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ABSTRACT

The representation for the generating f[unctional of
quantum Heisenberg ferromagnet as an integral over
two c¢c-number valued fields, charged and neutral,
obeying the initial conditions (instead of commeonly
used periodic boundary conditions) is obtained. With
help of this representation the long-time dynamics of
the longitudinal spin component at low temperatures
is studied.
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I. INTRODUCTION

For a given quantum system it is suitable to represent the parti-
tion function and generating functionals as an integral over the
space of real or complex functions. Such representation allows one
to use the saddle-point method and is useful to analyze perturbative
or nonperturbative effects. The attempts to obtain the functional
representation for the quantum Heisenberg ferromagnet had been
undertaken by several authors [1, 2]. Their results do not seem to
be acceptable due to the absence of explicit closed expressions [1],
or, as in the case of [2], the failure of trivial identities (see section
2j. In the work of one of present authors [3] the method for re-
writting the partition function of the magnet in nonsymmetric phase
as the integral over two number-valued fields, charged and neutral,
was proposed. The quasi-particles corresponding to the charged
field behaved as the ordinary bosons (magnons). The perturbation
theory expansion of the functional integral [3] reproduced the ope-
rator diagramm technic results [4, 5]. It is worth noting that the
results indicative of faulty of developed perturbation theory was
reproduced as well. (The frozen longitudinal spin component
iluctuations; see section 3 for more details.) '

In the present work we show that the functional representation
obtained in [3] is erroneous due to incorrectly treated some global
obstructions. Using as before the method of [3] we derive the cor-
recting expression. The several ways to verify the validity of the
new functional representation are also presented. (Note that the
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mentioned obstructions are irrelevant in the case of high tempera-
ture dynamic studied in [6] since the representations of the works
[3] and [6] have quite different structures.) With the help of the
derived functional integral we consider the longitudinal fluctuations
and get conclude that they do have the nontrivial dynamics. The
physical meaning of the construction is similar with the instanton
effects discussed by Polyakov, but our variables allows one to
extract them without trying to find some specific field coniigura-
tions.

The fields of integration in our integral (2.12) retain the same
as in [3]. However, the charged field no longer describe bosons
inspite of their number nature. This result is in accordance with the
fact that magnons are not bosons when treated rigorously.

2. FUNCTIONAL REPRESENTATION

1. Let us recall the derivation of the functional integral for the
partition function of the Ising model [7]:

Hfzhé“"rff“i“f's oi==%1, (2.1)
—pH 1 —1
2=Tre~*") ={ ]| dwexp (ol ') X
I '
X Tr exp (Bgia;) =§ [l dpiexp ( — —2—ﬂ(p;q>;.ff;- 1—}—2 In ch pr.-) Stk 5
i i

Here J; is the energy of exchange interaction of the spins on lattice
sites 7; and 7, L-,-_l is the matrix inverse of J;, and summation over
repeated indices is assumed. The aim of the Gaussian trick used in
(2.2) is to reduce the trace over the set of magnet states to the pro-
duct of the one-spin traces. The direct generalization of (2.2) for
the case of quantum Heisenberg ferromagnet does not take place
because of noncommutativity of spin operators. But for the operator
exp (—pBeH.:), where

B e %L-,- 53 (2.3)

and e—0, the Gaussian transformation like (2.2) can be periormed
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with the precision up to the terms ~e¢®. Thus, writing g

(e ""y'/e  we come to the expression for the generating functional
of temperature Green’s functions of spin operators Z(h):

p
Z(R) =Tr Texp(—BHex—{—SE.{f} 5 aff) (2.4)
0]

p
Sd: G(t) 17! @";(f}) X

0

in the form Ll, 8]:

B ={ ] Daexp(—

3
2

X Tt [Texp (Edr[@(:wﬁf(z)] S‘)] (2.5)
)]

The symbol T denotes a chronological product and hi({) is the
external field on the lattice site ;.

Path integral (2.5) is understood as a limit of finite-dimensional
approximations:

N
pgty= [ ] deiBn/N), N—oo. (2.6)

E=x e A=

Let us rewrite (2.2) in more convenient form shifting the variables
@i(t) by —hi(i):

» ﬁ ﬁ i
2h) =[] ety exp (—5 §at @iy G+ {dtfidi ' §i—
f 1]

0

] %ﬁdg i; I; ‘ f{}-) H Tr [Texp (E di @il) S})] ; (2.5")

] 0

Time-ordered operator exponent

i

A(l) = Texp (S At G(t') E) (2.7)

i
is defined by the equation
A(t) =(§(1) S) A(t) (2.8)

and initial condition A(0) =1. The operator A({) can not be expres-
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sed explicitly as a functional of §(¢). However, the substitution does
exist which recast T-ordered exponent into the product of usual ones
(see also [3]). Indeed, let consider operator given in the explicit
form:

¢

B(f) —exp (ST (1)) exp (szg olt") azf) X

0
X exp (s—g W) exp (g o(t”) d!”) di’) exp(—S*ty—(0)),  (2.9)
0 0 g

where S*=8"+iS8’ and ¢+, p are some new functions of ¢. Using
the commutar relations of spin operators one can be convinced that
the operator B(f¢) obeys the equation

Blty={ST(p ™ —pp™ — T ))+S ¢t +S(p+2¢T¢p 7)) B(H). (2.10)

The last factor in (2.9) provides the equality B(0) =1. Thus, the
substitution

¢ =p+29TY,
ot =v¢t, (2.11)
P =%p"—pp” —pT(p7)”

where {pizé((p‘:l:itpy), recasts A(f) into the form (2.9).

Thus, considering p and $* as the new fields of integration, we
can calculate the trace of T-exponent explicitly and obtain a closed
functional representation for Z(k). However, the change of vari-
ables (2.11) contains %~ on the right-hand side and either boun-
dary or initial conditions should be imposed. It would be naturally
to impose periodic boundary conditions (as it was done in [3]), but
in that case the mapping (2.11) becomes noninvertible. In the
present work we use the Cauchy-like condition:

P (0) =0. (2.12)

2. We may consider the fields ¢*, ¢° in the measure

De’Dep* Dy~ as independent complex variables with the constraints

Im@*=0, ¢t = (¢~)" fixing the surface of integration. The vari-

ables p, p* are also treated as independent when evaluating the
Jacobian J[p, T, v 7],

6

D" Dgt De~=1I[p,9*, | Dp Dp* Dy~ (2.13)

The Jacobian J=detS depends on a regularization of the diffe-
rential J of the transformation (2.11). Expressions for J obtained
under different regularization prescriptions can distinquish from

B
each other by the factor exp (czS pdt), where o is an arbitrary real
0

number. (See e. g. [9], where the determinant of similar operator is
calculated.) In our case the regularization is fixed by the following
evident condition. The partition function Z(A=0) calculated with
the help of the functional integral with J;;=c.6;; must be equal to
the expression

: fai
Z[ht[}j:exp([ﬂM(ﬂ?S{S—{—l}—i—conbt)),

Iy=ce8y,. M=) 1, (2.14)

being the trivial consequence of the kinematic identity S?=S(S+1).

It will be shown that the Jacobian corresponding to (2.14) is equal
to

p
e, vt ¢ |=C{J|15t-exp(—%§ pdf), : (2.15)
0

(The lattice site index is temporarily omitted.) This value of [ is
provided by the following discretization of transformation (2.11).

(pr=p(t),.... ta=np/N, A=B/N, N—o0),
Pr=pat 0 (P +0u1) @ =04, (2.11)
A 1 - : S
Tn :_i[wn_ _"-bra.—],}' Bk E’prr{"pn_ +'¢n—l] R —;11—1%?(“'43:} +'¢'n—]}£-
Indeed, let the one more transformation be performed:

p>p=p+2¢pT¢~, p*—=¢p*, having the unity Jacobian. The Jaco-
bian of transformation from %, ¢° to g, $* is simply
det (d;—p+2¢p "¢y~ ) =det (d;—p). Thus, we can conclude that

det /'=det (8,—p) . (2.16)




In the discretization (2.11) with the cnnditien (2.12) the night-hand
side of (2.16) coincides with the Jacobian of one-field transforma-

tion

@ = — (b —%a" 1) — - edbr F i)

where n=1, ..., N, g =0. The last one can be calculated easily
and is equal to

det f= ﬁ(— = --pn) (2.17)

In the limit A—0 we get the expression (2.15) where const=1/A".
It is worth noting that the regularization (2.11") leads to the eeieei-
dence of the operators A(¢) and B(t) up to the terms ~A inclusive.
(The corresponding discretization of equations (2.5) and (2.7)

assumed.)

3. The trace of operator B(B) can be calculated easily 'fer an
arbitrary value of spin S. However, we restrict ourselves with the
case S=1/2 in order to avoid unwieldy expressions:

1 B
Tr A(B) = Tr B(B) =exp (-2—. 5 pd.‘.‘)
0

dt) (1+1b_{ﬁ} § p () exp (i pd!’)df), (2.13)

0 0

) ey TR
=

texp(—

Hence Z (k) is represented as the following functional integral:
Z(h) =SDp Dyt Dy~ e—rn [l + i () X

i

)(f Bt (£) exp (i p.-;:if’) dt -+ exp (E P df)] ;
0 0 0

¢ 1 o + g1 e
F=S df(—p,f” p;+2'¢: i 1|3.u
8 -
—2p: L7 (0 Wi — 07 wiT) 20w 1 e —

8

—wrlrwwf)ﬂsprdr MJ,, W)

i 0

Here the quadratic in % term is omitted because it does not contri-
bute into nonsimultaneous correlators which we are interested in.
The field ¢ in product with the source A(f) implies the expression
in terms of p, $* according to (2.11). We can deform the initial
surface of integration to the standard one:

Imp=0, YpF=(p7)" (2.20)

~if the integral converges over any intermediate surface. For the case

of ferromagnetic exchange interaction this convergence is provided
by the kinetic term in Lagrangian '/ 11;, and the mentioned
deformation is possible.

4. It is crucial that the conditions imposed on the fields ¢ are
initial (not the boundary) ones: ¢~ (0) =0. It means in particular
that the excitations described by the field ¥ (magnons) do not obey
in strict sense the Bose — Einstein statistics. The last sentence is the
obvious consequence of the spin operators boundedness though.

The validity of equality (2.14) is the necessary condition for the
representation (2.19) to be correct. When J;;=c¢8;; the action I is
equal to:

f
=7 § dt (ot 20 +i)., (2:21)

P 0

and Z(h=0) reduces to the product of one-lattice-site Gaussian
integrals being easily calculated. The result is just (2.14). It can be
verified by explicit calculations that the change of regularization
would destroy the equality (2.14). (For example, the free energy
would be nontrivial function of B instead of the constant.)

5. In the paper [3] the periodic boundary conditions
“(0) =%~ (B) are used instead of the present work initial condi-
tions. When the periodic boundary conditions are imposed and the
regularization (2.11’) .is used the .}aeublan of (2.11) is equal to
(compare with (2.17); po =9y ): -




_H'_]}”_lﬁ (- i ipn chnnst-sh (—l Epdt).

a

(2.22)

In contrast with (2.15) the Jacobian (2.22) vanishes on the hyper-
p

surfaces | pdt=inm where m is an arbitrary integer. It means that
0

the holomorphic mapping of complex spaces (pa, $a, Pr )=
— (@i, @, o= ) is multivalued: a single configuration of fields
(¢°, @) corresponds to some set oi (p, v*)-configurations (see
e. g. [10]).

When the segment (0, B) is compactified in a circle then the
zeros of Jacobian in the space of fields (p, ¥*)-configurations do
not disappear under modifications of transformation (2.11) keeping
the number of derivatives in the right-hand side. The regularization
providing the equality (2.14) does not exist in this case. The same
one is valid e. g. in the case of antiperiodic boundary conditions.
The passage from boundary to initial conditions as a method of get-
ting rid of zero modes was proposed by S.N. Vergeles in his work
[11] devoted to SU(2)-anomaly.

Refined method proposed in [2] leads to the functional integral
which does not obey the relation (2.14). Apparently, this fact is con-
nected with impossibility of unambiguous gauge—fixing in the
approach of the work [2]. (The gauge of [2] suffers from the
Gribov ambiguity.)

6. There exists another method to check the correctness of our
representation (2.18). It is also a good illustration of great impor-
tance of boundary conditions in the functional integral.

ol [ e er
Let us consider the vacuum expectation value oi operator e 4

Zg={[}Ie_ﬁﬂ“‘iﬂ}=exp(—%$2|ﬂf{0)) (2.23)

where J(0)=) Ji; and M=) 1. On the other hand, the functional
i i

representation of Z, is derived from (2.19) by the replacement of
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B
Tr B(B) (2.18) by <UIB(ﬁ)ID)=exp(—wSSpdf):

]

p
Zo=\ Dp D¥* Dy~ exp (—r+(v—5+|;2)zg 0. dt), (2.24)
E 0

The condition {~ (0) =0 allows us to evaluate (2.24) exactly in
spite of nonlinear interactions of fields p*= (which prevents (2.24)
from exact evaluation when periodic boundary conditions are im-
posed). Indeed, the bare propagator of field ¢ is

{1]:';'_(:“:] TIJII_Hz) >.g: %f{; “{f[—— fg} {225}

and when the integration over y* is performed, all the contribu-
tions to effective action (functional of p;(#)) containing more than
one Ypppp and Ppypp vertexes vanish. As a result the effective action
W, is the linear functional of p:(#):

exp{ — Wyl f}f[I}]}Es Dyt Dy~ exp(—1Iy) =

p
=const-exp(_‘?z 5 p;d!). (2.26)
it 0

(Here I'y, denotes p-dependent part of I'.) Thus, the integration over
0:(t) is Gaussian and performing it we come to (2.23). (Note, that
the value of step function 8(0) =1/2 corresponds to our regulariza-
tion (2.117).)

7. In the recent work [12] the functional integral having local
action has been derived for the cases S=1/2, 1. Together with
c-number-valued fields, similar to our p, ¥, this integral contains
fermionic ghosts. The integration over these additional fields can
not be performed exactly and in this sense the difference between
the representations [12] and (2.19) is radical.

It is worth elucidating the origin of our set of fields (p, ¥).
Classical spin is a vector of fixed length and its states form a
sphere. It is well known that the sphere is covered by two complex
planes. Thus, in order to define the state one complex number ¥
and the number of the plane must be given. The last two-valued
variable is similar with the Ising degree of freedom and can be de-
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scribed by the real field p as is shown by the formula (2.2). The
quantum noncommutativity fills® this picture with the nontrivial
dynamics.

3. DYNAMICS AT LOW TEMPERATURES

1. The Ilow temperatures limit means that B/o>1 and
n= (8T8~ )<« 1. Besides that we are using one more small para-
meter which is defined as R™', where R is the length of exchange
interaction. This parameter has been introduced for the first time
for Heisenberg ferromagnet in the works [4]. When the lattice size
a is less than R: a/R<« 1, the Fourier transform of Iri—T7j) =1,
J#, has the order of magnitude of Jy in the domain with the linear
size ~1/R around the point k=0 and is about Jo(a/R)? in the rest
of the first Brillouin zone. It follows from this, for example, that
Y Ji==J}a/R)® In case of nearest-neighbour interaction we have
[

(a/R)*=1/z, where z is the number of these neighbours, and for
cubic lattices 1/z<1/6.

There are some effects that are correctly described in the picture
of weakly interacting magnon gas. In that cases the representation
(2.12) is less conveniént than the explicit Anzatz by Holstein — Pri-
makoff [13] or Dyson— Maleev [14], which ignore the finite-dimen-
sionality of spin states space. Therefore in the present work we are
concentrate upon the nonmagnon part of the magnet dynamics,
more precisely, upon spin longitudinal component fluctuations dyna-
mics.

2. It was obtained in [4] that the correlator Kij= (87 (0) Sj(1))
contains two terms of different nature. The first one arises due to
the magnons, which take away the magnetization and, thereby, con-
tribute to Ki;(#). This dynamical contribution is proportional to a
power of (BR)~'. The second term corresponds to the «frozen-in»
Ising-like fluctuations of the longitudinal spin component (i. e. of
the §%). It is nonanalytical in the temperature and does nof have a
smallness in R™'. At low temperatures and not very large ¢ this
last static term in Ki;(f) can be ignored. However. when the real
time f{—oo, the dynamical contribution decreases as ¢! (see
[4, 5]), while the static one does not depend on ¢. The absence of
the terms in perturbations series of [3, 4] providing the relaxation
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of static contribution in K;(¢{) means that this series arelnﬂt com-
plete. This remark applies equally to the equilibrium version of t}?e
diagram technique for the spin operators developed in [5]. It is
shown below that in the functional representation (2.19), where the
structure of spin degrees of freedom is taken into account curregtly,
the «frozen» fluctuations do revive. Their dynamics can be described
by the neutral scalar field with the nonzero mass.

3. We are unable to perform the integration over y* in (2.19)
exactly and, as usually, we divide the action into free part and

perturbation:
Zh) =S Dp D F Dy~ exp(—1T7),

Pz Fl:-+ me 3

B P
ru:§ dt (%!}; J"fj_l o+ 2¢i" -":‘J_J s - g
0

B
—20 47 (Wit — i) ) +¥ § pdt—
0

i

: _
—§ mdi pit2wt o) dt, (3.1)
0

B
Poe=\ @t — 205 (b — it i) +
0
+ 2 S e =20 Ji (07)*iT) — T,

Pyp=7 In |14exp (E pudt) -+ i (B { () exp (g pedt’) dt].
i ]

0

Here I's, denotes the nonpolynomial part of ', mi=pi—p, 1s+the _
expectation value of the field p;. We assume that h;= (0, 0, h;) since
we are interested in the dynamics of z-component only. T:he
saddle-point value p, is defined by minimization of the bare effective

potential, which is equat to (see (2.26)):

| 5
Vo) = - 157 5+ Wolp) = - 1 '+ 6. (3.2)
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Then
po=(—1/2) Jy (3.3)

and the mean spin (S*)o= —1/2 corresponds to the ordinary ferro-
magnetic vacuum. The bare propagator of the field ¢ in &, f-re-
presentation has the form:

G, o) = (9 (t) B (t2)) =

= Iebti—t exp [ (1— ) (—13) . (3.4)

The contributions of terms from [ into various averages are small
either in temperature or in the inverse radius of interaction and a
perturbation theory can be developed.

4. The real-time correlation functions are obtained from repre-
sentation (3.1) immediately by substitution of Il-like contour in
complex plane of ¢ for the line segment (0, B) (see [15], and, for
example, [6]).

The correlator K;(f) is given in our representation by the
average:

Kii(t) =i ' im ' {T140) + 217 (0) wi (0)) (fim(2) +
+ 294 (6) $a (1)) ). (3.5)
When f— oo, the dynamical contribution due to magnons disappears

as {~' (this may be verified by explicit calculations). What only
remains is

Kit) —> dic Jim' Dun(1)
Din(t) = i40) fin(t) ). (3.6)

After the integration over y* we come to the expression for Z(h) of
the form:

p i
2k =§ Divexp (—{ dtati "W +L WAl +] dedidi ') (BT)
0 i 0

where the functional W[vn] is expressible as the series in %. This
expansion starts from the second power of n: W=W.+ W3+ ...,
since the linear terms can be eliminated by redefinition of p. The
behaviour of K;(f{) at {—oo is determined by the infrared-singular
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contributions in Wy[n]:

W ii] = %e”ﬁ(? ﬁdf)z—l—f df(z GYB, £) e‘”'] (§ ﬁdf“)ﬂ. (3.8)
&

0 ] 0

The terms, which are omitted in (3.8), are less than the kept one,
or do not play the role in forming of asymptotics of K;j(f) at {—> oo,
The latter relates, for example, to the contribution from the vertex
of local interaction of fields 1 and ¥. Using in (3.8) the following

form of Jg:
{ Ia., ka<-a/R
A

(3.9)
I &Jy, kRa>=>a/R

we obtain in the first nonvanishing order of R~

2

W ii] = %e”(ﬁ dt) +
0

Keeping the infrared-singular terms only we come to the expres-
sion:

n i 1 5
W 1] = —g_eﬂ'“( (3.10)

=l =]

2 _B { 2
ﬁdf) ol o ™ df(g ﬁdf’) :
0 0

Substitute the contour C, coinciding with the line segment (0, p) on
the real axis and having the ends on +ico, instead of this segment
(0, B). (It is meaningful to say about the infrared singularity in

this case only.) If the integral Sﬁdt is not equal to zero for the
c

given trajectory, the contribution of this trajectory to the action is
infinitely large due to the second term in (3.10) and thus can be
ignored. It means that the change of variables

—

n=1
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is admissible, where the field n is equal to 0 on the ends of the con-
tour C. (More precisely: we change the variables from % (#) to n(?)

and §={ fdt. Quadratic in & part of the action has an infinite coef-
G

ficient and the fluctuations of this mode do not contribute to the
dynamics of other modes and to observable correlators). The gene-
rating functional (3.7) takes the form

- Zhy={ Dr exp(_._zjik_ S el gl 2=
k c

sty PPy 12 ‘_‘ ke o
Tkl ingl?) + ) o= | i gt). (3.11)
k C

It is clear from this expression that the terms of the next order of
R~' are inessential only for the fluctuations wz having ka>a/R.
This part of E-space dominates and here J;=/J.. The functional
Z (h), restricted to this fluctuations, is equal to

Z(h) =\ Dnexp(— TI_Z S di{ | g 2 —

S 4

T,

(3.117)

where
mi=1JZ e". (3.12)

The expression for the propagator of n satisfying the zero boundary
conditions on the far-away ends of C follows from (3.11") im-
mediately:

(M0) Mi(f) ) = 2= e ™. (3.13)

Thus, the asymptotics of the longitudinal correlator is

Ki(t) — —;—e*‘ﬁf’?e"”"‘ (3.14)

for ka>a/R. Such k give the dominant contribution to, for
example, '

16
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Kidt) :Z Ki(t)
k

and the asymptotics of Ki(f) coincides with the right-hand side oi
(3.14) in the leading order of R™".

The exponential in B factor in the expression (3.12) for mj has a
simple explanation. The step-by-step perturbation theory describes
the shallow transversal choppines against a background of «fro-
zen-ins longitudinal fluctuations. The relaxation of this fluctuations
does not arise in any finite order of magnon perturbation theory.
The destruction of longitudinal correlations is provided by the fast
rolling of spins on lattice sites; the probability of such configura-
tions is suppressed just by the factor e” since —p is the required
energy. The similar symmetry restoration picture for the particle in
the double well potential was described in detail in the work [16].

5. Our formalism is not homogeneous in time: for example, the
averages {(p;(f)) and (" () i (f) ) are nontrivial functions of ¢.
But the observable value

(SEY=1J;7 " (CpdD) Y + 2w () vi (1)) (3.15)

does not depend on ¢ in any order of the perturbation theory. It can
be verified by direct calculations that the expansion of (3.1) over
powers of R™' leads for (S&i) to the result of [4]. The Green’s
function of the field ¢ is defined in this computations by the bilinear
part of action I' together with the term (see (3.1))

p .
Y p(B) (wet(t) e at. (3.16)
i 0
Instead of (3.4) we obtain:

) GyB, 1) Fi{t)
Gk‘(f;,fg}—-—ﬁk(f},fz}—{— | — F4p) 3

Fit) =\ Gt ) e'®dr. (3.17)

Lo L = -]

Using for the evaluation of (" (#)¢; (f) ) the propagator (3.17)
and taking into account the contribution to {p;(f)) due to the term
of Lins:
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p £
Y () | w0 e“”(g ni{t’) d!") dt . (3.18)
i 0 (1]

We come to the expression for (S7) of the work [4].
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