-known result for the brems-
strahlung cross-section of nonrelativistic particles in a Coulomb
field (see e. g. [16]).

Quite similar our operator method can be applied to the calcula-
tion of other amplitudes in a Coulomb field. It follows from the
consideration presented above that the method discussed is espe-
cially effective for the calculation of the expressions which contain
several Green functions. One more Green function in the initial
expression we are interesting in leads only to one more integration
with respect to the parameter in the final expression. So, the method
developed in the present paper seems to be very useful for the solu-
tion of different problems in a Coulomb field.
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